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Abstract: The study of the sensing and removal of Rhodamine B (RhB) textile compounds is the 

photoelectrocatalytic system applications development. RhB was used as a model to study the 

performance of TiO2 (NTiO2) photoelectrode nanostructures as environmentally friendly sensors. The 

synthesis of NTiO2 was carried out on the surface of the Titanium electrode by applying a potential bias 

of 25.0 V. The NTiO2 formed on the surface of the Titanium electrode (NTiO2/Ti) was characterized 

using SEM, XRD, FTIR, and Cyclic Voltammetry (CV). The formation of NTiO2 is characterized by 

the formation of a honeycomb-like tube on the Ti electrode surface. In addition, it is strengthened by 

diffractogram peaks at 2ϴ = 25 o and 48 o and IR absorption at wavenumbers of 3441.01 cm-1 (-OH 

groups) and 1629.85 cm-1 (Ti-O group). As for the results of sensing RhB using CV, it is known that 

RhB is oxidized on the surface of NTiO2/Ti with a value of Ea = 1.54 V. The oxidation process that 

occurs is controlled by the diffusion rate. Based on the results of photoelectrocatalytic RhB removal for 

60 minutes, it was shown that using 0.10 M NaCl support electrolyte effectively increased the RhB 

removal rate. The decrease in RhB concentration during the photoelectrocatalytic removal process was 

74.21%. 
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1. Introduction 

Textile compound waste has been an aquatic environmental issue for many years. The 

complex and stable structure is a major problem in the processing and recycling process [1–3]. 

Many methods have been developed, and their performance reported in dealing with this 

problem is the photoelectrocatalytic method. This method is an advanced technology that has 

attracted the attention of many researchers in the last decade, which is specifically studied in 

the release of organic pollutants in the aquatic environment [4]. In addition, the 

photoelectrocatalytic method is used as an alternative method to overcome the weaknesses of 

the photocatalytic method [5]. The application of this method is carried out through a redox 

mechanism on the surface of the photoelectrode known as the photoanode [5, 6]. 

In the development of photoelectrocatalytic methods, TiO2 has been extensively studied 

and applied as a photoelectrode [1, 7]. The advantages of TiO2 as a photoelectrode include 

environmental friendliness [8, 9], high oxidizing power [10], low cost [11], non-toxic [12], and 

good photocatalytic activity [13]. However, some disadvantages of TiO2 have also been 

reported, such as the fast electron (e-) and hole (h+) recombination rates [14]. The 
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recombination phenomenon causes the performance of TiO2 photoelectrodes in various 

applications to be reduced. Based on this problem, TiO2 has been modified a lot. The reported 

modifications include doping with metal conductors such as Ag [14–16], Au [17], and Pt [18], 

doping of semiconductor oxide materials such as WO3 [19], SiO2 [20, 21], V2O5 [22] and Bi2O3 

[23], and doping with organic compounds [24]. Another modification that has also attracted 

much attention is the modification of the shape of the surface structure of TiO2, such as barrier-

layer [25], mesoporous [26], nanopores [27], and nanotubes [2]. 

This study examines the performance of TiO2 photoelectrodes whose surface structure 

is modified into nanotubes. Modifying the surface structure of TiO2 photoelectrodes into 

nanotubes has been reported to be effective in reducing the rate of e- and h+ recombination, 

thereby helping to improve the performance of TiO2 photoelectrodes [28]. The obtained NTiO2 

photoelectrodes were then applied for photoelectrocatalytic sensing and removal of RhB. The 

fundamental difference between this study and previous studies is the application of potential 

bias in the e- exciting flow to the external circuit of the photoelectrocatalytic system, where the 

potential bias used is derived from the RhB sensing information on the surface of the NTiO2 

photoelectrode. In addition to overcoming the problem of TiO2 photoelectrode recombination, 

this effort can be used as a preliminary study for the application of TiO2 photoelectrodes in the 

field of sensors and biosensors by photoelectrocatalysis. This application has been reported by 

[29–31]. 

2. Materials and Methods 

2.1. NTiO2 photoelectrode synthesis. 

NTiO2 photoelectrode synthesis was carried out based on the results of the research 

reported by [1]. In summary, the Ti and Cu electrodes (± 4 x 0.70 cm) were cleaned with 

ethanol solution. Then the two electrodes were placed into a container (anodizing cell) 

containing a solution of 87 % glycerol, 0.27 M NH4F, and 4 mL of distilled water. The Ti 

electrode is placed as the anode, and Cu is placed as the cathode. The formation of TiO2 

nanotubes was carried out for 4 hours at a potential of 25.0 V. The NTiO2 photoelectrodes were 

rinsed with distilled water, dried in the open air, and heated at 500 oC for 3 hours. 

Characterization process using SEM, XRD, and FTIR.  

2.2. Sensing RhB using NTiO2. 

The RhB sensing process was carried out using a cyclic voltammetry technique using 

an eDAC Potentiostat by adopting the procedure reported by [32,33]. The NTiO2 

photoelectrode was placed as the working electrode, while Ag/AgCl and Pt wire were placed 

as a reference and auxiliary electrodes, respectively. The three electrodes were inserted into a 

voltammetry cell containing 0.0001 M rhodamine B solution and a phosphate buffer supporting 

electrolytes of pH 4, 7, and 10. The sensing process was carried out at a potential range of -1.2 

to +1.8 V with a scan rate of 100 mV/s. 

