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Abstract: In the present study, convective diffusive mass transfer is considered, along with effects of 

particle drag under the influence of a magnetic field concerning drug delivery in the presence of the 

catheter. A concentric annular region is created by the presence of a catheter, and the effects of which 

on mass transfer are considered. A model on the hydrodynamics of the fluid, blood flow, and convective 

diffusive mass transfer of the species is presented. Here, an attempt is made to analyze a drug delivery 

method for delivering a drug to a specific site in the body and for this analysis, considered a channel 

bounded by the tissue region where the drug is targeted. The magnetic field induces pulsatile flow, 

which affects the mass transfer. The graphs predict that the mass transfer increases from the lumen 

region to the tissue region. Peclet number and magnetic parameter are the parameters that significantly 

affect carrying drugs towards the tissue.  The results are well agreed with the physical phenomena of 

the problem as well as many biomedical applications. 
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interphase mass transfer. 
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1. Introduction 

A catheter is a tube that can be inserted into a body cavity, duct, or vessel. It is a thin, 

flexible tube. A catheter left inside the body either temporarily or permanently is referred to as 

an indwelling catheter. A catheter can be used for different medicinal applications. It is used to 

drain urine from the kidney, angioplasty, angiography, measuring blood pressure, etc. It can 

also be used for the administration of intravenous fluids, medication, or providing nutrition. 

The study of convective diffusive mass transfer has an important role in understanding 

the administration of drugs, transport of LDL, which is the cause of Atherosclerosis, transport 

of oxygen and nutrients, etc. The intravenous fluid injected gets dispersed and is carried to the 

tissue region surrounding it. The dispersion of mass in blood vessels is influenced by 

conductive blood vessel walls examined by Sarkar and Jayaraman et al. [1]. 

Shankarasubramanian and Gill [2] have analyzed solute dispersion through a circular tube, 

developing a generalized dispersion model. Mazumdar and Das [3] have studied the effect of 

wall conductance on the axial dispersion in the pulsatile tube flow. 

Jiang and Grotberg [4] studied the dispersion of bolus contaminant in a straight tube 

with the oscillatory flow and weak conductive walls. Balasubramanian et al. [5] have studied 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC125.66996709
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8140-3212
https://orcid.org/0000-0002-5883-9090
https://orcid.org/0000-0002-4620-5103


https://doi.org/10.33263/BRIAC125.66996709  

 https://biointerfaceresearch.com/ 6700 

the combined effect of secondary flows and shown that secondary flow has a negligible effect. 

Pedley and Kamm [6] studied axial mass transport in an annular region by asymptotic analysis 

to limit a small annular gap. Srivastava et al. [7] has studied the particle fluid suspension model 

of blood flow through a stenotic blood vessel. Recently, Umadevi et al. [8] have studied the 

effect of particle drag using the Gill and Shankarasubramanian model. A similar analysis is 

done in studying the behavior of dispersion in the case of oscillatory flows in uniform conduits. 

Also, it is shown that diffusion of heat and other diffusible properties through the interior of 

the fluid by turbulent motion [9-11]. Pedram and Ehasan [12] have been developed to study 

nanofluid transportation in bio tissue in the case of magnetic hyperthermia. Kumar et al. [13] 

studied the magnetic targeting of the drug numerically under the effect of the applied magnetic 

field. Shah et al. [14] considered an innovative model that has been developed to study the 

electro-osmotic flow of Couette nanofluids. Kumaresan et al. [15] studied the effect of stenosis 

on magneto nanoparticles distributions in the presence of the magnetic field. Nadjia and Nadji 

[16] have examined the heat transfer characteristics of various parameters of ferrofluids. Shah 

et al. [17] used an implicit method (Keller Box) to analyze the nanofluid flow in the case of 

stretching sheets considering the heat transfer through convection. They concluded that heat 

transfer varies for different classes of nanofluids. Ibrahim and Gadisa [18] examined the heat 

transfer rate decreases when the nanoparticle volume fraction increases for cu-water. Naveed 

Khan et al. [19] considered nanofluid flow in the case of the vertical plate to study the heat 

generation effects due to natural convection. They proved that as the volume concentration 

increases, the temperature and heat transfer rate also increases.  Meanwhile, Sulochana et al. 

