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Abstract: The extract of Fucus spiralis (FS) was tested as a corrosion inhibitor of carbon steel in a 1M 

HCl medium. The anti-corrosion properties were analyzed by gravimetric and electrochemical 

techniques such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy 

(EIS). The surface characterization of carbon steel submerged in the optimal solution was carried out 

using UV-Visible, UV-Vis-NIR, and Optical microscopy analyses. Electrochemical and gravimetric 

results demonstrated that inhibitory efficiencies increase with increasing inhibitor concentration and the 

efficiency reaches 87% at a concentration of 0.5 g/L. According to Tafel extrapolated polarisation 

measurements, the FS also worked as a mixed-type corrosion inhibitor and changed the mechanism of 

anodic reactions. EIS analysis showed that a depressed capacitive loop dominates the Nyquist plot of 

impedance and enhances the polarization resistance (Rp) to 161.9 Ω cm2 with a reduction of the double 

layer capacity (Cdl) of carbon steel to 61.8 μF/cm2. This protection is assured by an adsorption 

mechanism based on the isothermal Langmuir adsorption model, which positively affects the 

thermodynamic parameters. UV-Visible, UV-Vis-NIR analyses exhibited that inhibitor decreases the 

iron oxides like hematite, Magnetite, and Goethite, Maghemite, Lepidocrocite, δ-FeOOH of the metal 

surface and delays the dissolution of the bare metal of iron to the ferrous ions, notably that optical 

morphology showed that FS extract decreases the aggressivity of HCl.  

Keywords: green inhibitor; carbon steel corrosion; electrochemical techniques; UV-Visible/UV-Vis-

NIR; optical microscopy. 
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1. Introduction 

Carbon steel is frequently used in building materials, and in the industrial process, 

contact with the acidic environment can damage the material [1]. The study of steel corrosion 

has received considerable academic and industrial attention in an acidic environment [2–4]. 

Acid solutions are extensively employed in manufacturing processes like cleaning, descaling, 

pickling, and acidifying oil wells [5]. Over the past decade, to protect the steel from degradation 

and prolong its life, corrosion inhibitors have been considered the practical corrosion protection 

methods, notably in acidic solutions to prevent metal dissolution [6,7]. Thus, several organic 

chemical compounds were inspected. The researchers suggested that the electronegative 

property of the O, N, S, and P atoms and the properties of aromatic and unsaturated bonds are 
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responsible for inhibition effectiveness. Usually, this inhibitory performance is due to the 

adsorbent layer that forms on the metal due to the reaction between molecules of organic 

compounds and the unoccupied orbital of surface metal atoms [8–10]. Currently, due to a factor 

of toxicity to users and the environment, certain synthetic corrosion inhibitors are abandoned 

[11]. For that, researchers are interested in using essential oils and medicinal plant extracts as 

corrosion inhibitors [12,13]. Abdallah et al. [14] were related the inhibiting impact of some 

plants such as curcumin, parsley, and cassia bark extracts to the molecular size of the major 

component. The author has also studied the Nutmeg oil as a safe and green inhibitor for the 

corrosion of carbon steel type L-52 (CS L-52) in 1.0 M HCl, which was explained that the 

adsorption of nutmeg oil onto the surface of the CS follows the Langmuir isotherm [15]. 

In addition, the extract of Fucus spiralis (FS) has not been studied before, for that, the 

curiosity to know the behavior of the carbon steel in the presence of this extract leads us to 

publish this research document to explain the protection against corrosion of carbon steel in 

hydrochloric acid (HCl 1M), via a methanolic extract of Fucus spiralis (FS) through different 

procedures: mass loss, potentiodynamic polarization, electrochemical impedance spectroscopy 

(EIS), UV-Vis -NIR spectroscopy and optical microscopy technique. 

2. Materials and Methods 

2.1. Extraction of inhibitor. 

Fucus spiralis (FS) is a type of alga that has a brown color, the origin of this species is 

the coastal area of Cape Ghir, 43 km northwest of Agadir (Morocco), which was collected at 

low tide. This alga is carefully rinsed and dehydrated to eliminate all traces of salt. Then, it is 

degraded to fine particles using an electric grinder. After that, 20g of powder was extracted for 

3 hours by the methanol utilizing Soxhlet. The collected extract was concentrated by rotary 

evaporation, and the efficiency of the final product was about 13.25%. 