2.3. Photoelectrocatalytic RhB removal. 

Photoelectrocatalytic removal of RhB was carried out in a UV reactor with 2 electrodes. 

The NTiO2 photoelectrode was placed as the anode and the Pt wire as the cathode. The 

photoelectrode and Pt wire are connected to a DC power supply (GW Instek GPS 30300) and 
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are biased at 1.50 V (RhB sensing potential). During the discharge process, magnetic stirring 

was carried out at room temperature. Changes in the concentration of RhB were measured at 

max = 540 nm using Agilent 8453 UV-Vis Spectrophotometer. In the photoelectrocatalytic 

removal process, testing was carried out on the type of supporting electrolyte and the different 

removal methods (photodegradation, electrochemical and photocatalytic) as a comparison. The 

RhB used in the study was purchased from Sigma-Aldrich. The initial RhB concentration tested 

was 1.20 ppm. 

3. Results and Discussion 

3.1. Characterization of SEM, XRD, and FTIR. 

Figure 1A shows the results of the SEM characterization of the NTiO2 photoelectrode. 

These results show the formation of a honeycomb-like tube that is evenly distributed on the 

surface of the photoelectrode. Honeycomb is a hallmark of the successful modification of the 

TiO2 nanostructure photoelectrode modification process [13]. Another feature of the successful 

manufacture of NTiO2 photoelectrodes was observed using XRD and FTIR. Based on XRD 

analysis (Figure 1B), the success of making NTiO2 photoelectrodes was observed by the 

appearance of diffractogram peaks at 2θ = 25 o and 48 o [34–36]. This peak is reported as a 

typical peak for anatase TiO2. This result is corroborated by the IR absorption peaks (Figure 

1C) at wavenumbers 3441.01 cm-1 and 1629.85 cm-1 which are absorptions for the -OH and 

Ti-O groups, respectively [37, 38]. 

 

Figure 1. Characterization of NTiO2 photoelectrode : (A) SEM, (B) XRD, and (C) FTIR. 

3.2. Sensing RhB using photoelectrode TiO2. 

Figure 2 shows the cyclic voltammogram of the RhB oxidation on the surface of the 

NTiO2 photoelectrode. RhB was oxidized at a potential value of 1.54 V (Figure 2A). This 

oxidation process occurs in the use of a phosphate buffer supporting electrolyte pH 4.0. Based 

on the voltammogram, it can be seen that there is an effect of pH on the oxidation of RhB on 

the surface of the NTiO2 photoanode. The RhB oxidation at pH 4.0 was corroborated by the 

absence of an oxidation peak when measurements were made in the supporting electrolyte 

solution (Figure 2B). In addition, the RhB oxidation process was strengthened by testing for 

variations in RhB concentrations (Figure 2C). The result is that there is a linear relationship 
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between concentration and peak oxidation state of RhB. This potential oxidation value is then 

used during the photoelectrocatalytic release of RhB. 

 

Figure 2. Cyclic voltammogram of RhB on the surface of the NTiO2 photoelectrode : (A) based on variations in 

the pH of the electrolyte solution; (B) in a supporting electrolyte solution; and (C) based on variations in RhB 

concentration. 

3.3. Photoelectrocatalytic removal of RhB. 

The photoelectrocatalytic removal of RhB using NTiO2 photoelectrodes was initiated 

by studying the effect of the electrolyte solution type. In addition to helping increase the 

current, some electrolyte solutions are reported to be able to initiate the formation of radical 

compounds that will accelerate the degradation process. Figure 3A shows the effect of using a 

supporting electrolyte on the release of RhB. The highest release percentage (% release) was 

produced in a solution containing 0.1 M NaCl, which was 62.50%. These results became the 

basis for selecting 0.1 M NaCl as an electrolyte solution during the RhB release process. Cl- 

ions will significantly reduce the number of RhB molecules in the solution. Cl- ions will also 

migrate to the surface of NTiO2 photoelectrode and can be adsorbed and converted by electron-

hole pairs (e-/h+) into groups with high oxidizing activity, such as Cl*, and Cl2. The oxidizing 

species then help to oxidize the organic compounds. Figure 3B shows the performance of the 

four tested methods in the RhB removal process. These methods include photodegradation 

(PD), electrochemical (EC), photocatalytic (PC), and photoelectrocatalytic (PEC). Compared 

to the other three methods, PEC showed the best release performance with a % release of 

74.21%. The success strongly influences this result in making NTiO2 photoelectrodes, where 

the final result of this process is shown in Figure 3C. 
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Figure 4. (A) the performance of various electrolyte solutions; (B) the performance of various removal 

methods; (C) the final product of the RhB photoelectrocatalytic removal. 

4. Conclusions 

The study on the application of NTiO2 photoelectrodes in photoelectrocatalytic sensing 

and removal showed good performance for removing Rhodamine B textile waste. The use of 

electrochemical methods in the synthesis of photoelectrodes succeeded in changing the surface 

structure of TiO2 into nanotubes. This condition makes photoelectrocatalytic removal more 

effective than other removal systems such as photodegradation, electrochemistry, and 

photocatalysis. The % removal resulting from the application of the NTiO2 photoelectrode in 

the RhB removal for 60 minutes was 74.21%. Another result of this study shows that the 

supporting electrolyte strongly influences the photoelectrocatalytic removal system, wherein 

NaCl shows better performance as the supporting electrolyte. Overall, this study shows that the 

photoelectrocatalytic removal system with oxidation potential shows good potential to be 

studied more extensively in the future. 
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