[20]  and Rafique et al. [21]  worked on the free convection flow of nanofluids in the case of 

the vertical plate of infinite length and studied the effects of magnetic field on it. The solution 

to the problem is obtained using a numerical method. 

Many researchers have done extensive work on new manufacturing methods, and new 

models for non-Newtonian fluids are proposed [22-24]. It is observed that the application of 

boundary layer theory for the flows is relevant for the flow analysis through annulus in the 

engineering domain. They are applied in biological fluid movement, manufacturing of glass 

fiber, and wire drawing.  

In the present study, convective diffusive mass transfer is considered, along with the 

effects of particle drag under the influence of a magnetic field with reference to drug delivery 

in the presence of a catheter. A concentric annular region is created by the presence of a catheter 

and the effects on mass transfer. 

2. Mathematical Formulation 

Consider the physical configuration of the catheterized artery shown in Figure 1. In this 

diagram, we consider the concentric annular geometry with 𝑅0 as the radius of the artery 

representing the outer tube and 𝐾𝑅0 is the radius of the catheter representing the inner tube 

(𝐾 < 1).  Let us consider the axi symmetric flow in the concentric annulus where the following 

fluid is a dusty viscous fluid. 

We know that diffusive and advective processes govern the mass transport through the 

artery wall. The most important aspect of drug transport through the wall is the metabolic 

consumption of drugs by the wall tissue. To avoid the decay of the drug, we apply a first-order 

reaction and incorporate the external magnetic effect. 
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Figure 1. The physical configuration of the catheterized artery. 

The governing equations in cylindrical coordinates (𝑅, 𝜃, 𝑍) for the above-explained 

configuration are given by 

 𝜌
𝜕𝑤

𝜕𝑡
= −

𝜕𝑃

𝜕𝑧
+ 𝜇 [

𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
] + 𝐾𝑁(𝑣 − 𝑤) − 𝜎0𝐵2𝑤                                                  (1) 

 𝑁𝑚
𝜕𝑣

𝜕𝑡
= 𝐾𝑁(𝑤 − 𝑣)                                                                                                              (2) 

Where 𝜇 is the viscosity of the fluid is, 𝑚 is the Brinkman viscosity of the fluid, 𝑣 is the velocity 

of the dusty particle, 𝑁 is the number density of the particle, 𝐾 = 3𝜇𝜋𝑑 is the stokes drag term, 

𝑑 is the diameter of the dusty particle, 𝑁𝑚 is the mass of the dusty particle, 𝜎0 is the stress 

tensor, 𝐵2 is the magnetic effect on the flow, 𝑤 is the velocity of the fluid phase, 𝑃 is the 

pressure, and  𝜌 is the density of the fluid. 

To solve (1) and (2) the no-slip boundary conditions are  

𝑤 = 0    𝑎𝑡     𝑅 = 𝑘𝑅0 𝑎𝑛𝑑 𝑅 = 𝑅0                                                                                        (3) 

Assuming 𝑟 =
𝑅

𝑅0
, 𝑤 = 𝑊(𝑟)𝑒−𝑛𝑡, 𝑣 = 𝑉(𝑟)𝑒−𝑛𝑡,

𝜕𝑃

𝜕𝑧
= −𝑃𝑒−𝑛𝑡 and eliminating 𝑣 

from (2), we get  

𝑑2𝑊

𝑑𝑟2 +
1

𝑟

𝑑𝑊

𝑑𝑟
+ 𝜆2𝑊 = 𝑃                                                                                                           (4) 

Where 𝑃 = −
𝑝

𝜇
, 𝜆2 = [

𝐾𝑁

𝜌

𝑛Γ

1−𝑛Γ
−

𝜎0𝐵2

𝜇
+

𝜌𝑛

𝜇
] , Γ =

𝑚

𝑘
,  𝜆 is the drag parameter, Γ is the 

relaxation time, 𝜌 is the pressure gradient, and 𝑊  is the non-dimensional velocity of the fluid 

phase. 