2.2. Materials. 

Carbon steel was used in this study with a chemical composition of 0.370% C, 0.230% 

Si, 0.680% Mn, 0.016% S, 0.077% Cr, 0.011% Ti, 0.059% Ni, 0.009% Co, 0.160 % Cu and 

the rest is iron balanced. The samples are prepared before immersion in the solutions by an 

abrasive polishing paper with fine particles (220 to 1200), then cleaned by distilled water, 

followed by a stream of hot air. 

2.3. Preparation of the solutions. 

Simulation of the aggressive environment was obtained using a hydrochloric acid 

solution (1M HCl) from analytical grade (37% HCl). The corrosive medium of 1 M 

hydrochloric acid was chosen because hydrochloric acid is a commonly used mineral for acid 

cleaning and descaling. The inhibitor used in our study is the methanolic extract of FS. The 

range of inhibitor concentrations varied from 5×10-2 g /L to 0.5 g /L.  

2.4. Gravimetric measurements. 

In these measurements, we prepared the samples in closed glass vials containing 50 mL 

of the electrolyte by changing the concentrations of FS extract, the temperature of the test 
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solution was 303 K, and the immersion time was 6 hours. The experiments were achieved three 

times, and the average value of the mass loss was noted. 

2.5. Electrochemical measurements. 

  The results of the electrochemical methods were measured employing three electrodes, 

saturated calomel electrode (SCE),  platinum electrode, and carbon steel electrode ( 1cm2). The 

corrosion cell is linked to the VoltaLabpotentiostat (PGZ 100), controlled by the VoltaMaster 

4 software. To achieve the stable state of the electrode/solution system, the working electrode 

is submerged for 30 min in the solution at open circuit potential (Eocp). Then, the 

electrochemical impedance spectroscopy (EIS) results were executed by decreasing the 

frequency from 100 kHz to 10 mHz, with 10 points per decade, and the experiments were 

repeated three times. After the AC impedance test, the potentiodynamic polarization curve was 

drawn at the scan rate of 0.5 mV/s, from -800 mV/SCE to -200 mV/SCE. 

2.6. Surface morphology and chemical composition. 

  The surface morphology of the samples was obtained by optical microscopy (Leica 

DM6000 M), and the surface reflectance spectra of the samples were achieved by UV-Vis 

diffuse reflectance spectroscopy at room temperature using UV-Vis-NIR spectrophotometer 

(Jasco V670 model), linked to the integrating sphere (ILN-925 model). And the absorbance 

spectra of the solutions were acquired at room temperature using a UV-Vis spectrophotometer 

(Jasco V-730 model). These techniques make it possible to identify the presence of the 

chemical elements that compose the C- steel in the solution and on the metal surface to assess 

the degree of corrosion. Optical microscopy (OM) was used to examine the immersion 

corrosion of carbon steel specimens in acidic solutions with and without inhibitors. The 

samples were sent to OM studies after the corrosion testing to determine the surface 

morphology. 

3. Results and Discussion 

3.1. Gravimetric measurements. 

The influences of adding algae extract (FS) on the corrosion protection of carbon steel 

in 1M HCl solution were obtained by the mass loss method at 303 K after 6 hours of immersion. 

The corrosion rate (V) plus the inhibition efficiency IE(%) were measured by equations 1 and 

2[16–19]: 

m

S t



=


        (1) 

( )
0

0
% 100IE

 



−
=         (2) 

where, Δm is the mass loss (mg), t is the immersion time (hours), S is the sample area (cm2), 

where 0 is the corrosion rate in the hydrochloric acid solution (1M HCl), and  is the corrosion 

rate in the hydrochloric acid solution (1M HCl) with the inhibitor (mg cm-2 h-1). 

The results reached are presented in Table 1. The efficiency increases up to 86% at 0.50 

g/L. Moreover, the results reveal that improving the concentration of the FS extract decreases 

https://doi.org/10.33263/BRIAC125.70757091
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC125.70757091  

 https://biointerfaceresearch.com/ 7078 

the corrosion rate values. This decrease may be related to the characterization of the inhibitor, 

which affects the activity of the metal surface. 

