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Abstract: Considerable amount of research is going on the role of plant species that exhibit anti-cancer 

properties. One such plant species is turmeric, which has been used in the human diet for centuries. The 

main active component/polyphenol in turmeric is curcumin. Recently, curcumin has been considered 

for cancer therapy. The initial challenge with curcumin is its large-scale production and purification of 

curcuminoids from turmeric. Most of the strategies are not fully effective due to the involvement of 

many organic solvents, time consumption, and inadequate separation between similar derivatives and 

crystal structures. Some of the methods to avoid using organic solvents are explained in this entry. The 

second challenge is that the isolated curcumin is unstable under various environmental and 

physiological conditions and degrades easily. Various strategies have been proposed and investigated 

to improve its aqueous solubility, stability, bioavailability, and potential therapeutic applications. 

Among them, nanoformulation is utilized to fill the gaps between clinical application and production. 

This review summarizes recent advances in curcumin's large-scale production and purification 

protocols, the necessity of nanoformulation, recent patents, and its anti-cancer mechanism. Emphasis is 

given on applying safe and green-tech methods of nanoformulation, including Mozafari and Heating 

methods. 

Keywords: anti-cancer; curcumin; encapsulation; large scale production; nanoformulation; green 

technology; clinical applications. 
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1. Introduction 

Curcuma Longa (Linn.), commonly termed turmeric, belongs to the Zingiberaceae 

family and is mostly used as a food ingredient because of its health-promoting properties [1]. 

It has been part of Indian culture since the Ayurvedic era and has been used for food, skincare, 

and medicinal applications. Raw turmeric contains three major components: (i) Curcumin, (ii) 
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dimethoxy curcumin (DMC), and (iii) bisdemethoxycurcumin (BDMC), in which 

approximately 2–5% is curcumin [2]. From various studies, researchers found out that the main 

active component/polyphenol of turmeric is curcumin [3]. The structure of curcumin was first 

discovered in 1910 by Milobdzka and co-workers [4]. The medicinal benefit of curcumin was 

recorded centuries ago, but the first documented usage as a drug was in 1937 in which it was 

applied for biliary disease [5]. 

Cancer has become a major cause of mortality worldwide, affecting approximately 10 

million lives in 2020 [6]. The most common type of cancer cases (according to WHO) reported 

in 2020 were: Breast cancer (2.26 million cases); Lung cancer (2.21 million cases); Colorectal 

cancer (1.93 million cases); Prostate cancer (1.41 million cases); Skin malignancy (1.20 million 

cases);  Stomach cancer (1.09 million cases). 

The most common approaches for targeted tumor therapy are suppressing tumor 

formation, metastasis, and progression by minimizing the side effects. A high quantity of 

research and literature on plant species exhibit anti-cancer properties, including curcumin [7]. 

Recently, curcumin has been targeted towards cancer therapy mainly for the treatment due to 

its high therapeutic potentials against various tumors [8]. According to the published reports, 

the mechanism behind the anti-cancer properties of curcumin is due to its triggering of tumor 

apoptosis, obstruction of proliferation, anti-angiogenesis, hindering of mitotic catastrophe, 

differentiation/autophagy, inhibition of chemokines, metastasis, and genomic modulation [9]. 

In this current review, we focus on different studies and approaches on the largescale 

production of curcumin, the need for nanoformulation to deliver curcumin and its derivatives 

in cancer treatment, emphasizing their formulation properties, experimental evidence, and 

general bioactivity and discussing the challenges and opportunities in developing these 

systems. 

2. Properties of Curcumin 

Curcumin has a crystalline structure with bright orange-yellow color. The IUPAC name 

for curcumin is [1,7-bis (4-hydroxy-3 methoxyphenyl) 1,6-hepta diene- 3,5-dione] [10]. Some 

of the main physicochemical attributes of curcumin pertained to its nanoformulation are 

described in the following sub-sections.  

2.1. Solubility. 

Curcumin is poorly soluble in water and other aqueous media at normal pH conditions. 

However, it is highly soluble in polar/nonpolar organic solvents and alkaline / extremely acidic 

solvents such as glacial acetic acid [11,12]. 

2.2. Stability of curcumin in acidic, alkaline, and biological media. 

The stability of curcumin is reported to be pH-dependent, observed through the change 

of color in various pH ranges. For example, the solution exhibits red color when the pH < 1, 

which is due to the protonated form of the compound. From pH 1–7, curcumin exhibits yellow 

color due to its neutral structure. When the pH is raised above 7.5, the solution will show 

orange-red color [13].  

The stability/degradation of curcumin in buffer solution has also been monitored. 

Curcumin exhibited a second-order kinetic reaction in phosphate buffer solution when pH 

varied from 1–11 (at 31 C). In another study, the stability of curcumin was monitored in 
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citrate, phosphate, and carbonate buffers, and first-order reaction kinetics was observed 

[14,15]. The preliminary degradation product of curcumin with time was ferulic acid (FA) and 

feruloyl methane, followed by vanillin, the primary degradation product [16]. From the human 

blood studies, the degradation rate of curcumin was reported to be much slower (< 20% in 1 

h). Researchers also found that the addition of glutathione (1mM), N-acetyl-L-cysteine (50 

µM), or ascorbic acid (25 µM) was able to protect curcumin from degradation [15][17][18]. 