Equation (3) in non-dimensional form is  

𝑊 = 0      𝑎𝑡       𝑟 = 𝐾                                                                                                            (5)   

𝜕𝑊

𝜕𝑟
= −𝛼𝑊   𝑎𝑡    𝑟 = 1                                                                                                           (6) 

The solution of (4) using (5) and (6) is  

𝑊(𝑟) = 𝐴𝐽0(𝜆𝑟) + 𝐵𝑌0(𝜆𝑟)                                                                                                   (7) 

Where 𝐴 =
𝑃

𝜆2 [
𝛼(𝑌0(𝜆𝑘)−𝑌0(𝜆))−𝜆𝑌0

′(λ)

𝛼{(𝐽0
(𝜆)𝑌0(𝜆𝑘))−𝑌0(𝜆)𝐽0

(𝜆𝑘)}+𝜆{(𝐽0
′(𝜆)𝑌0(𝜆𝑘))−𝑌0

′(𝜆)𝐽0
(𝜆𝑘)}

]                                        (8a) 
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            𝐵 =
𝑃

𝜆2 [
𝛼{𝐽0

(𝜆)−𝐽0
(𝜆𝑘)}+𝜆𝐽0

′(λ)

𝛼{(𝐽0
(𝜆)𝑌0(𝜆𝑘))−𝑌0(𝜆)𝐽0

(𝜆𝑘)}+𝜆{(𝐽0
′(𝜆)𝑌0(𝜆𝑘))−𝑌0

′(𝜆)𝐽0
(𝜆𝑘)}

]                                       (8b) 

3. Dispersion Model 

To develop a convective-diffusion model for the physical configuration under study, 

we consider the convective-diffusion equation in the cylindrical coordinate system (𝑅, 𝜃, 𝑍) 

given by  
𝜕𝑐

𝜕𝑡
+  𝑤(𝑡, 𝑅)

𝜕𝑐

𝜕𝑧
= 𝐷𝑚 {(

𝜕2𝑐

𝜕𝑅2 +
1

𝑅

𝜕𝑐

𝜕𝑅
) +

𝜕2𝑐

𝜕𝑧2 }                                                                                        (9) 

Where 𝑡 is the time, 𝑐 is the concentration of the solute, 𝑅 is the radial coordinate, 𝑧 is the axial 

coordinate, and 𝑤 is the axial velocity. 

To solve (9), we define initial and boundary conditions as: 

𝑐(0, 𝑅, 𝜃, 𝑧) = 𝑐0 𝜓2(𝑧)𝜁1(𝑅),                    (10) 

where 𝜓2(𝑧) is a function of 𝑧, 

 𝜁1(𝑅) = {
𝑅0   ,           𝑘𝑅0 < 𝑅 ≤ 𝑎𝑅0

0    ,          𝑎𝑅0  < 𝑅 ≤ 𝑅0
.                     (11) 

∂c

∂R
= −kc     at        R = 𝑅0                                           (12a) 

∂c

∂R
= 0     at        R = 𝑘𝑅0                                                                                                     (12b)                                                 

Non-dimensionalising (9) to (12b) using the following 

  c∗ =
c

c0
 ,   z∗ =

z
Dm

R0
2w0

⁄
  , r∗ =

r

R0
 ,   w∗ =

w

W0
  ,  t∗ =

t

R0
2

Dm
⁄

  , Pe =
R0w0

Dm
, we get 

𝜕𝑐

𝜕𝜏
+  𝑤(𝑟, 𝜏)

𝜕𝑐

𝜕𝑧
=

𝜕2𝑐

𝜕𝑟2 +
1

𝑟

𝜕𝑐

𝜕𝑟
+  

1

Pe
2

𝜕2𝑐

𝜕𝑧2                                                                                (13) 

