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Abstract: Because of their scientific relevance in the field of energy conversion, dye-sensitized solar 

cells (DSSCs) have become a focus of major studies in the last two decades. At present, DSSC is 

generally either sensitized with inorganic dyes, metal-free organic dyes, or natural dyes. These dyes 

have emerged as potential alternatives to costly and scarce Ru-based dyes because of being economical, 

simple attainability, ease of preparation, and environmental friendliness. The majority of alternatives to 

Ru-based dyes have so far proved to be inferior to Ru-based dyes due to their fragility, narrow 

absorption bands, and unfavorable dye aggregation. The present review focuses on recent research 

about sensitizers comprising inorganic dyes, metal-free organic dyes, and natural dyes for DSSCs. 

Following the introduction, Section 2 describes the DSSC operation, including the essential operational 

principles and basic components of a DSSC. Section 3 introduces various photosensitizers used in 

DSSC, and Section 4 states the conclusion and outlook on the field of DSSC research. It also describes 

and summarizes related sensitizers and their efficiency. 
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1. Introduction 

Energy exists in many forms, and it must be transformed from the origin to get its 

benefit [1]. In general, energy can be retrieved from non-renewable or/and renewable sources. 

For centuries, non-renewable energy such as fossil fuels and natural gas has been part of our 

main energy sources. However, we cannot forever depend on these sources because they will 

inevitably be depleted sooner or later. Activities related to retrieving non-renewable energy 

sources such as coal mining endanger wildlife, and enormous greenhouse gas emissions from 

fossil fuels cause global warming [2]. Renewable energy (RE) technologies such as biomass 

waste, wind, geothermal, hydropower, biofuel, and solar are crucial alternatives to fossil fuels, 

promoting clean energy without compromising the availability to the next generation [3]. 

According to the International Renewable Energy Agency (IRENA), the total renewable 

energy in the world in 2020 is 2,799,094. Compared to 2019, which is 2,538,44, this report 

indicates a positive growth in the use of RE, showing an increment of about 200,000 in a year 
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[4]. Solar energy is chosen above other REs due to the abundance of sunlight, low cost, safety, 

and cleanliness. Dependency on solar energy was recorded since 8000 B.C, which is mostly 

used in agriculture [5] and making household products such as clay plates and mugs [6]. 

Presently, solar energy is acknowledged as the premier sustainable energy source despite its 

disadvantages [7,8]. Solar energy can be harvested using photovoltaic(PV) cells or solar cells, 

efficiently converting sunlight into electrical energy [9–11]. The mechanism of solar cells can 

be summarized into four steps: electron-hole pair generation by absorption of light in 

semiconductors, separation of electron-hole pairs by built-in potential, electron-hole 

recombination, and collection of charge carriers by the metal electrodes [12].   

Silicon is the commonly chosen PV material due to its abundance on Earth [13]. The 

silicon-based solar cells were introduced in 1954, called high efficiency and cheaper 

technologies [14]. Photovoltaic cells are categorized into three generations, in which the 

earliest generation PV cells consisted of monocrystalline and polycrystalline silicon while the 

following generation PV cells are made of silicon of non-crystalline form, cadmium telluride, 

and copper gallium indium diselenide. The copper indium selenide (CIS)-based PV cells have 

also been introduced to increase the efficiency. These PV cells are very stable, have long 

operational lifetimes, and have achieved over 19% conversion efficiency [15]. The third 

generation PV cells consist of DSSCs, quantum dots (QDs), and organic solar cells [16]. The 

organic-inorganic hybrid perovskite solar cells (PSCs) are fourth-generation PV cells [17]. The 

DSSC was invented by Professor M. Gratzel in 1991 [18] and became favorable over other 

PVs due to its low fabrication cost [9,16,19], easy manufacturing process, ability to be 

processed at ambient temperatures, variety of colors, eco-friendliness [16], high molar 

absorption coefficient, high performance in indoor conditions under artificial light, and 

compatibility in roll-to-roll production [16,19]. In this review, the discussion starts with a brief 

description of DSSC operation.  Then, we introduce the types of photosensitizers, and finally, 

the progress and future challenges are discussed.   