Table 1. The corrosion rate of metal and inhibition efficiency of FS extract in 1M HCl at 303 K. 

C (g/L) 0 0.05 0.1 0.3 0.5 

  (mg cm-2 h-1) 2.40 0.96 0.72 0.47 0.34 

IE (%) ----- 60 70 80 86 

θ ----- 0.60 0.70 0.80 0.86 

 According to the literature [20], the formation of corrosion products such as rust on the 

metal surface can improve the corrosion process. In addition to this, the presence of aggressive 

ions like Cl- also accelerates the corrosion rate of the metal. Still, the use of this inhibitor makes 

it possible to decrease the destructive attack of this ion. In addition, the results obtained indicate 

that the mobilization of the inhibiting constituents towards the metal surface decreases the 

corrosion process, which may alter the formation of corrosion products. This effect can be 

explained by different approaches. The chemical species that form the SF extract can cover the 

metal surface, blocking the cathodic and anodic reactions or depreciating the chemical species' 

reduction and oxidation [21]. Concerning the inhibition efficiency, several kinds of research 

on green corrosion inhibitors from plant extract have been reported 94.8 % at 10 g/L for 

Xanthium strumarium extract [22], 88 % at 0.8 g/L for Glycyrrhiza glabra leaves extract [23], 

and 98% at 0.4 g/L for Sunflower seed hull extract [24]. Considering the result of this study, 

the inhibition efficiency of 86% at 0.5 g/L may favor the use of this extract as a corrosion 

inhibitor.     

3.2. Potentiodynamic polarization measurements. 

  The FS extract was used to investigate its effect on the electrochemical behavior of 

carbon steel in 1M HCl solution at 303K by the potentiodynamic polarization measurements, 

as shown in Figure 1. 
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Figure 1. The effect of FS extract on the electrochemical behavior of carbon steel in 1M HCl solution at 303K. 

The kinetic parameters, in particular the corrosion current density (icorr), the cathodic 

and anodic slopes of Tafel (βc, βa), as well as the corrosion potential (Ecorr) are summarized in 

Table 2. icorr values are determined by Tafel extrapolation and are exploited to estimate the 

efficiency of inhibition IETafel (%) (Equation 3)[25–27]: 
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where, 0

corri
 
is the corrosion current density in the hydrochloric acid solution (1M HCl), and corri

 
is the corrosion current density in the hydrochloric acid solution (1M HCl) with the inhibitor. 

Table 2. Electrochemical parameters and corrosion inhibition efficiency of carbon steel in 1M HCl, without and 

with the addition of different concentrations of SF extract at 303K. 

Conc. 

(g/L) 

-Ecorr 

(mV/SCE) 

icorr 

(μA/cm2) 

βa 

(mV/dec) 

-βc  

(mV/dec) 

IETafel(%) 

0.0 477 430.9 111.0 118.6 - 

0.5 455 58.9 49.0 108.3 86 

0.3 458 65.0 53.0 131.9 85 

0.1 483 99.4 76.2 115.0 77 

0.05 435 135.1 60.8 106.2 69 

Besides, the current density decreases with increasing concentration (Table 2), which 

confirms the creation of a protective layer that preserved the metal surface [28]. This appeared 

on the inhibition efficiency, which reached the percentage of 86%, close to the value of the 

gravimetric measurements. Furthermore, the cathodic and anodic slopes of Tafel (βc, βa) are 

changed with the addition of FS extract. In general, the Tafel slope value of the anode is more 

changed and significantly decreased, which is evidence that the oxidation reaction mechanism 

of iron is influenced. On the other hand, The Tafel slope value of the cathode is not more 

changed and stayed at the value of about 120 mV, which means that the compounds responsible 

for inhibition are not changed the mechanism of cathodic hydrogen evolution, which occurs 

for one electron in the charge transfer controlled reaction [29], and rather the adsorbed 

compounds block the active sites [30]. 

Therefore, the Ecorr values are slightly shifted towards the anodic potential. According 

to the literature [31–34], the inhibitor can recognize it as an anodic inhibitor, cathodic inhibitor, 

or mixed inhibitor, depending on the variation of the corrosion potential. Therefore, in our case, 

the FS extract behaves like a mixed inhibitor since this change does not exceed ± 85 mV. 