𝑐(0, 𝑟, 𝜃, 𝑧) =  𝐵2(𝑧)𝐵1(𝑟),                                               (13a) 

∂c

∂r
= −βc        𝑎𝑡           𝑟 = 1                                                                                                (13b)      

 
∂c

∂r
= 0           𝑎𝑡            𝑟 = 𝑘                                                                                                (13c) 

where  𝐵1(𝑟) = {
1   ,           𝑘 < 𝑟 ≤ 𝑎
0    ,          𝑎 < 𝑟 ≤ 1

 , 𝐵2(𝑧) =  
𝛿(𝑧)

𝑎2𝑃𝑒
,  𝜏 is the non-dimensional time, c0 is 

the reference concentration, Dm is the molecular diffusivity, W0 is the mean axial velocity, 

R0 is the radius of the tube, Pe is the Peclet number, 𝑤(𝑟, 𝜏) is the non-dimensional axial 

velocity, β is the non-dimensional wall reaction parameter. 

By using the generalized dispersion model proposed by Gill and Sankarasubramanian 

(1970) and solving (13) using (13a) to (13c), we get 

c(τ, r, z) = ∑ fn
∞
n=0 (τ, r) 

∂ncm

∂zn                                                                                                             (14) 

where the mean concentration ‘cm’ is expressed as 
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𝑐𝑚 =  
∫ ∫ 𝑟𝑐 𝑑𝑟 𝑑𝜃

1
𝑘

2𝜋
0

∫ ∫ 𝑟 𝑑𝑟 𝑑𝜃
1

𝑘
2𝜋

0

=
2

(1−𝑘2)
∫ 𝑟𝑐 𝑑𝑟

1

𝑘
                                                                                                 (15)   

Equation (13) using (14) takes the form 

𝜕𝑐𝑚

𝜕𝜏
=

1

𝑃𝑒
2

𝜕2𝑐𝑚

𝜕𝑟2 + |
𝜕𝑐𝑚

𝜕𝑟
|

𝑘

1

−
𝜕

𝜕𝑟
∫ 𝑈𝑐 𝑑𝑟

1

𝑘
                                                                                           (16)    

Let us introduce the dispersion coefficient in the model as 

𝜕𝑐𝑚

𝜕𝜏
= ∑ M𝑖

∞
i=0 (τ)

∂iCm

∂ri                                                                                                                         (17) 

The values of 𝑀𝑖(𝜏)′𝑠 can be obtained from the following result: 

𝑀𝑖(𝜏) =
2

(1−𝑘2)
 

𝜕

𝜕𝑟
𝑓𝑖(𝜏𝑖)+

𝛿𝑖,2

𝑃𝑒2 −  
2

(1−𝑘2)
∫ 𝑟𝑤(𝜏, 𝑟) 𝑓𝑖−1𝑑𝑟

1

𝑘
   𝑖 = 0,1,2, … . .,                                     (18) 

Where 𝑓−1 = 𝑓−2 = 0, 𝛿𝑖,2 is the kronecker delta, 
2

(1−𝑘2)
 

𝜕

𝜕𝑟
𝑓𝑖(𝜏𝑖) is due to the first-order 

heterogeneous reaction at the outer wall of the tube.  

Truncating higher terms in (17), we get 
𝜕𝑐𝑚

𝜕𝜏
= 𝑀0(𝜏)𝑐𝑚 + 𝑀1(𝜏)

𝜕𝑐𝑚

𝜕𝑧
+  𝑀2(𝜏)

𝜕2𝑐𝑚

𝜕𝑧2                                                                                       (19) 

Where 𝑀0(𝜏) is the absorption parameter, 𝑀1(𝜏) is the velocity of the reactive tracer and 

𝑀2(𝜏) is a modification in the convective dispersion because of absorption. 𝑀1(𝜏) and 𝑀2(𝜏) 

are convective and dispersion coefficients respectively. The values of  𝑀𝑖(𝜏) and 𝑓𝑘(𝑘 =

1,2,3, . . ) are required to solve (19).  

