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Abstract: Various drugs have been used to treat pain; nevertheless, several drugs can produce side 

effects such as bronchospasm, thinning, and angioedema. In the search for new therapeutic alternatives, 

some drugs have been elaborated using different reagents that are difficult to handle and require special 

conditions such as different pH and higher temperatures. Therefore, this research aimed to prepare an 

adamantyl derivative (compound 4) from 1-Adamantyl bromomethyl ketone using some chemical 

strategies. Besides, a theoretical evaluation of the interaction of compound 4 with both cyclooxygenase 

enzymes (COX-1 and COX-2) was evaluated using either 4cox or 5jw1 proteins as theoretical models. 

In addition, both indomethacin and celecoxib drugs were used as controls in a docking model. The 

results showed that compound 4 has a higher affinity by both 4cox and 5jw1 proteins surface compared 

with either indomethacin or celecoxib drugs. In conclusion, these data suggest that 4 could be a good 

candidate for pain treatment. 
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1. Introduction 

Pain is a main public health problem worldwide [1-4]; it is important to mention that 

non-steroidal anti-inflammatory [5,6] and opioid drugs are used for the treatment of pain [7-

9]; however, some of these drugs could produce several adverse effects such as bronchospasm, 

vasomotor thinitis, and angioedema [10], renal dysfunction, meningeal syndrome, and bone 

marrow depression, headache, vertigo, [11-13]. In search of new therapeutic alternatives, some 

compounds have been synthesized to treat the pain; for example, the preparation of a 

piperazinyl-ethanone from a tosyl derivative for treating pain [14]. Besides, a pyrrolidine-

carboxamide analog was synthesized via reaction of a lactam derivative with 

hydroxybenzotriazole/histamine as a possible drug to treat pain [15]. Another study showed 

the synthesis of a naphthalene-chalcone derivative from Phenyl-ethanone and Naphthalene-1-

carbaldehyde with analgesic activity [16].  Additionally, a report showed the preparation of 4-
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(6-(benzylideneamino)-7-cyano-2,3-dihydro-1H-pyrrolizine-5-carbo-xamido)benzoate by the 

reaction of a benzoate derivative and benzaldehyde for treatment of pain [17].  

On the other hand, some 1,4-disubstituted adamantyl analogs have been prepared as an 

analgesic and anti-inflammatory reagents from adamantyl and methylbenzylamine[18].  

Besides, several arylamides of N-1-2-)adarnantyl-azacycloalkanecarboxylic acids were 

prepared via reaction of 1-(or 2-)aminoadamantane and mesidide -bromo--chlorovaleric 

acid with anesthetic activity [19]. Therefore,  this study aimed to prepare an adamantyl 

derivative to evaluate their theoretical activity on both cyclooxygenase enzymes (COX-1 and 

COX-2) involved in the pain. 

2. Materials and Methods 

2.1. General methods.  

Starting materials were purchased from commercial suppliers (Sigma-Aldrich and 

AKos Consulting & Solutions). NMR spectra were recorded on a Varian VXR300/5 FT 

apparatus (300 MHz/CDCl3) using tetramethylsilane as an internal standard. Electron 

Ionization mass spectrometry (EIMS) was recorded on a Finnigan PolarisQ ion trap mass 

spectrometer. Melting-point (m.p.) was determined on an electrothermal-900 model apparatus. 

The infrared spectrum (IR) was determined on a thermo-scientific iSOFT/IR device. Elemental 

analysis was determined using a PerkinElmer apparatus (Ser. II CHNS / 02400).  

2.2. Synthesis of 1-(1-adamantyl)-7-hydroxy-hept-2-yn-1-one (2). 

In a round bottom flask (10 ml), 1-Adamantyl bromomethyl ketone (200 mg, 0.78 

mmol), 5-hexyn-1-ol (100 µl, 92 mmol), Copper(II) chloride (105 mg, 0.78 mmol) and 5 ml of 

methanol were stirred at reflux for 48 h. Then, the solvent was evaporated under reduced 

pressure and following the product was purified via crystallization using the 

methanol:hexane:water (4:2:1) system; yielding 56% of product; IR (Vmax, cm-1) 3400, 2190 

and 1712: 1H NMR (300 MHz, CDCl3-d) δH: 1.52 (m, 6H), 1.58-1.64 (m, 4H), 1.66 (m, 6H), 

1.92 (m, 4H), 1.96 (broad, 1H), 2.24-3.64 (m, 4H) ppm.  13C NMR (300 Hz, CDCl3) δC: 18.82, 

25.42, 27.80, 31.83, 36.66, 40.12, 46.44, 62.12, 81.40, 95.82, 194.20 ppm. EI-MS m/z: 260.17. 