2. DSSC Operation  

The essential operational principles of DSSC solar cells vary from those of ordinary 

semiconductor solar cells. Light absorption and charge carrier transport activities are not 

distinctive in semiconductor solar cells. On the other hand,  these two activities are separated 

in a DSSC, in which the charge separation is accomplished by photo-induced injection into the 

conduction band, and then the generated carriers are delivered to the charge collector [20]. 

A DSSC consists of a photoanode which is a transparent conducting oxide (TCO) layer 

on a glass substrate [21],  photosensitizers, a counter electrode, and electrolyte, as shown in 

Figure 1 [20]. The most common TCOs that are used in DSSCs are tin-doped indium oxide 

(ITO) and fluorine-doped tin oxide (FTO). The TCO layers must have suitable attributes such 

as low resistivity, high clarity, and smooth surface to achieve high DSSC performance [22]. 

On the other hand, the photosensitizers or dyes are the main components in DSSCs that have 

important roles in harvesting the maximum amount of incident light and converting it to 

electricity [23], whereby the electrolyte promotes charge transfer between photoanode and 

counter electrode [24]. While the triiodide (I3
−) serves as a mediator to regenerate the 

sensitizers [25]. The general working principle of DSSC is based on four prominent steps, 

which start from light absorption followed by electron injection, then transportation of charge 

carrier, and finally, collection of current. When photons from the light spectrum are struck on 
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the photoanode, the dye in its ground state absorbs photons from sunlight, and the electrons are 

excited from the highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO). The excited electrons in the dye are injected into the conduction 

band of the TCO and then flow via the external circuit from the TCO layer to the counter 

electrode. The dye is then regenerated due to accepting electrons from the redox mediator, and 

the redox mediators are regenerated by accepting electrons from the counter electrode. Lastly, 

the whole process is repeated continuously to complete the circuit [23].   

 
Figure 1. Basic working principle of a DSSC. 

3. Photosensitizers Used in DSSCs  

To ensure a longer light-harvesting time, the sensitizers should be able to harvest light 

in a wide absorption range, ideally from the visible (~400 nm) to the near-infrared region (~800 

nm) [9,16,18]. A sensitizer or dye also acts as a molecular electron pump in the DSSC by 

pumping an electron into TCO’s conduction band and can be regenerated promptly by the 

redox couple [26,27]. For efficient charge injection into the semiconductor, sensitizers must 

have chemical stability at the relevant highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) levels [19,20]. Prompt dye regeneration from the 

electrolyte will decrease the energy loss because the charge-recombination process is the main 

competitor to the dye regeneration process [28]. Charge recombination, which occurs at 

pinholes, will limit the cells' performance. In short, the sensitizers must be stable both 

photochemically and electrochemically for efficient performance [23,29–36]. Massive efforts 

have been undertaken to create various sensitizers, which may roughly be classified as follows: 

Natural dyes; Metal-free organic dyes; Inorganic dyes.  

3.1. Natural dyes.  

Natural dyes are pigments extracted from and used in DSSCs as an alternative to 

replacing the limited and expensive Ruthenium(II) complexes. Because of their environmental 

friendliness, the low price [37], high absorption coefficients in the visible range, ease of 

production, and relative abundance, these natural dyes have great features as sensitizers in 
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DSSCs [38,39]. Furthermore, compared to synthetic dyes, the extraction procedure of natural 

color pigments such as chlorophyll, carotenoids, betalains, and flavonoids is relatively easy 

[40].  