Substituting (14) in (13) and using (19), we obtain a set of differential equations for 𝑓𝑘 

as shown below:  

𝜕𝑓𝑘

𝜕𝜏
=  

𝜕2𝑓𝑘

𝜕𝑟2 + 
1

𝑟
 

𝜕𝑓𝑘

𝜕𝑟
− 𝑤(𝜏, 𝑟)𝑓𝑘−1 +  

1

𝑃𝑒2 𝑓𝑘−2 + ∑ 𝑓𝑛−𝑖
∞
𝑛=0 𝑀𝑖      𝑘 = 0,1,2, ….                    (20) 

To find 𝑐𝑚and 𝑓𝑘 the required initial and boundary conditions are 

𝑐𝑚(0, 𝑧) =
2

(1−𝑘2)
∫ 𝑟𝐵1(𝑟) 𝑑𝑟

1

𝑘
                                                                                           (21a) 

𝑐(0, 𝑟, 𝑧) =  𝑓0(0, 𝑟)𝑐𝑚(0, 𝑧)                                                                                               (21b) 

  𝑓𝑘(0, 𝑟) = 0          𝑓𝑜𝑟      𝑘 = 1,2,3, … … ..                                                                         (21c) 

𝑓𝑘(0, 𝑟) = {

(1−𝑘2)

2
 

𝐵1(𝑟)

∫ 𝑟𝐵1(𝑟)𝑑𝑟
1

𝑘

     ,     𝑘 = 0

                   0                 , 𝑘 ≠ 0
                                                                           (21d) 

𝜕𝑓𝑘

𝜕𝑟
 (𝜏, 1) =  − 𝛽𝑓𝑘(𝜏, 1)                                (21e) 

𝜕𝑓𝑘

𝜕𝑟
 (𝑟, 𝑛) = 0, 𝑓𝑜𝑟 𝑘 = 0,1,2,3, …                                                                                       (21f)  

Using (15) into (14), we get 

∫ 𝑟𝑓𝑛(𝜏, 𝑟)𝑑𝑟 =
1

𝑘

(1−𝑘2)

2
 𝛿𝑛,0                                                                                                               (22) 
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Since the equations are coupled to find 𝑀2(𝜏), we need to find (𝑓𝑛, 𝑀𝑛) 𝑓𝑜𝑟 𝑛 = 0,1,2 

in pairs. The functions 𝑓0 and exchange coefficient 𝑀0 are independent of velocity field and 

can be solved directly. 

From (18), we get 

𝑀0(𝜏) =
2

(1−𝑘2)
 
𝜕𝑓0

𝜕𝑟
 (𝜏, 1)                                                                                                      (23) 

The coefficient 𝑀0(𝜏) is decoupled with the equation obtained from (20) given by 

𝜕𝑓0

𝜕𝜏
=  

𝜕2𝑓0

𝜕𝑟2 + 
1

𝑟
 
𝜕𝑓0

𝜕𝑟
−  𝑀0𝑓0                                                                                                   (24) 

The solution of (24) may be formulated as  

𝑓0(𝜏, 𝑟) =  𝑒− ∫ 𝑀0(𝜂)𝑑𝜂
𝜏

0  𝑔0(𝜏, 𝑟)                                                                                           (25) 

Where 𝑔0(𝜏, 𝑟) must satisfy    
𝜕𝑔0

𝜕𝜏
=  

𝜕2𝑔0

𝜕𝑟2 + 
1

𝑟
 
𝜕𝑔0

𝜕𝑟
                                                             (26a)      

With boundary conditions 

𝑔0(0, 𝑟) =
(1−𝑘2)

2
  

𝐵1(𝑟)

∫ 𝑟𝐵1(𝑟)𝑑𝑟
1

𝑘

 ,                              (26b) 

𝜕𝑔0

𝜕𝑟
 (𝜏, 1) =  − 𝛽𝑔0(𝜏, 1),                                (26c) 

 
𝜕𝑔0

𝜕𝑟
 (𝜏, 𝑘) = 0.                                                                                                                    (26d)        