2.3. Thermal and photochemical stability. 

Photostability of curcumin or any drug is a concern for the acceptable shelf life of the 

product. Tonnesen et al. [13] studied the photostability of curcumin in an isopropanol medium 

(λexc = 400–510nm) for 4h. The primary degradation product identified had a chemical 

component of C12H18O6 (from mass spectra). The research group concluded that this structure 

resulted from the cyclization process that irradiated light (within 15 min). The other side 

products were vanillin, vanillic acid (VA), ferulic aldehyde (FA), and 4-vinyl guaiacol. In 

another study, the stability was monitored in ethanolic and methanolic solutions for 120h under 

sunlight. The degradation products were vanillin, p-hydroxy benzaldehyde, ferulic aldehyde, 

p-hydroxybenzoic acid [14]. It is also reported that curcumin is more stable in dried form than 

in the solution state (under sunlight) [19]. In conclusion, the photodegradation mechanism was 

said to be first-order kinetics, and curcumin stability was in the following order: methanol > 

ethyl acetate > chloroform > acetonitrile (λexc = 400–750 nm) [20]. 

Curcumin is reported to be highly stable up to 70 C when exposed continuously for 10 

min. When the temperature is raised above 70 C, curcumin will start to decompose, which can 

be observed through UV-absorbance spectra [21]. Then curcumin is also boiled for approx. 10 

to 20 minutes will affect the curcumin content, and processing turmeric under pressure (~15 

psi) will result in the loss of curcumin content from the material [22]. 

3. Large Scale Extraction of Curcumin and Its Challenges 

As Explained earlier, the average amount of curcuminoids in the raw turmeric is ~ 3-

5%, of which 50–60% is curcumin [23]. The large-scale production and purification of 

curcuminoids is a challenge.  

The most-reported conventional method for curcumin extraction was the Soxhlet 

extraction protocol with a heating time range of 12h [24]. This method is unfavorable because 

it is time-consuming, uses many organic solvents, and risks thermal decomposition of active 

components (due to prolonged heating) [25]. The time consumption is because curcumin is 

protected in tightly packed cork cells, making the contact of solvents difficult. Therefore, the 

researchers moved to microwave-assisted extraction (MAE). MAE employs extraction of 

active components through localized heating followed by the disruption of the cell wall, which 

protects curcumin. This led to the faster extraction of active ingredients [26]. The heating 

mechanism in the MAE protocol depends mainly on the dielectric properties of the solvent and 

the matrix [27]. Mandal et al. [26] have proposed an efficient microwave-assisted extraction 

protocol to extract curcumin through a synergetic heating mechanism (Figure 1). 

For the extraction protocol, the raw powder was modified with methanol. Then the 

methanol absorbed powder was dissolved in the extracting solvent (acetone). MAE was 

conducted through varying times of irradiation and power (irradiation-cooling-irradiation 

sequence). Acetone was chosen as the solvent because of its high solubilizing capacity for 
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curcumin [28] due to its good heating up property under microwave irradiation. The research 

team concluded that the MAE protocol had better accuracy than conventional methods from 

the obtained results. Moreover, the extraction rates obtained were very high for MAE. 

 
Figure 1. A representative illustration of microwave-assisted extraction setup. 

Initially employed common isolation and separation methodologies were silica gel 

column chromatography, reverse-phase-HPLC (RP-HPLC), and high-speed countercurrent 

chromatography [29–31]. Silica gel column chromatography suffers from utilizing a large 

volume of solvents (e.g., chloroform) and inadequate separation between similar derivatives. 

The large-scale purification by RP-HPLC/high-speed countercurrent chromatography is 

restricted by low sample loading because of the poor aqueous solubility of curcuminoids. 

Hence, there was a need for efficient and scalable separation of curcuminoids.  

Supercritical fluid chromatography (SFC) has been proposed as an alternative and 

powerful tool for separating natural components [32]. Supercritical CO2 is the primary mobile 

phase in the setup. Compared to HPLC, supercritical CO2 has a low density and high flow rate 

with low back pressure, beneficial for efficient separation. Moreover, this can be considered a 

greener approach due to the minimal utilization of organic solvents compared to conventional 

methods [33]. Due to this, SFC is greatly preferred for both qualitative and quantitative 

separation of similar derivative (e.g., steroids, terpenoids, and isoflavones) [34–36]. Even 

though SFC is utilized to separate curcuminoids, the three derivatives (curcumin, 

bisdemethoxy-curcumin, and demethoxy-curcumin) couldn't be separated and thus affected the 

large-scale separation [36]. Song et al. [37] proposed using an ultra-high-performance SFC 

instrument to separate curcuminoids to solve this hurdle. They separated curcumin, DMC, and 

BDMC using methanolic extract of turmeric. This methodology involved the elution with 

supercritical CO2 fluid with 8–15% methanol (modifier) and 10 mM oxalic acid (additive). The 

three components were separated with a high sample loading capacity. They were able to 

isolate highly pure curcumin (20.8 mg), DMC (7 mg), and BDMC (4.6 mg) after 5.5 h of 

separation. The extracted fraction contained curcumin (brownish yellow), DMC (light yellow), 

and BDMC (yellowish-green), which were detected and isolated automatically using UV (λabs 

= 410 nm). The residual supercritical CO2 with the sample evaporated quickly, and the 

remaining methanol was removed using a rotary evaporator. The calculated recoveries of the 

three derivatives were 70% (curcumin), 71.4% (DMC), and 88.5% (BDMC), with the purities 

of 97.9%, 91.1%, and 94.8% respectively (Figure 2). This method resulted in low consumption 

of solvents and a larger sample loading capacity [37]. 
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Figure 2. Ultra performance convergence chromatography (UPC2) chromatograms of turmeric, curcumin, 

demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) purified by preparative SFC (UV 410 nm). 

Adapted with permission from Ref. [37]. 