3.1.1. Chlorophyll.  

Chlorophylls are pigments that give the green color in plants and algae. There are six 

different types of chlorophyll pigments, and the major ones are chlorophyll α (Chl-α) with 

maximum absorption at 670 nm and chlorophyll β (Chl-β) at 470 nm. A porphyrin ring is the 

fundamental molecular shape of the chlorophyll [41] that acts as the center to gather the 

sunlight, transport electrons and convert solar energy to chemical energy [42]. Because of their 

capacity to absorb light spectrum in visible wavelengths, chlorophylls and their derivatives are 

widely used as sensitizers in DSSCs [41–43]. However, due to the steric hindrance that occurs 

because of its long chain length, chlorophyll alone is not favorable to be used as sensitizers 

because this disadvantage affects the electron transport rate and reduces the potential of the 

electrons to be injected into the semiconductor’s conduction band. Moreover, the absence of 

right anchoring groups worsens these conditions [41,43]. It was recorded that the chlorophyll 

extracted from bryophyte Hyophila exhibited an efficiency of 2.00% when used as a sensitizer 

in DSSC [44], which was much lower compared to N719.  

3.1.2. Carotenoids.  

Carotenoids are a vast family of isoprenoids with about 600 members characterized by 

a C40 hydrocarbon backbone [45]. Carotenoids are naturally occurring brilliant color pigments 

in all photosynthetic organisms such as plants, cyanobacteria (multicellular organisms), and 

algae (unicellular organisms) [46] which can absorb wavelengths of light ranging from 380 nm 

to 550 nm and also responsible for the quenching of light and protect cells from damages caused 

by light and superoxide radicals [47–49]. These pigments excel as energy collectors and 

photosensitizers suitable for being engaged as sensitizers in DSSCs [50]. However, long alkyl 

chains also cause steric hindrance and make assembling the semiconductor film problematic 

because of the lack of efficient functional groups to bind with the hydroxylic group of the TiO2 

[51]. Kumara et al. reported that the highest efficiency of the carotenoids-based sensitizer is 

2.6%, and conversion efficiency of 4.2% is achieved when carotenoids and chlorophyll 

derivatives are combined [52].  

3.1.3. Betalains.  

Betalains are a small category of water-soluble and nitrogen-containing vacuolar 

pigments found in the vacuoles of cells of Caryophyllales plants, consisting of amino 

compounds and immonium conjugates of betalamic acid with cyclo-Dopa (cyclo-

3,4dihydroxyphenylalanine). These pigments can be classified into betaxanthins and 

betacyanins. The yellow-orange color of betaxanthins results from the different amino acids or 

amine side chains whilst different substitution patterns resulting red and violet tonalities in 

betacyanins. Both pigments retain a higher extinction coefficient in the visible range between 

476 nm and 600 nm, while their redox properties are determined by the pH of the solution [43]. 

The betalain-based sensitizers successfully bind to the TiO2 due to the presence of carboxylic 

functional groups, and the efficiencies are recorded around 0.5% up to 2.0%. The highest power 

conversion efficiency (PCE) recorded for betanidin extract used in a DSSC is 3.04% (Table 1) 
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with a wide light spectrum absorption from 300 nm to 700 nm and exhibited higher stability 

during solar irradiation [53]. Thus, betalains are indeed some of the good alternatives to 

synthetic colorants for DSSCs. However, due to their short electronic singlet state (S1) lifetime 

[41], the efficiencies and open-circuit voltage (VOC) can be low, and the insufficient electron 

injection quantum yield also lead to poor performance of betalains as sensitizers in DSSC. This 

electron injection is affected by a short S1 lifetime responsible for a rapid internal conversion 

process [54].   