The solution of (26a) using (26b) to (26d) is  

𝑔0(𝜏, 𝑟) =  ∑
𝐴𝑛

𝐽1(𝜇𝑛𝑘)
∞
𝑛=0 𝐸𝑛(𝜇𝑛𝑟)𝑒−𝜇0

2𝜏                                                                                         (27a) 

Where 𝐴𝑛 =
𝜇𝑛

2(1−𝑘2)𝐽1(𝜇𝑛𝑘) ∫ 𝑟𝐵1(𝑟)𝐸𝑛(𝜇𝑛𝑟)𝑑𝑟
1

𝑘

((𝜇𝑛
2+𝛽2){𝐸𝑛(𝜇𝑛)}2− 𝑘2𝜇𝑛

2{𝐸𝑛(𝜇𝑛𝑘)}2) ∫ 𝑟𝐵1(𝑟)𝑑𝑟
1

𝑘

                                                  (27b) 

            𝐸𝑛(𝜇𝑛𝑟) =  𝑌0(𝜇𝑛𝑟)𝐽1(𝜇𝑛𝑘) − 𝑌1(𝜇𝑛𝑘)𝐽0(𝜇𝑛𝑟)                                                      (27c) 

And 𝜇𝑛′𝑠 are eigenvalues satisfying the following equation: 

𝜇𝑛(𝑌1(𝜇𝑛𝑘)𝐽1(𝜇𝑛) − 𝐽1(𝜇𝑛𝑘)𝑌1(𝜇𝑛)) +  𝛽(𝑌0(𝜇𝑛)𝐽1(𝜇𝑛𝑘) − 𝑌1(𝜇𝑛𝑘)𝐽0(𝜇𝑛)) = 0                   (27d) 

In the above equation   𝐽0, 𝑌0  are Bessel functions of order ZERO and   𝐽1, 𝑌1  are Bessel 

functions of order ONE. 

From (22), we have  

∫ 𝑟𝑓0(𝜏, 𝑟)𝑑𝑟 =
1

𝑘

(1−𝑘2)

2
                                                                                                                     (28) 

Using (25) in (28), we get 

𝑒− ∫ 𝑀0(𝜏)𝑑𝜏
𝑟

0 =  
(1−𝑘2)

2
 

1

∫ 𝑟𝑔0(𝜏,𝑟)𝑑𝑟
1

𝑘

                                                                                                     (29) 

From (25) and (29), we obtain 𝑓0(𝜏, 𝑟) as 

𝑓0(𝜏, 𝑟) =
(1−𝑘2)

2
 

𝑔0(𝜏,𝑟)

∫ 𝑟𝑔0(𝜏,𝑟)𝑑𝑟
1

𝑘

                                                                                                             (30) 

From (23) and (30), we obtain 
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𝑀0(𝜏) =  − 
∑

𝐴𝑛
𝐽1(𝜇𝑛𝑘)

 𝜇𝑛[𝑌1(𝜇𝑛)𝐽1(𝜇𝑛𝑘)−𝐽1(𝜇𝑛)𝑌1(𝜇𝑛𝑘)]𝑒−𝜇𝑛
2𝜏 ∞

𝑛=0

∑
𝐴𝑛

𝐽1(𝜇𝑛𝑘)
 [𝑌1(𝜇𝑛)𝐽1(𝜇𝑛𝑘)−𝐽1(𝜇𝑛)𝑌1(𝜇𝑛𝑘)]𝑒−𝜇𝑛

2𝜏 ∞
𝑛=0

                                                 (31) 

During the process of finding the remaining functions (𝑓𝑛, 𝑀𝑛) 𝑓𝑜𝑟 𝑛 = 1,2,3, …. the 

computation becomes complex. Hence we consider larger time solutions w.r.t steady flow 

conditions. By this consideration, the defined model represents the asymptotic results under 

steady flow conditions. 

As τ→∞ , Equations (30) and (31) give the following asymptotic representations for 𝑓0 

and 𝑀0. 