The reports on the isolation of curcuminoids through an aqueous two-phase system 

(ATPS) were rare. The ATPS protocol has several advantages, such as being non-toxic and 

integrated with different protocols to design ultrasonic-assisted ATPS (UA-ATPS) and 

microwave-assisted ATPS [38,39]. Applying ultrasonic-assisted extraction (UAE) to natural 

compounds has been widely reported [40,41]. UAE, combined with ATPS, proposed to have 

advantages such as greener and low solvent consumption protocol. Xu et al. [42] used UA-

ATPS combined methodology using ethanol and (NH4)2SO4 to isolate curcumin on a large 

scale (Figure 3). In a typical procedure (NH4)2SO4 and ethanol were mixed with water to form 

a two-phase system. The top phase of the solution was mainly composed of ethanol, and the 

bottom phase was high in salt. The turmeric powder was added to the mixture and 

ultrasonicated. The ultrasonication helped separate proteins and polysaccharides to the bottom 

phase, while curcumin isolated to the upper phase. The scale-up strategy was also employed. 

The yield of scale-up was maintained between 45.77 mg/g to 47.01mg/g with a purity between 

43.98–47.01%. After purification through HPLC, the purity increased up to 85.58%. The yield 

was compared with the conventional methodologies employing constant time. The 

conventional extraction yield of UAE was around 42.74 mg/g, which is much lower than UA-

ATPE. Moreover, the solvent consumption was much lower for UA-ATPE. The extraction 

using stirring methodology was the lowest (35.07 mg/g) with a more extensive extraction time 

(12h). 

A solid-liquid extraction assisted by high-intensity ultrasound (HIUS) has been 

proposed to improve the existing extraction efficiency. This methodology has been 

hypothesized to isolate bioactive compounds from plant matrices, which have a quick 

processing time and good extraction yield compared to the previous methods [43]. This 

methodology involves cavitation phenomenon using high shear stress with an extreme level of 

localized turbulence [36,44]. This protocol dramatically affects the microstructure by reducing 

the size of the particle and facilitates good mass transfer. It also helps rupture cell walls similar 

to the MAE methods discussed above [41]. Generation of less residue and the low processing 
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time are other advantages [40]. Moreover, the HIUS technique is considered the most preferred 

technique for the scale-up application [45].  

 
Figure 3. The flow diagram of the large-scale production protocol of curcumin using an ultrasonic-assisted two-

phase system (UA-ATPS). 

Neves et al. [46] proposed solid-liquid extraction assisted by HIUS integrated to extract 

curcumin from turmeric through a nonthermal and clean emerging approach (Figure 4). In the 

typical process, the raw turmeric powder was initially subjected to supercritical fluid extraction 

(SFE), in which two products are obtained: volatile oil extract and unflavored turmeric. The 

unflavored turmeric was then subjected to solid-liquid extraction-assisted HIUS methodology. 

They observed curcumin recovery of 40 mg/g at a solvent to feed ratio of 7, comparable to the 

UA-ATPE method. The most significant advantage of this method is its short processing time 

of 5 min. 

 
Figure 4. Turmeric's biorefinery from solid-liquid extraction assisted by HIUS clean emerging technologies (see 

text for details). 
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Another vital factor to consider for food and pharmaceutical applications is the particle 

size distribution, crystallinity, purity, and stability [47]. Among them, control over the structure 

of a crystal is essential concerning the shelf life and the performance. For example, the variation 

in the ratio of polymorphs in the formulation will affect the active agents' solubility, 

bioavailability, and bioequivalence [48]. Also, these variations can affect the ability to grind 

and hence can influence tablet formation [49]. Even though there are three structures of 

curcumin (monoclinic form I, orthorhombic form II and III), a monoclinic form I is reported to 

be a more stable structure [50]. Due to the weaker hydrogen bonding, the orthorhombic crystals 

have a higher solubility and faster dissociation rates in aqueous solutions than form I [51]. Even 

though orthorhombic crystals are preferred due to their excellent bioavailability and 

dissociation, the form I is prevailing in the market due to the requirement of complex 

procedures. 

Dense gas protocol (DG) using CO2 to tune the crystallinity and polymorphism of the 

crystals has been reported [52–54]. The DG protocol allows tuning the crystal structures 

through a precipitation and purification process in a single step [55].   

Kurniawasyah et al. [56] proposed a commercial way to precipitate curcumin through 

the gas antisolvent (GAS) method and atomized rapid injection solvent process (ARISE) 

(Figure 5). They observed a higher recovery process for ARISE (60%) than GAS (36%). From 

Table 1, we could see that under the optimal condition, the isolation of curcumin using ethanol 

was unsuccessful for GAS, while ARISE setup was successful. This is due to the immediate 

contact of feed solution and DG antisolvent in ARISE compared to the GAS setup (where the 

injection of antisolvent is a gradual process).  

 
Figure 5. Representative illustration of (A) GAS and (B) ARISE experimental setup. 

These results are favorable for scale-up applications in the industries. Another 

advantage of ARISE is the requirement of lower operating pressure. The unprocessed curcumin 

was in irregular shape, and after the process, the products were in uniform morphology without 
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any organic solvents. The ability to control the crystal structure enables control over the 

therapeutic application. 

Table 1. The extraction of different forms of curcumin crystal structures by changing the parameters of DG 

antisolvent precipitation protocol. Conc = concentration of feed solution; P-CO2 = final pressure (GAS) or 

pressure before solution injection (ARISE). 

Type of Process Conc.  

(mg/mL) 

P-CO2 

(MPa) 

Temp. 