3.1.4. Flavonoids.  

Flavonoids are found in many parts of plants, such as roots, bark, stems, flowers, and 

in addition to others with variable phenolic structures [55]. Flavonoids are very important 

pigments that contribute to the coloration of many fruits and flowers, and they can be 

categorized into aurones, chalones, anthocyanins, flavones, and flavonols. Flavonoids can be 

distinguished from one another by the 𝛾 ring, which connects the two benzene rings. In 

addition, the flavonoids have a basic C6-C3-C6 structure which defines the colors of different 

flavonoids by the degree of phenyl ring oxidation [56]. Flavonoids are currently regarded as 

essential components due to their anti-mutagenic, anti-oxidative, anti-carcinogenic, and anti-

inflammatory properties [43], as well as being unique ultraviolet (UV) filters [55]. In contrast, 

despite their similarities, several flavonoids are known to receive visible light spectra [41,42]. 

Anthocyanins are the most important pigments in the flavonoids family for the DSSCs 

applications due to their ability to transfer electrons orderly and harvest light in the visible 

region of the light spectrum. These pigments instantaneously form bonds with semiconductors 

via chelation mechanisms using carbonyl and hydroxyl functional groups [52]. There are 17 

different structures identified for anthocyanins, and they are classified according to the number 

of sugar molecules [42]. Anthocyanins can be extracted from water, alcohols, or mixtures by 

adding a little acid in order to prevent any material eradication [57]. 

In Table 1, modified chlorophyll pigments show the highest efficiencies, whilst the 

anthocyanin dyes show efficiencies less than 1.0% in DSSCs. Still, the betalain dyes show a 

DSSC efficiency of more than 1.0% compared to chlorophyll pigments. The restriction of light 

absorption ability and poor bonding of natural dyes cause negative efficiency of these natural 

dyes. Numerous techniques, such as combining two or more natural dye pigments, can improve 

the light absorption capability. For instance, the bonding between molecules and 

semiconductors is improved when anthocyanins combine chemically with glycosides or/and 

with acyl groups. Adsorption of natural dyes successively increases dye loading and pre-dye 

adsorption. This subsequently boosts conversion efficiency and enhances the incident photo 

conversion efficiency (IPCE) of natural DSSCs [43].  

Table 1. Natural dyes and structural classes used in DSSCs. 

Plant source/ Dye  Structure/structural class JSC (mA/ cm 2) VOC (V) ƞ (%) References 

Blueberry  Anthocyanins 4.1 0.30 0.69 [58] 

Amaranthus caudatus flower  Chlorophyll 1.82 0.55 0.61 [59] 

Cordyline fruticosa leaves  Chlorophyll 1.30 0.61 0.50 [60] 

Papaya leaves  Chlorophyll 0.36 0.32 0.07 [61] 

Azadirachta indica leaves  Chlorophyll 0.43 0.40 0.72 [62] 

Basil leaves  Chlorophyll 1.39 0.58 0.40 [63] 

Ziziphus jujube leaves  Chlorophyll 3.18 0.65 1.07 [63] 

Mint flower  Chlorophyll 0.45 0.54 0.09 [64] 

Lemon leaves  Chlorophyll 1.08 0.59 0.03 [65] 

Morula leaves  Chlorophyll 0.05 0.47 0.01 [65] 
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Plant source/ Dye  Structure/structural class JSC (mA/ cm 2) VOC (V) ƞ (%) References 

Fig leaves  Chlorophyll 2.09 0.59 0.64 [63] 

Berry leaves  Chlorophyll 3.57 0.59 0.93 [63] 

Banana leaves  Chlorophyll 1.77 0.59 0.52 [63] 

Peach leaves  Chlorophyll 2.55 0.61 0.65 [63] 

Black tea leaves  Chlorophyll 0.39 0.55 0.08 [64] 

Hierochloe odorata grass  Chlorophyll 2.19 0.59 0.46 [66] 

Torulinium aegyptium grass  Chlorophyll 1.00 0.65 0.32 [66] 

Flowers, fruits  Carotenoids - - 2.60 [52] 

SPA dyes  Betalains 9.08 0.632 3.04 [53] 

Tangerine peel  Flavone 0.74 0.592 0.28 [67] 