3.3. Electrochemical impedance spectroscopy (EIS). 

The carbon steel impedance spectra in 1M HCl using different concentrations of FS 

extract are presented as Nyquist curves (Figure 2). Nyquist diagrams contain incomplete half-

circles representing the capacitive loop and having a center below the real axis. 
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Figure 2. Carbon steel impedance spectra in 1 M HCl solution, with modification of FS extract concentrations 

at 303 K. 
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The EIS results are generated by software through the electrical circuit illustrated in 

Figure 3 to model the studied electrochemical system and estimate numerical values matching 

the properties of the system[35,36]. In the equivalent electrical circuit, Rs is the resistance of 

the solution, Rp is the polarization resistance, and CPE represents the constant phase element 

that models the imperfect of the double layer. 

 

Figure 3. Simulated carbon steel/electrolyte system using this electrical circuit. 

The impedance behavior of CPE is calculated by this function [30,37]: 

( )0

1
CPE n

Z
Y j 

=
 

                                                                    (4) 

ω is the angular frequency,n and Yo represent the phase shift and the magnitude of CPE, 

respectively. 

And the double layer capacitance is measured via the CPE magnitude and the 

polarization resistance Rp, and the phase shift n (Equation 5) [30,37] : 

( )
1

1/

0

n
n n

dl pC Y R
− 

=  
 

           (5) 

The following equation 6 represents the relation between the inhibition efficiency and 

the polarization resistance values [38–40]: 

( )
0

% 100
p

p p

R

p

R R
IE

R

−
=                  (6) 

where, 0

pR and 
pR  are the polarization resistance in the non-attendance and the attendance of 

the inhibitor, respectively. The values of the extracted impedance components are registered in 

Table 3. 

Table 3. Values of the extracted impedance components in 1 M HCl solution, with modification of FS extract 

concentrations at 303 K. 

According to the results obtained (Table 3), it is observed that the concentrations of FS 

extract are proportional to the inhibition efficiency implies that the extract serves to protect the 

metal surface [2]. This protection is generally enhanced with the (n) parameter that reflects the 

inhomogeneity of the surface, which means that the metal surface is relatively homogeneous 

in the presence of FS extract compared to without it. This modification may reinforce the 

polarization resistance Rp values and decreases the bilayer capacitance Cdl. But the 

proportionality doesn't verify, which suggests that other parameters influence the polarization 

resistance Rp and the bilayer capacitance Cdl. Furthermore, the polarization resistance Rp rises 

Rs CPE

Rp

Element Freedom Value Error Error %

Rs Fixed(X) 0 N/A N/A

CPE-T Fixed(X) 0 N/A N/A

CPE-P Fixed(X) 1 N/A N/A

Rp Fixed(X) 0 N/A N/A

Data File:

Circuit Model File:

Mode: Run Simulation / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Conc.  

(g/L) 
Rs  

(Ω cm2) 

Y0 (×104) 

(Ω−1sn cm−2) 
n Rp  

(Ω cm2) 

Cdl 

(μF/cm2) pRIE (%) 

blank 0.58 4.59 0.864  20.3 221.1 - 

0.5 1.27 1.24  0.848 161.9 61.8 87 

0.3 3.10 1.21  0.884  119.5 69.7 82 

0.1 3.57 1.35  0.869 75.8 68.1 72 

0.05 2.49 2.69  0.897  51.4 165.1 61 
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from 20.3 Ω cm2 to 161.9 Ω cm2 and the bilayer capacitance Cdl  decreases from 221.1 μF/cm2 

to 61.8 μF/cm2, the variation of this value can be associated with the thickness evolution of the 

electrical double-layer [41], which is consistent with the Helmholtz model, assumed through 

the following equation 7 [42]: 

0
dlC S

d

 
=                                                                                             (7) 

where ε0 denotes the permittivity in a vacuum, ε is the permittivity, d denotes film thickness, 

and S denotes surface area. From this relation, it is clear that the protection of the metal surface 

may be due to a decrease in the permittivity or an increase of the FS compounds thickness that 

adsorbed on the metal surface. 