Anal. Calcd. for C17H24O2. C, 78.42; H, 9.29; O, 12.29. Found: C, 78.40; H, 9.26.  

2.2.1. 1-adamantyl(2,3,4,5-tetrahydrooxepin-7-yl)methanone (3). 

In a round bottom flask (10 ml), compound 2 (200 mg, 0.77 mmol) and Copper(II) 

chloride (105 mg, 0.78 mmol) and 5 ml of methanol were stirred at room temperature for 72 h. 

Then, the solvent was evaporated under reduced pressure and following the product was 

purified via crystallization using the methanol:water (4:1) system; yielding 52% of product; IR 

(Vmax, cm-1) 1712, 1602 and 1104: 1H NMR (300 MHz, CDCl3-d) δH: 1.30-1.66 (m, 4H), 1.74-

1.98 (m, 2H), 2.04 (m, 2H), 2.08 (m, 3H), 2.10-6.34 (m, 4H) ppm. 13C NMR (300 Hz, CDCl3) 

δC: 25.00, 26.60, 27.68, 31.44, 37.00, 41.40, 51.82, 72.81. 123.94, 160.00, 201.90 ppm. EI-MS 

m/z: 260.17. Anal. Calcd. for C17H24O2. C, 78.42; H, 9.29; O, 12.29. Found: C, 78.39; H, 9.26.  
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2.2.2. (E)-1-(1-adamantyl)-N-prop-1-ynyl-1-(2,3,4,5-tetrahydrooxepin-7-yl)methanimine  

(4). 

In a round bottom flask (10 ml), compound 3 (200 mg, 0.77 mmol), Prop-2-ynylamine 

(75 mg, 0.82 mmol), boric acid (50 mg, 0.80 mmol) and 5 ml of methanol were stirred at room 

temperature for 72 h. Then, the solvent was evaporated under reduced pressure and following 

the product was purified via crystallization using the methanol:hexane:water (4:2:1) system; 

yielding 68% of product; IR (Vmax, cm-1) 3330, 2112, 1604 and 1102: 1H NMR (300 MHz, 

CDCl3-d) δH: 1.36-1.44 (m, 2H), 1.56-1.62 (m, 12H), 1.64-2.10 (m, 3H), 2.16 (m, 3H), 2.18 

(m, 1H), 3.20 (s, 1H), 3.72-5.30 (m, 3H), ppm. 13C NMR (300 Hz, CDCl3) δC: 25.08, 26.70, 

27.92, 28.96, 37.24, 37.78, 42.40, 72.60, 77.30, 82.62, 112.84, 156.34, 165.50 ppm. EI-MS 

m/z: 283.19. Anal. Calcd. for C19H25NO. C, 80.52; H, 8.89; N, 4.94; O, 5.65. Found: C, 80.50; 

H, 8.86.  

2.3. Ligand-protein interaction. 

The interaction of the adamantyl derivative with either cox-1 or cox-2 enzymes was 

evaluated using both 4cox and 5jw1 proteins as theoretical models [20,21]. In addition, to 

evaluate binding energy involved in the interaction of adamantyl derivatives with either 4cox 

or 5jw1 proteins surface, either indomethacin or celecoxib were used as controls on a docking 

server software [22].  

2.4. Pharmacokinetics parameter. 

Some pharmacokinetic factors were determined using the SwissADME software [23]. 

3. Results and Discussion 

Several drugs have been developed the treat the pain; however, the interaction with 

some biomolecules is very confusing; perhaps, this phenomenon could be to the different 

structure chemicals of each compound reagent [14-19]. Analyzing these data, in this research, 

an adamantyl derivative (compound 4) was prepared using some chemical strategies as follows. 