3.2. Metal-free organic dyes.  

Organic dyes have piqued the interest of researchers interested in using them as 

sensitizers in DSSCs because of their distinct characteristics such as affordable prices, broad 

absorption of the solar emission spectrum, higher molar extinction coefficients, and most 

importantly, ease of extraction and purification procedure [68]. Metal-free organic dyes are 

usually constructed by an electron donor (D), 𝜋-conjugation bridge, and an electron acceptor 

(A). This design is called a D-𝜋-A system, ‘push-pull’ structure or ‘DpA’. Donor groups are 

usually electron-rich moieties like (difluorenyl) triphenylamine, aminocoumarin, indoline, 

phenylamine, carbazoles, and triarylamines. Thiophene, benzothiadiazole, and benzene [27,69] 

are known to be excellent choices as 𝜋-conjugated bridges because these compounds can widen 

the light absorption range up to the near-infrared radiation. The power conversion efficiency 

of DSSCs can be increased by increasing the number of thiophene 𝜋-bridging units [70]. 

Various acceptors such as benzotriazole, phthalimide, benzothiazole, thienopyrazine, and 

quinoxaline have become prominent building blocks to functionalize conjugated organic 

sensitizers with a low bandgap and tunable LUMO level [71]. In addition, these acceptors also 

will act as an anchor to the semiconductor layer [72]. Trialkoxysilyl groups, carboxylic acids, 

and their derivatives are among the best anchoring groups for bidentate bridging with metal 

oxide, compared to the less stable monodentate anchoring [71]. However, organic dyes have 

low conversion efficiencies compared to metal complexes-based dyes. The development of dye 

aggregates on the surface of TiO2 nanoparticles results in the oppression of the excited state of 

the sensitizer molecules, which can limit the effectiveness of the DSSC, but there are a few 

metal-free organic dyes like triphenylamine, coumarin, alizarin, carbazole, and cyanine-based 

sensitizers which successfully achieved efficiency of up to 5-9%. For instance, alizarin is a red 

substance capable of absorbing visible light spanning from 400 to 600 nm and allows fast 

injection of electrons into the semiconductor conduction band via indirect processes [72]. Saini 

et al. reported [73] that DSSCs with alizarin-based sensitizers had recorded efficiencies of 

about 0.635%, 0.788%, 0.383% and 0.915% when redox couple electrolytes such as potassium 

iodide (KI), tetraethylquaternaryammonium iodide [(CH3CH2)4NI], 

tetramethylquaternaryammonium iodide [(CH3)4NI] and tetrapropylquaternaryammonium 

iodide [(CH3CH2CH2)4NI] were employed . Besides that, the DSSC with an alkoxysilyl-anchor 

dye (ADEKA-1) and a carboxy-anchor organic dye of 3-{6{4-[bis(2’,4’-dibutyloxybiphenyl-

4-yl)amino-]phenyl}-4,4-dihexyl-cyclopenta-[2,1-b:3,4b’]dithiophene-2-yl}-2-cyanoacrylic 

acid (LEG4) collusion have been tested and showed  outstanding efficiencies, up to 14.30% 

[74]. Moreover, the LEG4 dye can achieve high efficiency of about 5.8% at the wavelengths 

from 320 nm to 350nm and 520 nm to 580 nm [75]. Besides the D-𝜋-A system, other designs 

like  D-A—A and D-D—A-type organic dye structures have been introduced to enhance the 

efficiency of DSSCs by introducing a subordinate acceptor or donor similar to  2,3-

https://doi.org/10.33263/BRIAC126.85438560
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC126.85438560  

 https://biointerfaceresearch.com/ 8549 

diphenylquinoxaline/3,6-ditert-butylcarbazole to inhibit dye aggregation, promote electron 

migration and improve photostability [69]. The auxiliary electron-drawing group (A) might be 

thought of as an ‘electron trap’ is which can enhance the photo and thermal steadiness, increase 

the open-circuit voltage and shift the absorption range to near infra-red [76].   