3.4. Temperature effect. 

The estimated effect of temperature on the FS extract inhibition and the activation 

parameters of the metal applying the polarization measurements are studied in the presence of 

the inhibitor (0.5 g/L) and the range temperature 303 K-333 K (Figure 4). 
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Figure 4. The effect of temperature on the electrochemical behavior of the metal in 1 M HCl + 0.50 g/L of FS 

extract. 

Table 4. The effect of temperature on the electrochemical parameters of the metal in 1 M HCl + 0.50 g/L of FS 

extract. 

 T 

(K) 

-Ecorr 

(mV/SCE) 

icorr 

(mA/cm2) 

βa 

(mV/dec) 

-βc 

(mV/dec) 

IETafel(%) 

 

Blank 

303 477 0.430 111.0 118.6 - 

313 482 0.966 91.0 73.8 - 

323 458 1.509 87.2 87.6 - 

333 480 1.966 110.9 94.1 - 

 

FS 

303 455 0.058 49.0 108.3 86 

313 473 0.149 69.3 108.8 85 

323 434 0.778 60.4 126.8 60 

333 465 1.122 102.9 75.1 43 
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Analysis of the results grouped in Table 4 unveils that an augment in temperature 

improves the corrosion current density of the metal. But the effect is less in the presence of FS 

extract, which decreases the inhibition efficiency. This comportment may be elucidated 

through the desorption of FS extract molecules at higher temperatures due to weak interactions 

between the metal surface and the molecules responsible for the inhibition [43]. 

For the thermodynamic activation parameters, the corrosion rate as a function of 

temperature was studied, first using the Arrhenius equation 8 [44]: 

exp a
corr

E
i k

R T

− 
=   

 
      (8) 

icorr is the density of the corrosion current, K is a pre-exponential factor, Ea is the activation 

energy and, R is the perfect gas constant, T is the absolute temperature.  

Figure 5 illustrates the modification of the corrosion current density by the inverse of 

the temperature. Without and with inhibitor, this variation represents a straight line, and from 

the Arrhenius relation, we can calculate the activation energy. 
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Figure 5.  Modifications of Arrhenius curves for C-steel, without (Blank) and with 0.50 g/L of FS extract in 1 

M HCl. 

Moreover, to understand the adsorption mechanism, the thermodynamic parameters of 

the dissolution of carbon steel in 1M HCl are examined without and with an optimal 

concentration of FS extract (Figure 6). In this regard, the transition state equation is used 

applying equation 9 [45–47]: 

exp expa a
corr

S HR T
i

N h R R T

 −    
=     

    
     (9) 

h: Plank constant, N: Avogadro number, aH  Activation enthalpy, and aS : Activation 

entropy. 

The variation of ln (icorr / T) as a function of the inverse of the temperature 1/T is a 

straight line (Figure7), with a slope equal to (- aH /R) and ordinate at the origin equal to (ln 

R/Nh + aS /R). These parameters have been calculated and listed in Table 5. 
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Figure 6. Modification of the transition state curves for C-steel, without (Blank) and with 0.50 g/L of FS extract 

in 1 M HCl. 

Table 5. Activation energies, enthalpies, and entropy values for C- steel in 1M HCl in the absence and the 

presence of  0.5 g/L of the inhibitor. 

Activation parameters Ea 

(kJ/mol) aH  

(kJ/mol) 

aS  

(J/mol K) 

Blank 41.92 39.27 -64.10 

0.5 g/L 87.54 84.47 67.59 

Moreover, Table 5 unveiled that the presence of FS extract in the corrosive solution 

improves the Ea that means the energy barrier for corrosion reaction is increased,  which means 

the chemical compounds of FS extract enhance the protection of metal surface from the 

dissolution process. Besides that, the thermodynamic parameter aH with FS extract is greater 

(84.47 kJ mol-1) than in the absence of inhibitor (39.27 kJ mol-1), proposing that the 

decomposition of steel is delayed in the presence of FS extract [48]. The positive sign aH  

reflects the endothermic nature of the dissolution process of steel. The increase in aS is 

commonly described as an improvement in disorder caused by the substitution of water 

molecules by adsorption of FS extract chemicals onto the steel surface[49]. 

