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Abstract: Several N, N-substituted diamines such as putrescine and N-monoalkylated derivatives have 

demonstrated potential as lead compounds against Leishmania donovani at submicromolar levels. There 

is a need to refine available diamines for enhanced leishmanicidal activity. A 3D-QSAR by 

Comparative molecular field analysis (CoMFA) on a series of tested diamines for their activities against 

L. donovani was conducted to understand better the mechanism of action and SARs of the compounds. 

The model was constructed with AM1 energy minimized conformers of the training set compounds 

(n=20) by the PLS algorithm method, cross-validated by the method of leave-one-out (LOO), and 

externally validated using the test set compounds (n=5). A robust model with high predictability of 

untested compounds was obtained for 2PC (latent variables). The coefficients of determinations for PLS 

regression R2, internal cross-validation, Q2 and external prediction P2 were 0.97 (SDEC=0.095), 0.82 

(SDEP=0.102) and 0.73 (SDEP=0.115) respectively with F-value 618.8 for 2PC. The model 

coefficients graphically translated into contour maps showed regions where steric (62 %) and 

electrostatic (38 %) properties influence the leishmanicidal activity of the compounds. In addition to 

the optimum chain length (n=4), a steric effect at position 4 alone or combined with the electrostatic 

effect at position 3 of the diamine backbone significantly enhanced the leishmanicidal activity. It could 

further be explored for even higher activity. The model supported the empirical data, which identified 

N, N'-substituted diamine as the scaffold for leishmanicidal activities and further provided insights for 

further optimization of the lead compound. 
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1. Introduction 

Leishmaniasis is a neglected tropical vector-borne disease of the protozoan parasites. 

Globally, millions of people living in developed and developing regions are infected by 20 

different species of Leishmania [1]. The disease is endemic in about 88 countries, with over 

one billion people currently at risk of infection [2]. It is ranked second to malaria in mortality 

among protozoan diseases, with incidences of over 1 million cases per annum for both visceral 

and cutaneous leishmaniasis. Generally, cutaneous leishmaniasis may be less severe and self-

limiting compared with the more severe and fatal visceral leishmaniasis. The management of 

leishmaniasis still depends on chemotherapy with miltefosine, amphotericin B, paromomycin, 
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and pentavalent antimonials since effective vaccines for leishmaniasis are still undergoing 

clinical trials [3]. However, the effective use of these drugs is limited by their side effects, 

toxicities, cost, low efficacy, and emerging resistance [4]. It is, therefore, imperative to design 

new effective leishmanicidal agents relying on the many potential drug targets in Leishmania 

species. 

Many enzyme targets such as fructose-1, 6-bisphosphate aldolase, squalene synthase, 

glyceraldehydes-3-phosphate dehydrogenase, sterol methyltransferase, phosphoglycerate 

kinase, have been biochemically characterized as potential drug targets for leishmaniasis [5-8]. 

Identification of these targets represents the rate-limiting step in lead compound optimization 

[9]. Some of the characterized enzymes are not assayable or available for high throughput 

screening, rendering them unemployable drug targets [1, 5, 10-14]. Against the backdrop of 

these challenges associated with target-based optimization of molecules for leishmanicidal 

agents, we explored the use of a ligand-based approach to a series of N, N-substituted diamines 

for further development and understanding of the mechanism of leishmanicidal activity. In a 

previous study, the leishmanicidal profile of twenty-five N, N-substituted diamines (1-25) 

synthesized by controlled reductive amination of aliphatic diamines using substituted 

benzaldehyde was evaluated for in-vitro activity against L. donovani [15]. 

In this study, the applicability of CoMFA to the optimization of this series of 

leishmanicidal compounds lies in the congruency of the dataset as well as the congenericity of 

the diamines with a relatively wide range of potency (3.5 log units).  Therefore, we report a 

3D-QSAR study on a series of N, N-substituted diamines aimed at capturing all the relevant 

SAR of the diamines to lead modification, (semi-) synthesis design, leishmanicidal activity 

prediction, understanding the single target-mediated mechanism of activity, and lead 

optimization of leishmanicidal compound(s). 