(K) 

Crystal form 

Unprocessed – – – I 

GASE 1 10 313 I 

GASE 2 10 313 I, III 

GASA 10 10 313 I 

GASAE 10 10 313 I 

GASAE 10 10 298 I 

ARISEE 1 9.5 313 I 

ARISEE 2 9.5 313 I, III 

ARISEE 2 9.5 298 I 

ARISEM 1 9.5 313 I 

ARISEA 10 9.5 313 I, (II)*, III 

ARISEAE 10 9.5 313 I, (II)*, III 

ARISEAE 10 9.5 298 I 

Notes: E: ethanol; A: acetone; AE: acetone-ethanol 1–1 (v/v); M: methanol. 

4. Challenges Involved in The Therapeutic Applications 

Curcumin has found many therapeutic applications against various diseases. It has been 

reported that the curcumin molecule is unstable under various environmental and physiological 

conditions and degrades easily [57,58]. Kunati et al. [59] performed clinical trials using 

curcumin at an 8 g/day concentration. They found out that the material is rapidly converted to 

metabolites and observed only small curcumin content in plasma (< 2.5 ng/mL). Curcumin has 

a poor water solubility in acidic/neutral pH (3 × 10−8 μM), and > 90% of curcumin will degrade 

under 30 min in PBS at pH 7.2 [60]. The low aqueous solubility, stability issues, and low 

bioavailability restrict its medical and non-medical applications. Consequently, various studies 

have been reported to improve/enhance these parameters. To enhance its solubility, stability 

(physical and biological), bioavailability, and clinical translation, multiple methodologies have 

been proposed. Some of the significant modifications include its formulation with 

nanoparticles, liposomes, solid dispersions, micro/nanoemulsions, and complexation with 

phospholipids and cyclodextrins [61–63]. 

Nanoparticles and other nanosystems exhibit advantages over conventional carriers/ 

matrices due to their small size and large surface area. Nanoformulation strategies can be 

applied to obtain slow and sustained release, which helps attain desired drug delivery. Through 

nanoformulation, it is possible to increase the circulation time, enhance bioavailability and 

achieve targeted delivery of bioactive compounds. Therefore, nanoformulation will be an 

excellent choice for biopharmaceutical classification system (BCS) class IV drugs such as 

curcumin [64]. There are various studies on the nanoformulation of curcumin for various 

diseases, such as tumor therapy [65–67], neurodegenerative diseases [68,69], wound healing 

[70], diabetes [71], and inflammatory diseases [72]. Adahoun et al. [73] prepared curcumin 

nanoparticles with a size range of 34–359.4 nm to improve the absorption, cellular uptake, 

bioavailability, and efficiency. Bai et al. [74] prepared pectin-curcumin (PEC-CCM) 

conjugates and created nanosized micelles in an aqueous medium. The conjugate exhibited 

acceptable antioxidant activity and stability. There are various reports on the nanoformulation 
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of curcumin for cancer application [57,75,76]. Table 2 shows the recent patents filed between 

2017 to 2021 on the nanoformulation of curcumin for various applications. 

Table 2. Recent patents involved in the nanoformulation of curcumin (2017–2021). 

Item Title of Patent / Inventor(s) Significant findings Ref. 

1 Curcumin-sophorolipid complex. 
Singh, Prabhune, Ogale 

• Improved aqueous solubility. 

• Therapeutic application in breast cancer. 

[77] 

2 Pharmaceutical compositions for the delivery of 

substantially water-insoluble drugs. 
Singh, Sandhu 

• Water solubilized PVP-curcumin 

nanoparticles are fabricated. 

[78] 

3 Preparation method of curcumin-carrying 
nanoemulsion. 

Xu et al. 

• Safe and low-cost preparation method. [79] 

4 Liposomal curcumin for treatment of diseases. 

KurzrockLan et al. 
• A practical method of treating skin, 

pancreatic, or breast cancer using PEGylated 

curcuminoids. 

[80] 

5 Formulation of curcumin with enhanced 

bioavailability of curcumin and method of 

preparation and treatment thereof. 

Antony 

• Increase in bioavailability by the addition of 
5% turmeric oil. 

• Increase in water dispersion through gelatin 

capsule encapsulation. 

[81] 

6 Esterase response type curcumin-polymerized 

thiodipropionic acid copolymer prodrug nano-

micelle and preparation method and application 

thereof. 
Chang, Dong, Yuxin 

• Esterase-responsive curcumin-thiodipropionic 
copolymer prodrug nanomicelle for treating 

colorectal cancer, pancreatic cancer, ovarian 

cancer, or multiple myeloma. 

[82] 

7 Curcumin solubilisate. 
Behnam 

• The average diameter of aqueous soluble 

micelles loaded with curcumin is 5 nm to 40 
nm. 

[83] 

8 Lipid nanoparticle complex containing curcumin 

comprising ginsenosides. 

Yoo et al. 

• The pharmaceutical composition exhibits 

anti-cancer activity against colon cancer, lung 
cancer, breast cancer, or melanoma. 

[84] 

9 Curcumin hyaluronic acid nano-micelle for 
treating rheumatoid arthritis as well as 

preparation method and application thereof. 

Bin 

• Low in cost; the medicine has good 

biocompatibility and no toxic or side effect in 
vivo.  

[85] 

10 A kind of soluble soybean polysaccharide-

soybean protein-curcumin complex and 

preparation and application. 
Feiping, Chen 

• Improved curcumin stability in aqueous and 

slow-release effect, has a good application 

prospect in the exploitation of functional food 
and medicine. 

[86] 

11 Curcumin composite particles and its preparation 
method and application. 

Fangyi 

• Significantly improved water solubility, 

bioavailability and the stability of curcumin. 

[87] 

12 A kind of curcumin colon specific drug 

preparation and preparation method thereof. 

Cao et al. 

• Colon specific delivery of curcumin. 

• Aqueous soluble. 