3.1. Synthesis of an alkynol. 

Some alkynol analogs have been synthesized using different methods, which use some 

reagents such as trimethylsilyl trifluoromethanesulfonate [24], zinc trifluoromethane-sulfonate 

[25], Copper(I) [26]. In this investigation (Figure 1), 1-Adamantyl bromomethyl ketone reacted 

with 5-hexyn-1-ol in the presence of Copper(II) chloride to form an alkynol derivative (2). The 
1H NMR spectrum of 2 showed several signals at 1.52, 1.66, and 1.92 ppm for adamantane 

fragment; at 1.58-1.64 and 2.24-3.64 ppm for methylene groups bound to both alkyne and 

hydroxyl groups; at 1.96 ppm for a hydroxyl group. The 13C NMR spectra display chemical 

shifts at 18.82-25.42, 31.83, and 62.12 ppm for methylene groups bound to alkyne and 

hydroxyl groups; at 27.80 and 36.66-46.44 ppm for adamantane fragment; at 81.40-95.82 ppm 

for alkyne group; at 194.20 ppm for ketone group. Besides, the mass spectrum from 2 showed 

a molecular ion (m/z) at 260.17. 
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Figure 1. Synthesis of (E)-1-(1-adamantyl)-N-prop-1-ynyl-1-(2,3,4,5-tetrahydrooxe-pin-7-yl)methanimine  (4). 

Reagents and conditions: i = 5-hexyn-1-ol, Copper(II) chloride, methanol, rt, 48 h; ii =  Copper(II) chloride, 

methanol, rt, 72 h; iii = Prop-2-ynylamine, methanol, boric acid, rt, 72h. 

3.2. Cyclization of two alkyn-alcohol derivatives. 

Several studies have shown the cyclization of alkyn-alcohol analogs using some 

reagents such as gold chloride [27], ruthenium [28], diphenyl ether [29], palladium(II) chloride 

[30], and N-bromosuccinamide/silver nitrate [31]. In this research, a Tetrahydro-oxepine 

derivative (3) was prepared via a cyclization internal of alkyn-alcohol (2) in the presence of 

Copper(II) chloride (Figure 1). The 1H NMR spectrum of 3 showed several signals at 1.30-

1.66, 2.04, and 2.10-6.34 ppm for Tetrahydro-oxepine ring; at 1.74-1.98 and 2.08 ppm for 

adamantane fragment. The 13C NMR spectra display chemical shifts at 25.00-26.60, 31.44, 

72.81-160.00 for Tetrahydro-oxepine ring; at 27.68 and 37.00-51.82 ppm for adamantane 

fragment; at 201.90 ppm for ketone group. In addition, the mass spectrum from 3 showed a 

molecular ion (m/z)  at 260.17. 

3.3. Synthesis of an imino derivative. 

There are several reports in the literature on the synthesis of some imine analogs              

[32-34]. In this research, compound 4 was prepared via reaction of 3 with Prop-2-ynylamine 

(75 mg, 0.82 mmol) using boric acid as a catalyst. The 1H NMR spectrum for 4 at 1.36-1.44, 

1.64-2.10, and 2.18 ppm for Tetrahydro-oxepine ring; at 1.56-1.62, 2.16 and 3.72-5.30 ppm for 

adamantane fragment; at 3.20 ppm for alkyne group. 13C NMR spectra display chemical shifts 

at 25.08-27.92, 72.60, and 112.84-156.34 ppm for Tetrahydro-oxepine ring; at 28.96-42.40 

ppm for adamantane fragment; at 77.30-82.62 ppm for alkyne group; at 165.50 ppm for imino 

group. Finally, the mass spectrum from 4 showed a molecular ion (m/z) at 283.19. 

3.4. Ligand-protein interaction. 

There are several methods to predict drug binding on the surface of some protein or 

enzyme. Furthermore, these techniques showed that free binding and solvation energies are 

involved in the ligand-biomolecule interaction [35]. In this way, in this investigation, a 

theoretical analysis was carried out to evaluate the interaction of compound 4 with either COX-

1 or COX-2 enzymes using both 4cox and 5jw1 proteins as theoretical models. The results 
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(Figures 2 and 3; Table 1 and 2) showed different amino acid residues involved in the 

interaction of compound 4 with either 4cox or 5jw1 proteins surface compared with either 

indomethacin or celecoxib drugs; this phenomenon could be due to differences in their 

chemical structure. 