2. Materials and Methods 

2.1. Data set. 

The data set used for the 3D-QSAR study comprises a library of 25 different N.N-

substituted diamines suggested to interfere with polyamine metabolism of L. donovani (Table 

1) and curated from previously synthesized leishmanicidal ligands [15-17]. The library was 

randomly divided into training (n=20) and test (n=5) sets, and the molar IC50 was converted 

into pIC50 as the target or dependent variable. The 2D structures of the N, N-substituted 

diamines scaffold, the various substituents, and the pIC50 of the compounds used in the study 

are shown in Table 1. 

2.2. Pretreatment of data set for the molecular model. 

The 3D structures (1-25) were built in a molecular operating environment (MOE) from 

the in-built fragments and subsequently energy-minimized by MMFF94x force field followed 

by low-mode conformational search using default settings of MOE [18]. The resulting best 

conformers (dE=0) were further energy-minimized using semi-empirical AM1 Hamiltonian 

(MOPAC) and the lowest AM1 energy conformers used for the 3D-QSAR study. 
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2.3. Alignment of ligands for modeling. 

The alignment procedure is the most critical step in 3D-QSAR studies. All the 3D 

structures were manually aligned on compound 12 (IC50=0.031 µM, pIC50=7.5) as the template 

following the biophore hypothesis and based on a query of similarity between other compounds 

and selected atoms/bonds of 12. The template's selected atoms and bonds (Figure 1A) served 

as a superposition match for the alignment. The superposed molecules together with the pIC50 

values were converted to structure data file format for the 3D-QSAR study. 

2.4. Pretreatment of data for CoMFA study. 

The CoMFA study was performed with Open3DQSAR open-sourced software [19]. 

The aligned molecule assembly was automatically set in a grid box size of 5 Å higher than the 

largest ligand in both x- and y- axes and molecular field grids of 1.0 Å mesh step size. Both 

Lennard-Jones (Steric) and Coulombic (electrostatic) molecular interaction fields (MIFs) 

potentials were computed with Open3DQSAR using the MMFF94x Van der Waals parameters 

and charges.  An sp3 carbon atom was used as a probe to compute the steric interaction field, 

while a volume-less probe with a charge of +1 was used to compute the electrostatic interaction. 

The pre-filtration of the training set MIF data was done by setting energy (Van der Waals and 

electrostatics) cutoff at ±30 kcal/mol. In addition, all the variables with standard deviation (SD) 

< 2.0 were eliminated to reduce noise and improve the regression analysis [20]. To give the 

steric and electrostatic fields the same contribution in the PLS model, a block unscaled 

weighting algorithm was applied to the MIFs. 

2.5. Regression analysis and model validation. 

The regression analysis was performed using the partial least square (PLS) method to 

the correlation of MIFs with the pIC50 by latent variable (PLS component, PCs) extraction. 

Smart region definition was performed to improve the model by reducing the dependency of 

the aligned ligand from grid-to-molecule reciprocal orientations [21]. Internal validation of the 

model was performed by the leave-one-out (LOO) method for the 5 PCs and expressed as the 

coefficient of determination (Q2) for the correlation of predicted and empirical pIC50 of the 20 

ligands used as the training set. The model's predictive ability was determined by predicting 

the pIC50 of the 5 ligands used as the test set and expressed as the coefficient of determination 

(P2) for correlating predicted and experimental pIC50 data of test set ligands. The optimum PC 

was selected based on the Q2 obtained for a unit change in constituent. A PC of 2 was selected 

for this study (Table 2). 

2.6. Contour mapping for Lennard-Jones and Coulombic potential. 

The ReadMOEGRID module of MOE was used in visualization as 3D contour maps of 

the results of the CoMFA model. The contour maps representing the regression coefficients 

obtained from the Open3DQSAR were plotted with interest on the steric and electrostatic 

effects in the structural features of the different ligands of the training set lead to the most 

significant increase or decrease in leishmanicidal activities [19]. The positive and negative 

influences of electrostatic interactions were denoted by blue and red contours, respectively, 

while those of steric interaction on activity was represented by green and yellow contours, 

respectively 
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3. Results and Discussion 

3.1. Alignment of ligands and modeling 

The 2D structures and activity (IC50 and pIC50) of the ligands are presented in Table 1. 

The ligands were classified into a training set for building the model and a test set for external 

validation. The biophore skeleton used for the alignment is shown in Figure 1A. The best 

conformer of 12 was used as a template for atom-atom alignment, as shown in Figure 1B. 