[88] 

5. Nanoformulation of Curcumin Towards Cancer Therapeutic Application 

5.1. Breast cancer (BC). 

According to WHO, in 2020, 2.3 million women were reported with breast cancer, and 

685,000 deaths were reported globally, making it the world's most widespread cancer [89]. The 

classification of BC is based on immunohistochemistry, tumor grade, lymph nodes' states, and 

the markers of expressions which include progesterone (PR), estrogen (ER), and human 

epidermal growth factor 2 (HER 2) receptors [90]. The choice of therapeutic approach depends 

upon the target/expression. 

Encapsulating curcumin in polylactic glycolic acid (PLGA) nanoparticles has been one 

of the potential approaches to combat BC. The PLGA-curcumin complex improved chemical 

stability in the cellular environment and expressed a more significant antiproliferative effect 

against estrogen-dependent MCF 7 BC cells [91]. Among various nanoformulations, Solid 

lipid nanoparticles (SLN) are vastly applied in drug delivery applications. SLNs are reported 
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to have a smaller particle size, good biocompatibility, high stability, and surface tunability 

[92,93]. The other characteristics are a desirable release profile, increased blood circulation 

time, and improved therapeutic efficiency of anti-cancer drugs [94,95]. Wang et al. [96] 

fabricated SLN to encapsulate curcumin and applied it on the SKBR3 cell line. The cell 

proliferation result observed dose-dependent toxicity for curcumin and SLN-curcumin, in 

which SLN-curcumin had the lowest IC50 value (18.78 µM). The higher cellular uptake of 

curcumin-SLN explains this observation. They also observed an increase in ROS generation 

and a decrease in Bcl-2/Bax expression in SKBR3 cells after SLN-cur administration. From 

cell cycle analysis, they observed a lower level of cyclin D and CDK4 expressions after 

administration of SLN curcumin, leading to apoptosis. Another proposed methodology uses 

human serum albumin (HSA) as a nanocarrier for drugs [97]. The molecular structure of 

curcumin is similar to the fatty acid so that the albumin can interact easily with curcumin [98]. 

Also, after the release of the drug, albumin can be utilized by the body. Matloubi et al. [58] 

conjugated curcumin with HSA and evaluated its effects on MCF 7 and SKBR3 cell lines. 

From cell viability studies, they observed that the toxicity of HSA-curcumin on normal cell 

lines was less than curcumin alone. However, the anti-cancer effect was much higher than 

curcumin. 

Sampath et al. [99] fabricated curcumin-loaded PLGA NPs with various capping 

groups such as chitosan, dextran, polyethyleneglycol, and emulsifier Tocopherol Poly 

(ethylene glycol) (TPGS) and evaluated it on MCF 7 breast cancer cell line. The PLGA NPs 

encapsulated with curcumin and the different capping agents exhibited high MCF 7 cell growth 

arrest from in vitro anti-cancer analysis. When the nanoformulation particles were conjugated 

with TPGS, they observed a higher cellular uptake. This is due to the enhancement of cell 

adhesion and hydrodynamic properties by Vitamin E TPGS. 

One type of BC called triple-negative breast cancer (TNBC) lacks some receptors, 

making them chemo-resistive to some drugs and bypassing some of the tumoricidal 

mechanisms [100]. Therefore, a better therapeutic agent was required. H-ferritin (HFn) based 

biomimetic nanoparticle has been proposed as a nanocarrier [101]. HFn is a globular protein 

that can unfold into individual subunits under acidic conditions (pH < 3) or alkaline conditions 

(pH = 11–12) and can retain its original structure when pH is neutral [102]. Furthermore, the 

higher affinity of HFn towards transferrin receptor 1 (TfR1) can be utilized for higher cellular 

uptake, which is also over-expressed in tumors [103,104]. Pandaffi et al. [105] encapsulated 

curcumin in Hfn nanoparticles and assessed the biological activity in the TNBC cell line. The 

encapsulation enhanced the solubility, chemical stability, and bioavailability of the curcumin. 

From the binding experiments, Hfn nanocages were internalized more quickly in TNBC cell 

lines and confirmed that the TfR1 receptor influenced the process. Also, the curcumin 

encapsulated Hfn nanoparticles at lower concentrations were more effective compared to the 

drug alone. 

Greish et al. [106] encapsulated curcumin metal complexes in polystyrene-co-maleic 

acid (SMA) micelles to solve the issues of stability and targeted delivery. Two curcumin 

complexes were synthesized (Cu2+ -curcumin and Fe3+-curcumin) and were evaluated on MCF 

7, MDA MB 231, and 4T1 cell lines. They observed a higher cytotoxicity effect for Cu2+-

curcumin complex even in the sub-micromolar range than bare curcumin, which has a higher 

IC50 value (25.6 µM) on the MDA MB 231 cell line [107]. This cytotoxicity involves the 

binding with beta-diketo function [108]. To increase the bioavailability, the Cu2+-curcumin 

complex was encapsulated in SMA NPs. SMA is biodegradable, easily binds to plasma 
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albumin, and has a higher enhanced permeation and retention (EPR) effect [109]. After 

encapsulation, they observed a decreased cytotoxic effect on the MDA-MB-231 cell line. The 

biodistribution profile on the 4T1 tumor murine model of TNBC revealed comparable results 

for Cu2+-curcumin and SMA Cu2+-curcumin. The SMA Cu2+-curcumin reduced the tumor 

growth by 61% at 10 mg/kg in 10 days compared to Cu2+-curcumin, which required 20 mg/kg. 

This was explained by the high biological stability and EPR effect of NP formulation. 

Wang et al. [110] fabricated curcumin encapsulated in methoxy poly(ethylene glycol) 

polycaprolactone (MPEG-PCL) and evaluated it on MDA MB 231 (triple-negative) cell lines. 