3.5. Adsorption isotherm. 

 The weight loss measurement was used to evaluate the nature of the adsorption of FS 

inhibitor on the carbon steel surface in 1 M HCl solution at 303 K. The corrosion inhibition 

efficiencies (η) of the selected method was used to evaluate the surface coverage () as  

 = η/100 (Table 1) in the monolayer adsorption model of Langmuir isotherm expression 

presented as Eq. (10). 

. / 1/ .adsConc K Conc = +       (10) 

where Kads is the adsorption constant and Conc. is the concentration of the corresponding FS 

on the carbon steel surface. 

 The plot of the ratio of the FS inhibitor concentration and the surface coverage 

(Conc./) versus concentration (Conc.) were used to generate the Langmuir isotherm curves 

for the FS inhibitor shown in Figure 7. The adsorption constant (Kads), slope, and other 
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Langmuir isotherm parameters are enumerated in Table 6. It can be observed that the slope 

obtained from the weight loss method for FS is approximately following the monolayer 

adsorption model proposed in Eq. (10). This can be interpreted that the adsorption of FS 

inhibitor on the surface of carbon steel in 1 M HCl solution at 303 K obeys a monolayer 

adsorption model. The Kads value is attributed to measuring the affinity of an inhibitor to the 

adsorption site; usually, a high value suggests protection of the metal surface. In our case, the 

value is less related to the nature of FS extract, which contains numerous chemical compounds, 

which let difficult to estimate the molar concentration. As electrochemical and gravimetric 

methods verified the efficacy, we can suggest that FS extract compounds follow Langmuir 

isotherm with an adsorption interaction with carbon steel. 
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Figure 7. Langmuir isotherm curves of carbon steel surface in 1 M HCl solution in the absence and presence of 

different concentrations of FS inhibitor at 303 K. 

In order to determine the nature of the interaction, physisorption or chemisorption, 

between the molecules that compose the FS extract and the metal surface, Gibb's free energy 

of adsorption (
adsG ) must be estimated using Eq. (11).  

( )
2ads H O adsG R T Ln C K = −          (11) 

The parameters R, CH2O, and T are universal gas constant, the concentration of pure 

water in the solution, and temperature (K), respectively (R = 8.314 J mol-1 K-1 and CH2O = 103 

g/L). However, it could be mentioned that FS extract weight is not recognized. Thus, 
ο

adsG
a 

determination is not allowed, which confirms what has been described previously using other 

plants that have been extracted with different solvent and extraction techniques so that to obtain 

green corrosion inhibitors [50–53]. 

Table 6. Langmuir isotherm parameters of carbon steel surface in 1 M HCl solution in the presence of FS 

inhibitor at 303 K. 

 R2 Slope Kads 

(L/g) 

FS 0.998 1.12 31.14 

 

3.6. UV–Vis–NIR spectroscopy. 

UV-Vis-NIR diffuse reflectance spectroscopy of the surface was analyzed after the 48 

hours immersion time at room temperature. As shown in Figure 8, the reflectance of the metal 

https://doi.org/10.33263/BRIAC125.70757091
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC125.70757091  

 https://biointerfaceresearch.com/ 7085 

surface after immersion in the presence of FS extract shows a percentage of reflectance between 

that presented by the blank solution and before immersion. 
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Figure 8. UV-Vis-NIR diffuse reflectance spectroscopy of the surface for C-steel before and after the 48 hours 

immersion time in 1 M HCl (Blank) and with 0.50 g/L of FS extract at room temperature. 
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Figure 9. Second derivatives of K-M function spectra of the surface for C-steel before and after the 48 hours 

immersion time in 1 M HCl (Blank) and with 0.50 g/L of FS extract at room temperature. 
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 Furthermore, we also examined the second derivatives of  K-M (Kubelka-Munk) 

function spectra to identify the iron oxides [54]. Figure 9 shows the possibility of detecting the 

absorption bands corresponding to hematite (Hm), Magnetite (Mt), and Goethite (Gt), 

Maghemite (Mm), Lepidocrocite (Lp), δ-FeOOH[54–57]. However, These oxides have 

overlapping bands that are difficult to differentiate. 