 
Figure 1. (A) 2D skeleton of ligand used as alignment template (biophore skeleton in blue); (B) Superposed 3D 

ligands of all N, N-substituted diamines. 

Table 1. 2D structures and activity of ligands. 

Ligands n R IC50 (µm) pIC50 Ligands n     R IC50 (µm) pIC50 

1* 3 H 11.01 4.958 14 8 4-OBn 1.14 5.943 

2 4 H 18.63 4.729 15 10 4-OBn 4.60 5.337 

3 6 H 13.83 4.859 16 3 3-OH, 4-OMe 100 4.000 

4 8 H 10.17 4.992 17 4 3-OH, 4-OMe 100 4.000 

5 10 H 1.75 5.756 18 6 3-OH, 4-OMe 43.76 4.358 

6 3 4-OMe 1.24 5.906 19* 8 3-OH, 4-OMe 44.41 4.352 

7* 4 4-OMe 8.52 5.069 20 10 3-OH, 4-OMe 4.50 5.346 

8 6 4-OMe 6.73 5.171 21 3 3-OMe, 4-OBn 0.23 6.638 

9 8 4-OMe 1.56 5.806 22 4 3-OMe, 4-OBn 0.24 6.619 

10 10 4-OMe 1.45 5.838 23 6 3-OMe, 4-OBn 0.21 6.677 

11 3 4-OBn 0.26 6.585 24 8 3-OMe, 4-OBn 0.22 6.657 

12 4 4-OBn 0.03 7.508 25* 10 3-OMe, 4-OBn 1.20 5.920 

13* 6 4-OBn 0.24 6.619      

Refer to Figure 1A for ligand skeleton, n, and R, *test set. 

3.2. CoMFA model statistics and PLS. 

PLS regression with 5PCs was performed to produce a model of a linear relationship 

between the changes in leishmanicidal activity with the difference in ligands' MIF energies. 

The model statistics are summarized in Table 2. The best model obtained comprised an 

optimum number of two latent variables (2PCs) with PLS regression coefficients of 

determination, R2=0.97, Q2=0.82, and P2=0.73 for the model calibration, LOO internal cross-

validation, and the external predictions of the test set ligands' activity (Table 2). The scatter 

plots of predicted versus experimental pIC50 for the calibration, internal validation, and 

external prediction are shown in Figure 2. 
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Table 2. CoMFA model statistics for leishmanicidal activity (2PCs). 

Model parameters Model statistics, 2PC 

R2 ± SDEC 0.970 ± 0.095 

Q2 ± SDEP 0.825 ± 0.102 

P2 ± SDEP 0.732 ± 0.115 

F-ratio 618.811 (3.895) 

Regression equation y =  x + 4.102x10-5 

F = Fisher value (critical F-value for the 95 % probability level); SDEC = standard deviation error in 

calculation; SDEP = standard deviation error in prediction; x = actual pIC50; y = predicted pIC50. 

 
Figure 2. Scatter plot of predicted versus actual leishmanicidal activity (Data obtained from PLS model with 

2PC of non-cross validated (black), LOO internal cross-validation (blue), and test set external prediction (red). 

3.3. Analysis of CoMFA contour maps. 

The regression coefficient model for the ligands was translated into contour maps for 

electrostatic and steric effects on leishmanicidal activity (Figure 3). The contours depict 

attributes of hypothetical common receptor binding sites where changes of steric and 

electrostatic properties of the ligands most significantly the ligands' leishmanicidal activity and 

further provide insight into common receptor-binding areas. 

 
Figure 3. Contour maps showing the CoMFA model for leishmanicidal activity. Ligands shown are the (A) 

most (12) and (B) least (16) active in the series. Green and yellow regions indicate areas where steric 

interactions increase and decrease activity, respectively. Blue and red regions represent increased and decreased 

electrostatic effects with the positively charged probe, respectively. 
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The CoMFA model for leishmanicidal activity showed strong PLS correlation with R2 

= 0.97, Q2 = 0.82 and P2 = 0.73. This model (PC = 2) was selected as the optimum PLS 

component since there was no further significant increase in the Q2 for higher PCs. The model 

is characterized by its robustness, reliability, and reproducibility since all the correlation 

coefficients were higher than 0.50. More so, the model has a low possibility of chance 

correlation as a result of a high F-value, as well as SDEP >> P2. With only a 0.09 unit difference 

in Q2 and P2, the robustness of the CoMFA model was further confirmed by the closeness of 

internal (Q2) and external (P2) coefficients of determination. 