The cell viability of Curcumin-MPEF-PCL was lowered compared to the free curcumin. The 

higher cytotoxicity was explained using mitochondrial morphology. When the 

nanoformulation curcumin was administered, they observed fragmentation of mitochondrial 

morphology, as depicted in Figure 6. This process was followed by the cell nucleus's total 

collapse and apoptosis of the breast cancer line. In vivo analysis revealed inhibition in tumor 

growth for curcumin nanoparticle formulation compared to the bare curcumin. Western blot 

analysis showed that cleaved caspase-3 increased significantly for nanoformulation curcumin 

compared to the free curcumin, indicating apoptosis induction [110]. 

 
Figure 6. Confocal imaging of breast cancer cells mitochondria morphologies after N-CUR (10 μM) 

administration. a. Control; N-CUR treatment for b. 1h; c. 4h; d. 24h. e–h. Enlarged images corresponding to the 

color box area from a to d. Adapted with permission from Ref. [110]. 

Tumor-targeted therapeutic application using magnetic nanoparticles is a promising 

method with more drug accumulation that can be achieved at the desired target. Moreover, the 

magnetic field can be used as a physical trigger for the release of drugs [111]. Song et al. [111] 

prepared magnetic Fe3O4 NPs alginate/chitosan composites to deliver curcumin on MDA-MB 

231 and HDF normal cell lines. There was a higher cellular uptake for nano formulated 

curcumin with dose-dependent uptake. The higher concentration of chitosan coating also 

improved the cellular uptake due to the protonation of the amino group. 

On the other hand, normal HDF cells' uptake was comparable for both the curcumin 

and nano formulated curcumin. In conclusion, cancer cells have a higher metabolism than 

normal cells and overexpress some receptors [112]. Also, the nano formulated curcumin 

exhibited higher toxicity on a cancer cell line which can be due to the higher cellular uptake 

and controlled release of curcumin. 
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Some cancer cells, especially triple-negative breast cancer, overexpress Programmed 

Death-ligand 1 (PDL1) protein, which helps it to camouflage from immune cells [113]. This 

overexpression of PDL1 has been utilized for tumor imaging and targeted therapeutic 

application [114]. The PDL1 can be easily targeted by various antibodies/peptides [115]. Hasan 

poor et al. [116] prepared HSA/curcumin NPs, conjugated them with PDL1 binding peptides, 

and evaluated them on breast cancer cell lines (MDA MB 231, MCF 7, SKBR 3). RT-PCR 

analysis confirmed that the PDL1 was overexpressed in MDA MB 231 cells (triple-negative) 

compared to other normal breast cancer cell lines. As expected, nano-formulated curcumin's 

cellular uptake was higher than the curcumin alone (not encapsulated). Moreover, the cellular 

uptake of peptide conjugated HSA/cur was high for MDA MB 231 cells compared to HSA/Cur. 

The cytotoxicity assay observed higher toxicity for HSA/Cur NPs and peptide-HSA/Cur NPs 

than free curcumin. As discussed above, this is due to the EPR effect of nanoformulation. Also, 

the PDL1 conjugated NPs expressed higher cytotoxicity on MDA MB 231. Nevertheless, there 

was no substantial difference between HSA/Cur NPs and peptide HSA/Cur NPs cytotoxicity 

on other cell lines due to the low expression of PDL1. 

Even though PLGA has been widely applied, the blood circulation time is low. It is 

easily identified by plasmatic opsonin (an extracellular protein that tags/labels to get 

phagocytosed) and cleared. As an alternative, researchers started to coat the polymeric NPs 

with PEG, making the particles invisible to the mononuclear phagocytic system (MPS) [119–

121]. Prabhuraj et al. [117] fabricated PEGylated PLGA NPs loaded with curcumin and studied 

the different conjugating ligands (Folic acid, hyaluronic acid, transferrin) and evaluated on 

triple-negative MDA MB 231 and normal fibroblast (L929) cell lines. When the curcumin was 

dissolved in PBS buffer, there was no cytotoxicity observed due to the insolubility. But 

cytotoxicity was observed when the curcumin was dissolved in DMSO. This explains the 

importance of the solubility of curcumin in therapeutic application. The PEGylated PLGA-

curcumin showed higher toxicity compared to PLGA-curcumin due to the increase in solubility 

by PEG [118]. The order of toxicity towards cancer cells when conjugated with different 

moieties were as follows HA-PEG-PLGA-Cur (HA targets CD44) > Tf-PEG-PLGA-Cur (Tf 

targets TfR1) > FA-PEG-PLGA-Cur (FA targets FOLR1). 

Gosh et al. [66] fabricated curcumin-loaded HA modified mesoporous silica 

nanostructures (MSN) and evaluated them on MDA MB 231 and MCF 7 cell lines. From the 

above discussion, we could understand that HA modifications on NPs improve its targeting 

ability on breast cancer cell lines. They observed a higher cellular uptake for HA-MSN 

compared to MSN NPs. Also, the uptake on MDA MB 231 was more than MCF 7, which is 

attributed to the CD44 targeting property of HA. HA also promoted the cancer cell death for 

nano formulated curcumin. The cell cycle analysis by administration of 12µg/ml of MSN-HA-

C leads to a cell cycle arrest at the G2/M phase. One of the challenges of triple-negative breast 

cancer MDA MB 231 cells is its metastasize capability [119,120]. A wound-healing assay was 

performed to understand the inhibitory effect of HA-MSN-C on the metastasis nature of the 

cells. The results observed significant repression of MDA MB 231 cell migration at a dose of 

2.5 µg/mL. This repression was high in incase of MDA MB 231 compared to MCF 7 due to 

the targeting effect of HA. They observed a decreased tumor volume and mass from in vivo 

antitumor activity with MSN-HA-C administration. 
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5.2. Lung cancer. 