 
Figure 2. Interaction of compound 4 with 4cox-protein surface using docking server. 

 
Figure 3. Interaction of compound 4 with 5jw1-protein surface using docking server. 

Table 1. Interaction of compound 4 and indomethacin (control) with 4cox-protein surface. 

Indomethacin Compound 4 

Ser38 

Pro40 

Gln42 

Asp53 

Tyr55 

Asn68 

Glu465 

Cys37 

Ser38 

Tyr55 

Val165 

Table 2. Interaction of compound 4 and celecoxib (control) with 5jw1-protein surface. 

Celecoxib Compound 4 

Asn145 

Ser147 

Tyr148 
Arg217 

Phe221 

Glu141 

Ser144 

Asn145 
Leu146 

Ser147 

Leu225 
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On the other hand, to evaluate some thermodynamic parameters involved in the 

interaction of compound 4 with either 4cox or 5jw1 proteins surface, the docking server 

software was used. The results showed (Table 3 and 4) differences in the thermodynamic 

parameters on the interaction of compound 4 with either 4cox or 5jw1 proteins surface 

compared with the controls (indomethacin and celecoxib). Besides, the inhibition constant (Ki) 

for compound 4 was lower than either indomethacin or celecoxib drugs. These phenomena 

suggest that compound 4 could have higher biological activity against pain. 

Table 3. Thermodynamic parameters involved in the interaction of compound 4 and control (indomethacin) 

with 4cox-protein surface. 

Compound Est. Free energy 

of Binding 

Est. Inhibition 

Constant (Ki) 

vdW + H-bond 

+ desolv Energy 

Electrostatic 

Energy 

Total Interm. 

Energy 

Interact 

Surface 

Indomethacin -3.62 2.23 -4.89 0.10 -4.79 496.37 

4 -3.64 2.15 -5.11 0.00 -5.10 512.69 

 

Table 4. Thermodynamic parameters involved in the interaction of compound 4 and control (indomethacin) 

with 4cox-protein surface. 

Compound Est. Free energy 

of Binding 

Est. Inhibition 

Constant (Ki) 

vdW + H-bond 

+ desolv Energy 

Electrostatic 

Energy 

Total Interm. 

Energy 

Interact 

Surface 

Celecoxib -2.67 11.03 -4.11 -0.09 -4.20 369.11 

4 -3.85 1.50 -4.81 -0.07 -4.88 418.10 

3.5. Pharmacokinetic evaluation. 

Several studies have reported the evaluation of some pharmacokinetic parameters of 

different drugs using theoretical models such as PKQuest [36], PharmPK [37], SwissADME 

[38]. In this way, in this study, some pharmacokinetic parameters involved in compound 4 were 

determined using the SwissADME software. The results in Tables 5, and 6 suggest that these 

compounds could have different gastrointestinal absorption and, consequently, their 

metabolism could involve different types of CYP enzymes (Cytochrome P450 system). This 

phenomenon could depend on their chemical structure and lipophilicity degree. 

Table 5. The pharmacokinetics properties of the Fluoro-2,4dioxaspiro[bicyclo[3.3.1]indene derivative. The 

values were determinate using the SwissADME software 

Parameter Compound 4 

GI absorption high 

BBB permanent Yes 

P-gp substrate No 

CYP1A2 inhibitor No 

CYP2C19 inhibitor Yes 

CYP2C9 inhibitor Yes 

CYP2D6 inhibitor No 

CYP3A4 inhibitor No 

LogKp (cm/s) -5.00 

Table 6. Values of lipophilicity degree for compound 4 using SwissADME software. 

iLOGP 3.75 

XLOGP3 4.38 

WLOGP 4.44 

MLOGP 3.73 

SILICOS-IT 5.01 

Consensus Log Po/w 4.26 
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4. Conclusions 

In this study, an easy synthesis of an adamantyl derivative (compound 4) is reported 

using some chemical strategies. Furthermore, the theoretical analysis showed a greater affinity 

of compound 4 for the surface of either 4cox or 5jw1 proteins compared to indomethacin and 

celecoxib drugs. These data suggest that compound 4 may be a good candidate for the treatment 

of pain. 
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