Three major factors were found to significantly influence the steric and electrostatic 

properties of the CoMFA model- the ligand biophore, the carbon chain length of the ligand (n), 

and the substitution at positions 3 and/or 4 of the phenyl ring(s). The biophore skeleton (Figure 

1A) depicts a hypothetical common receptor binding site where changes of steric and 

electrostatic properties of the ligands most significantly affect the ligands' leishmanicidal 

activity and further provide insight into common receptor-binding areas [17]. In this study, one 

of the two N-substituents was found to provide steric influence on the biophore, resulting in a 

significantly higher effect (62 %) than the 38 % electrostatic effect leishmanicidal activity of 

the N, N-substituted diamines. The CoMFA contour maps of 12 further provided insights into 

the influence of the steric effect on leishmanicidal activity. There were crowded green and 

contour within the vicinity of the phenyl moiety in 12 compared with 16 or 17, which has 

clouds of yellow contour within and around the same region. 

The influence of the length of the carbon chain (n) was prominent in 11-15 (Figure 4), 

which could be attributed to the flexibility of the sp3 carbon chain sandwiched between the 

diamine of the ligands. It was evident that smaller chain lengths result in pulling the diamines 

of the ligand away from the blue contour in the CoMFA model maps leading to decreased 

electrostatic influence and leishmanicidal activity. As the chain length increased, the diamines 

were pushed nearer to the blue map, though with no trace of red contour, until an optimum of 

n = 4 beyond which the leishmanicidal activity was found to decline. The leishmanicidal 

activity was found lowest on both sides of the optimum length of the carbon chain due to the 

"pull-push" effect of n on the diamines of the ligands  

 

Figure 4. Contour maps showing electrostatic effects on carbon chain length (n). 

Another major factor that influenced the leishmanicidal activity of the ligands was the 

substitution at the ¾ positions of the phenyl rings. Pairwise comparison of 1/6, 2/7, 3/8, 4/9, 

and 5/10 showed that 4-Ome substituted ligands increased the electrostatic effects as shown in 

Figure 5 (circled regions depicted higher densities of the electrostatic effect). A similar effect 
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was significant in ligands 1/11, 2/12, 3/13, 4/14, and 5/15, and 1/21, 2/22, 3/23, 4/24, and 5/25. 

However, 3-OH substituted ligands in 15-20 showed reduced activity earlier attributed to the 

fact that phenol group increases the ligands' polarity and, therefore, alters that scaffold's ability 

to cross biomembranes [15, 22, 23]. Except for the increased electrostatic effect due to 3-OMe 

and 4-OBn observed, this study, however, could not explicitly explain this trend when 15-20 

were compared with 21-25. 

 

Figure 5. Contour maps showing electrostatic effects on the substitution at the 3/4 positions of the phenyl rings. 

3.4. Application of the model in lead optimization of 12. 

A close examination of the contour maps around the lead compound (12) showed an 

interesting distribution of the electrostatic contouring (Figure 6). The red contour was 

prominent at both oxygens of the 4-OBn substituted ligand. This caused a negative electrostatic 

effect resulting in a lower leishmanicidal activity. Similarly, the second phenyl ring appeared 

to be surrounded by a yellow contour, suggesting a negative steric effect on the activity. Taken 

together, the replacement of one or both oxygen(s) of the 4-OBn with –CH2- could release the 

negative (red contour) electrostatic influence, thereby potentiating its activity. Alternatively, 

expunging one of the phenyl-4-OBn from the biophore could remove the negative effects of 

both the electrostatic and steric effects and subsequently result in a game-changer in 

leishmaniasis management. This design is currently under evaluation. 

 
Figure 6. Contour maps showing electrostatic (red circle) and steric (blue circle) effects on the lead compound 

(12). 
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4. Conclusions 

 The CoMFA model obtained in this study was robust, reliable with an insignificant 

chance correlation. This study identified an N, N-substituted diamine separated by 4 carbon 

chains as the optimum biophore for antileishmanial activity. The study also explained the SAR, 

regression for prediction of the activity of untested ligands, and a starting point for rational 

drug design of active analogs. 
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