Lung cancer (both small and non-small cell types) is the second most common cancer 

affected in men and women (not counting skin cancer). Among lung cancers, the non-small 

cell lung cancer type (NSCLC) is responsible for 85% of cases [121]. Only 5% of curcumin 

reaches the colon area when administered orally. 

It has been reported that reactive oxygen species (ROS) are high in certain tumors like 

lung cancer [122]. Researchers focused on designing ROS responsive systems such as acryl 

boronic ester, ferrocenyl, selenium, and thioether groups for targeted therapeutic applications 

[123]. Luo et al. [124] fabricated ROS responsive 1,4-(hydroxymethyl) phenylboronic acid 

(HPBA) modified PEG-PAA nanoparticle (PPHC) loaded with curcumin and evaluated on 

ROS elevated lung cancer cell line (A549). They used N-acetyl-l-cysteine (NAC) (an 

antioxidant) on the A549 cell line during the study. They found that PPHC was highly viable 

even at a higher concentration of 20 µg/mL, and the material showed dose-dependent toxicity 

when NAC was not added. This result concluded the ROS-dependent release of curcumin by 

PPHC nanoparticle formulation. They also concluded that the curcumin-induced A549 cells 

death through ROS signaling pathway. 

Zhu et al. [125] synthesized curcumin-loaded methoxy polyethylene glycol-polylactide 

(mPEG-PLA) core-shell structures and evaluated them on A549 cells. mPEG-PLA consists of 

hydrophilic mPEG and hydrophobic PLA. The main advantage of mPEG is its camouflaging 

ability to bypass non-specific uptake by the reticuloendothelial systems (RES), which prolongs 

the material circulation time [126]. The cur-mPEG-PLA had higher cytotoxicity than curcumin 

alone, which is attributed to the enhanced cellular uptake confirmed through Flow cytometry 

(FCM) analysis. The cell kinetic analysis on A549 cells observed a retarding of G2/M transition 

point, which was comparable with curcumin. The inhibition on proliferation and clone 

formation ability of A549 cells treated with curcumin and cur/mPEG/PLA was studied. They 

observed a high inhibition with nano formulated curcumin than bare curcumin. They also found 

that the nano formulated curcumin had a higher inhibition of lung cancer metastasis than 

curcumin alone. 

Pulmonary targeted drug delivery is a non-invasive administration through 

inhalation/spraying [127,128]. Dry powder inhalers (DPIs) have been used to target drugs in 

the deep areas of the lungs [129]. DPI is reported to have higher stability compared to aerosols 

and nebulizers [130]. Zhang and colleagues [131] prepared liposomes loaded with curcumin 

dry powder inhalers (LCDs) and evaluated lung cancer. The liposome formulated curcumin 

enhanced the anti-cancer activity through the permeability of curcumin and cellular uptake. Rat 

lung cancer models were used to test the anti-cancer efficacy of the material. Compared to 

healthy tissue, tumor tissues had various tumor nodes and bleeding. After administration of 

curcumin (CP), Liposome curcumin (LCD) and gemcitabine (reference anti-cancer drug) 

showed decreased bleeding. LCD and gemcitabine-treated tissue had similar structures as 

healthy tissue. For CPs, LCDs, and gemcitabine, cell proliferation was also inhibited 

significantly, mainly due to the apoptosis in which the antiproliferation effect of LCDs was the 

highest. Similar results were observed with VEGF expression. 

Liposomes formulated in the mentioned study were prepared by the thin-film hydration 

method using tetrahydrofuran [131], while other groups used chloroform and/or methanol in 

this method of liposome preparation. It should be noted that all these organic solvents are 

potentially toxic, and trace amounts of these molecules remaining in the formulations can lead 
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to serious health hazards. There are safe and scalable methods for liposome preparation for 

pharmaceutical applications, which do not require the employment of any potentially toxic 

solvent or reagent. These include heating method [132,133] and Mozafari method [134,135]. 

In the heating method, liposomes and nanoliposomes (in addition to some other encapsulation 

systems) can be prepared using a single vessel in the absence of potentially toxic solvents, as 

explained in Figure 7. All the steps of preparation of phospholipid vesicles should be carried 

out under an inert gas atmosphere (such as argon or nitrogen) to avoid oxidation of the 

ingredient molecules. Solvents and co-solvents used are selected from non-toxic solvents such 

as de-ionized water, physiological buffers or saline solution, and one or more polyol (e.g., 

glycerol) [136]. Loading the drug or bioactive molecules such as curcumin to liposomes or 

nanoliposomes using the Mozafari method can be accomplished through the following three 

steps: Adding capsule ingredients to a preheated (60 °C) mixture of drugs and a polyol such as 

glycerol, propylene glycol, or sorbitol (final concentration 3%, v/v) in a heat resistant vessel;  

Heating the mixture at 60 °C while stirring (e.g., 1000 rpm) for a period of 45–60 min under 

an inert atmosphere (e.g., argon or nitrogen gas); Following preparation of the capsules, the 

formulation must be kept at temperatures above the phase transition temperature of the 

phospholipid ingredients (Tc) under an inert atmosphere for 1 hour to allow the vesicles to 

anneal and stabilize (Figure 7) [134–136].  

 
Figure 7. Comparison of "Heating method" and "Mozafari method" with respect to their process steps. 

5.3. Colorectal cancer. 

Colorectal cancer is ranked third after breast and lung cancer is mainly reported in men. 