𝑓0(∞, 𝑟) =
(1−𝑘2)

2
 
𝜇0[𝑌0(𝜇0𝑟)𝐽1(𝜇0𝑘)−𝐽0(𝜇0𝑟)𝑌1(𝜇0𝑘)]

[𝑌1(𝜇0)𝐽1(𝜇0𝑘)−𝐽1(𝜇0)𝑌1(𝜇0𝑘)]
                                                                  (32) 

𝑀0(∞) = − 𝜇0
2,                                     (33) 

where 𝜇0 is the first (lowest in magnitude) root of equation (27d) 

From (20), we have 𝑓1(𝑟) satisfying the following equation  

 
𝜕2𝑓1

𝜕𝑟2 + 
1

𝑟
 
𝜕𝑓1

𝜕𝑟
+  𝜇0𝑓1 = 𝑤(𝑟)𝑓0 + 𝑀1𝑓0.                             (34) 

With boundary conditions 
𝜕𝑓1

𝜕𝑟
 (1) =  − 𝛽𝑓1(1),                                (35a) 

 
𝜕𝑓1

𝜕𝑟
 (𝑘) = 0,                                (35b) 

From (18) and (35a) we have  

𝑀1 = −
2

(1−𝑘2)
 [𝛽𝑓1(1) + ∫ 𝑟𝑤(𝑟)𝑓0 𝑑𝑟

1

𝑘
]                                           (36) 

Equations (34) and (36) are coupled, and equation (36) is not known explicitly as 𝑓1(1) 

is unknown at this stage. By multiplying equation (34) with 𝑟𝐸0(𝜇0𝑟),  and integrating from k 

to 1 with respect to r, it is observed that the left-hand side becomes zero leaving the nonzero 

right-hand side as  

𝑀1(𝜏) = −
∫ 𝑟𝑤(𝑟)𝐸0(𝜇0𝑟)𝑓0(𝑟) 𝑑𝑟

1
𝑘

∫ 𝑟𝐸0(𝜇0𝑟)𝑓0(𝑟) 𝑑𝑟
1

𝑘

  giving 

𝑀1(𝜏) =
−4𝜇0[𝑌1(𝜇0)𝐽1(𝜇0𝑘)−𝐽1(𝜇0)𝑌1(𝜇0𝑘)] ∫ 𝑟𝑤(𝑟)𝐸0(𝜇0𝑟)𝑓0 𝑑𝑟

1
𝑘

(1−𝑘2)[(𝜇0
2+𝛽2){𝐸0(𝜇0)}2− 𝑘2𝜇0

2{𝐸0(𝜇0𝑘)}2]
                                                              (37) 

Using (34) and (37), we get 𝑓1  satisfying the boundary conditions (35a) and  (35b) as 

 𝑓1(𝑟) =  ∑
𝐴1𝑛𝐸𝑛(𝜇𝑛𝑟)

𝐽1(𝜇𝑛𝑘)
∞
𝑛=0                                                                                                                     (38) 

where 

𝐴1𝑛 = {

∫ 𝑟[𝑤(𝑟)+𝑀0]𝑓0(𝑟)𝐸𝑛(𝜇𝑛𝑟) 𝑑𝑟
1

𝑘

𝐽1(𝜇𝑛𝑘)(𝜇𝑛
2−𝜇0

2)
 ,                           𝑓𝑜𝑟 𝑛 ≥ 1

−
𝐽1(𝜇0𝑘)

∫ 𝑟𝐸0(𝜇0𝑟)𝑓0 𝑑𝑟
1

𝑘

∑
𝐴1𝑛

𝐽1(𝜇𝑛𝑘)
 ∫ 𝑟𝐸𝑛(𝜇𝑛𝑟) 𝑑𝑟  ,       

1

𝑘
∞
𝑛=1 𝑓𝑜𝑟  𝑛 = 0

                                         (39)  

For = 0 , the expression for 𝐴1𝑛 is obtained from equation (22), i.e ∫ 𝑟𝑓1 𝑑𝑟
1

𝑘
= 0. 
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By applying the same procedure used to find 𝑀1(𝜏), we obtain 𝑀2(𝜏) as   