 For this, From the point of view of the degradation of a material, the amplitude between 

the lowest point and the highest near point of the absorption bands can be accepted as a 

quantitative parameter to estimate the degree of degradation or protection of material against 

an aggressive environment [37,58,59]. In the case of FS extract, the amplitude of the iron 

oxides corresponding to the surface of the metal shows an amplitude between that presented 

by the blank solution and before immersion, which means that the surface was less attacked 

and protected. 

 For further interpretation of the inhibition effect, UV–Vis Spectroscopy of the solution 

was utilized. Figure 10 displays the UV–Vis Spectroscopy of the solution after immersion of 

the metal for 2 days (48h), the black line corresponds to the 1M HCl solution (Blank), and the 

green line linked to the 1M HCl solution with 0.5 g/L of the inhibitor (FS). 
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Figure 10. UV-Vis absorption spectroscopy of the 1 M HCl solution (Blank) and with 0.50 g/L of FS extract 

after 48 hours of immersion time of C-steel at room temperature. 

 As observed in Figure 10, a peak at 334 nm is detected in the blank solution, and this 

band is related to the presence of ferric chloride FeCl3 [60]. Usually, the dissolution of bare 

iron in the hydrochloric solution is a transformation of Fe atom into ferrous ions Fe2+, the 

presence of ferric ions, in this case, can be related to the dissolution of iron oxides that contain 

ferric ions in their structure (Equation 12-13). 

2 3( ) ( ) 3( ) 2 ( )6 2 3s aq aq LFe O HCl FeCl H O+ → +       (12) 

3 4( ) ( ) 2( ) 3( ) 2 ( )8 2 4s aq aq aq LFe O HCl FeCl FeCl H O+ → + +     (13) 

 In addition, this is confirmed by the previous technique, which is identified the iron 

oxides that have Fe3+. Another suggestion that can enhance the presence of FeCl3 is the 

oxidation process of ferrous chloride FeCl2 with oxygen, as demonstrated by the following 

reaction: 

2( ) 2 ( ) 3( ) 2 ( )4 4 4 2aq aq aq LFeCl O HCl FeCl H O+ + → +      (14) 
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 On the other hand, the absence of this peak is observed in the solution with the inhibitor, 

it is a sign of the inhibitory effect of the SF extract, which delays the dissolution of the bare 

metal of iron to the ferrous ions. 

3.7. Optical morphology. 

To confirm the inhibitory effect of the FS extract on the metal, the surface morphology 

was inspected by optical microscopy after 48h of immersion in 1 M HCl with and without the 

FS extract (Figure 11). Figure 11-b shows serious damage to the metal surface due to an 

aggressive environment caused by Cl- ion activity. In contrast, the existence of 0.5 g/L of FS 

attenuates the aggressivity of HCL molecules, as shown in Figure 11-c. 

 
Figure 11. Optical morphology of the carbon steel surface after 48h of immersion at room temperature. (a) 

before immersion, (b) in 1 M HCl, (c) in 1 M HCl + 0.5 g/L of FS. 

4. Conclusions 

In this study, the gravimetric measurements of carbon steel explained that Fucus 

spiralis (FS) extract is a novel corrosion inhibitor in an aggressive environment of 1 M HCl at 

303 K, with an efficiency of 86 % at 0.5 g/L. Polarization studies have clarified that the 

inhibitor acts as a mixed inhibitor which influences the anodic reaction mechanism and just 

blocks the active cathodic sites. This decreases the corrosion current density and shifts the Ecorr 

slightly. Moreover, This change was verified by EIS graphs, in which the FS extract improves 

the resistance of the polarization (Rp) and minimizes the double layer capacity (Cdl) of carbon 

steel. Temperature affected the performance of the FS extract due to weak interactions between 

the metal surface and the chemical substances responsible for the inhibition, assuming that the 

adsorption is mainly due to the physisorption mechanism. Thermodynamic parameters 

explained that the FS extract in the aggressive solution enhances the activation energy, retains 

the endothermic process of the reactions at the metal/solution interface, and increases the level 

of disorder. Besides that, the adsorption isotherm method showed that FS extract follows 

Langmuir isotherm. The results acquired were homogeneous with the results obtained by UV-

Vis-NIR spectroscopy, which is shown a decrease of iron oxides of the metal surface and a 

diminution of iron ions in the solution, especially that optical morphology showed that FS 

extract attenuates the aggressivity of HCl.    
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