There were over 1.8 million new cases in 2018. Rao et al. [137] proposed a nanogel based 

approach for the treatment of colon cancer. They fabricated nanogel consisting of gelatin and 

acrylamide glycolic acid monomer through emulsion polymerization protocol. The material 
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exhibited a higher release profile for curcumin at pH 7.4 compared to pH 1.2. Lizbeth et al. 

[138] loaded curcumin in poly diethylamino ethyl methacrylate (PDEAEM) -core-PEG-shell 

nanogels for the intravenous injection of colon cancer. The positive surface charge of the gel 

enhanced the cellular uptake and the anti-cancer effect of the material. Graphene and its 

derivatives have been proposed as a nanocarrier due to its good cellular interactions and 

minimal cell damage [139,140]. Lina et al. [141] fabricated curcumin-loaded AuNPs-reduced 

graphene oxide studied the cellular membrane interaction and anti-cancer effect on colon 

cancer (HT29 & SW948) cell lines. TEM was used to analyze the interaction of as-synthesized 

material on colon cancer cells. The material was endocytosed into the cell without any 

aggregation. The type of cell death was also studied using TEM micrographs. The study clearly 

shows the structural changes of the nucleus accompanied by chromatin condensation and 

cellular uptake of the material in both cell lines. The apoptotic stage is visible with blebbing of 

the membrane in both cell types. 

Folic acid receptors are extensively expressed in various tumors such as the colon, 

brain, lungs, and breast, whereas they are expressed in normal tissues too much less extends 

[142]. Hu et al. [143] loaded curcumin in folic acid conjugated mPEG/PCL micelles and 

evaluated its effect on colon cancer (in vivo and in vitro). They observed higher toxicity and a 

lower IC50 value of 1.373 µg/mL, which was the lowest compared to the free curcumin and 

non-folic acid conjugated nanoparticles. Systemic toxicity was evaluated in the vital organs 

such as the heart, liver, spleen, lungs, and kidney of the mouse through the Hematoxylin-eosin 

(HE) staining method, and no morphological abnormalities were found. The formulation 

exhibited an acceptable safety profile. Different strategies for the preparation of 

nanoformulations of curcumin are listed in Table 3. 

Table 3. Various potential nanoformulations of curcumin. 

Item Composition References 

1 Curcumin- human serum albumin (HSA) nanoparticles [58] 

2 Polylactic glycolic acid (PLGA) nanoparticles [91] 

3 Solid lipid nanoparticle formulations of curcumin [93 - 96] 

4 Albumin nanoparticles [98] 

5 Polymeric nanoparticles-Polyethylene glycol (PEG) [99] 

6 H-ferritin (HFn) based biomimetic nanoparticle [101] 

7 Curcumin complexed with copper nanoparticles [106] 

8 Curcumin encapsulated in methoxy poly(ethylene glycol) polycaprolactone (MPEG-PCL) [110] 

9 Liposomes / Nanoliposomes [131, 136] 

10 Graphene-based nanoformulations [141] 

11 Micelles [143] 

6. Conclusions and Future Perspectives 

Researchers have found out from a myriad of studies that the main active 

component/polyphenol of turmeric is curcumin. However, the large-scale production and 

purification of curcuminoids for industrial applications is still a challenge.  

Some of the notable results from large scale protocols are as follows: MAE procedure 

provides better precision than conventional methods; SFC method results in low consumption 

of solvents and a larger sample loading capacity; UAE combined with ATPS possesses 

advantages such as being non-toxic and less solvent requirement; HIUS is a fast process and 

produces fewer residues compared to many other methods;  The DG protocol allows tuning 

the crystal characteristics in the single-step precipitation and purification process. 

Various strategies have been proposed and investigated to improve solubility, enhance 

stability, increase bioavailability, and expand the range of potential applications of herbal 
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extracts. Some of the main strategies involve the formulation of the extract in the form of 

nanoparticles, liposomes, nanoliposomes, solid dispersions, microemulsions, and 

complexation with phospholipids and cyclodextrins. Most of the patents between 2017–2021 

focused on improving aqueous solubility, low-cost preparation methods, improving 

bioavailability, and targeted therapeutic applications. The most evaluated anti-cancer cell lines 

were breast, lung, and colon. Among breast cancer cell lines, the triple-negative cell lines were 

more applied due to their chemo-resistive nature. Studies indicated that nanoformulation has 

the potential to improve the cellular uptake, IC50 value, biological stability, and therapeutic 

efficacy of curcumin. 

The major reasons for the enhancement of therapeutic efficacy of nanoformulations are 

as follows: An increase in ROS generation and decrease in certain cell expression; Attachment 

of targeting ligands such as HFn, Folic acid, etc., improves the therapeutic efficacy of 

curcumin; Some surface modifications such as PEG and its derivatives help the nanoparticle 

camouflage from macrophages and improve the blood circulation time. Due to these, PEG has 

been widely used for nanoformulation of active ingredients, including curcumin; The viability 

of the tumor tissue and its metastasis ability was inhibited more by nanoformulation; Tumors 

such as lung cancer exhibit higher ROS levels, and targeting curcumin nanoformulations to 

this ROS signal is considered an efficient strategy to combat cancer. 

Even though various large-scale approaches are reported for the extraction and 

purification of curcumin, a complete large-scale synthesis with a green-tech approach has not 

been fully established. The authors recommend thorough research in the design of a green 

synthesis protocol for large-scale curcumin extraction. Since the nanoformulation of curcumin 

can affect its chemical nature due to the type of the capping agent, the effect of pH, the nature 

of formulation protocol, a detailed optimization of parameters, and the structural study of the 

encapsulated curcumin is required. Most of the literature on curcumin and its nanoformulations 

report them as being biocompatible based on limited observation and histological studies. The 

authors also recommend more comprehensive and reproducible investigations on this topic 

using different cytotoxicity assays. 
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