𝑀2(𝜏) =
1

𝑃𝑒2 + 
− ∫ 𝑟[𝑤(𝑟)+𝑀1]𝑓1(𝑟) 𝐸0(𝜇0𝑟) 𝑑𝑟

1
𝑘

∫ 𝑟𝐸0(𝜇0𝑟)𝑓0(𝑟) 𝑑𝑟
1

𝑘

                                                                                      (40)                                                    

3. Results and Discussion 

A catheter is used for different purposes. The presence of a catheter causes variations 

in the presence and amount of blood flowing inside, affecting the solute transfer process. The 

absorption by a wall is enhanced by the presence of a magnetic field which causes more solute 

to get convected to the wall. Wall absorption parameter β affects the exchange coefficient, 

asymptotic convection, and diffusion coefficients. 

Figures 2-4 show the plot of a radial velocity profile for different catheter radius 

magnetic parameters M and permeability α. Increases in catheter radius increase the velocity. 

This is due to the fact that the area of the cross-section decreases with an increase in catheter 

radius. But it is necessary to maintain the same amount of fluid flow to facilitate tissue needs 

around. Hence velocity increases. 

As the permeability increases, velocity near the center of the annular region (created by 

the catheter) increases but closer to the wall of the tissue region (where the drug is targeted), 

velocity reduces. This is due to the loss of fluid at a permeable wall. The increase in magnetic 

field causes a pulsatile flow which can be seen in Figure 3. Figures 5 and 6 show convection 

coefficient versus absorption parameters for different magnetic drag and different permeability. 

As magnetic field increases -𝑀1 increases showing more solute gets convected with the fluid, 

thereby decreasing absorption at the wall. As absorption increases -𝑀1decreases showing 

convection coefficient affects inversely to the solute of absorption. 

As permeability increases, convection decreases due to the loss of fluid. Hence increase 

in the permeability parameter results in a decrease in convection coefficient. Figures 5-6 show 

a plot of diffusion coefficient versus absorption parameter β for different values of a magnetic 

parameter, permeability, and Peclet number. Diffusion increases with increasing absorption 

parameters. The diffusion coefficient increases with increased permeability due to 

enhancement in fluid convection of fluid towards the wall, thereby increasing absorption. 

Increase in magnetic field decreases 𝑀2 due to the fact that the magnetic field increases 

the velocity of the fluid, thereby increasing the convection. An increase in Peclet number shows 

a decrease in diffusion hence decrease in  𝑀2. Peclet number and magnetic field influence 

diffusion significantly. The effect of an increase in a magnetic field is to create pulsatile motion. 
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Figure 2. the plot of asymptotic dispersion coefficient 

vs. absorption parameter for different values of 

magnetic drag. 

Figure 3. The plot of asymptotic dispersion 

coefficient vs. absorption parameter for different 

values of permeability. 

  
Figure 4. The plot of asymptotic dispersion coefficient 

vs. absorption parameter for different values of peclet 

number. 

Figure 5. The plot of asymptotic dispersion 

coefficient vs. absorption parameter for different 

values of magnetic drag. 

 
Figure 6. The plot of asymptotic dispersion coefficient vs. absorption parameter for different values of 

permeability. 

5. Conclusions  

This paper presents mass transfer in the presence of a catheter and magnetic field. 

Induced catheter creates an annual region in which mass transfer is studied using modified Gill 

and Sankarasubramanian model. Magnetic field influences in increasing absorption and 

convection. An increase in catheter radius increases the velocity. The absorption by a wall is 

enhanced by the presence of a magnetic field which causes more solute to get convected to the 

wall. Permeability increases velocity near the center increases but closer to the wall, velocity 

decreases. Diffusion coefficient increases with an increase in permeability due to enhancement 

in convection of fluid towards the wall thereby increasing absorption. Peclet number and 

magnetic field influence diffusion significantly. The effect of an increase in a magnetic field is 

to create pulsatile motion. 
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