3.3. Inorganic dyes.  

3.3.1. Ruthenium sensitizers.  

Ruthenium(II) complexes with polypyridyl ligands have been used as photosensitizers 

for over 30 years because of their ability to form strong bonds with the donor nitrogen atoms 

of organic ligands in addition to their tunable photophysical, photochemical, and 

electrochemical properties [77]. Ru metal was recognized as a complex-forming metal due to 

its atom’s octahedral coordination condition, which exhibits stable and accessible oxidation 

states ranging from I to IV, allowing it to coordinate with many ligands [78,79]. The Ru 

trinuclear complex with enhanced absorption properties was discovered by O’Regan and 

Grӓtzel in 1991 as the first efficient sensitizer in DSSC [18]. The Ru-based DSSC recorded 

excellent conversion efficiency of incident photons to the electrical current of over 80%. 

Moreover, on average, around 10% light-to-electric energy conversion is recorded under 

diffuse daylight and simulated solar light [18]. In 1993, a series of Ru(II) complexes with 

general formula cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)-Ru(II) where X = Cl, Br, I, CN, 

and SCN were introduced, and the optical and electrochemical properties were studied 

intensively by Nazeeruddin et al. [80]. The Ru(II) complex containing two groups of isocyanate 

ligands, N3 showed an extraordinary photovoltaics attribute. The dye adsorption spectrum was 

red-shifted up to 800nm, and the DSSC’s efficiency was extended up to 10% with a high Jsc 

(18.2 mA/cm2). Polypyridine derivates were selected as ligands for enhancing certain 

electrochemical and photophysical attributes of sensitizers by adding substituents into the 

heteroaromatic ring. For example, the Ru(4,4’-dicarboxylic acid-2,2’-bipyridine)(4,4’-Di(3-

methoxystyryl)-2,2’bipyridine)(NCS)2 (Z910) dyes consist of bipyridyl ligand and 

methoxystyryl group, and the overall efficiency achieved was 10.2% for the DSSC constructed 

by engaging this dye [81]. N719 or di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2’-

bipyridyl-4,4’dicarboxylato)ruthenium(II) is the best Ru(II)-based photosensitizer for DSSC 

with a high overall efficiency of 11.2% as shown in Table 2 [82]. The N3 and N719 had been 

set as reference dyes and used as the benchmark to plan new Ru-based photosensitizers by 

manipulation of the ancillary ligands [19]. Not long after that, Nazeeruddin MK et al. 

discovered the black dye (N749) with absorption spectra ranging from visible to near-infrared, 

up to 920 nm. It was recorded that the DSSC with N749 dyes achieved 10.4% overall efficiency 

with Jsc of 20.53 mA/cm2 [83].  On the other hand, Thiocyanate ligands are widely used in 

applications due to their excellent electron-donating properties. However, this ligand is less 

stable in the complexes. For example, dye degradation of N719 happens when the dye is 

chemisorbed on the TiO2 particles [84]. The presence of co-adsorbent (hexadecylmalonic acid) 

on the TiO2  can increase the dye’s stability because the constructed hydrophobic layer blocks 

the desorption process of the dye by residual water while forming an impervious layer between 

the semiconductor and the electrolyte. For instance, cis-bis(isothiocyanato)(2,2’-bipyridyl-

4,4’-dicarboxylato)(4,4’-di-nonyl-2,2’bipyridyl) ruthenium (II) (Z907) dyes have achieved 

7.8% efficiency in a DSSC and have long-term stability at 55℃  contributed by the presence 

of the co-adsorbent [85]. Another dye, NaRu(4-carboxylic acid-4’-carboxylate)(4,4’-

https://doi.org/10.33263/BRIAC126.85438560
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC126.85438560  

 https://biointerfaceresearch.com/ 8550 

bis[(triethylene glycol methyl ether)methyl ether]-2,2’-bipyridine)-(NCS)2 (K51), which is 

composed of a triethylene oxide methyl ether group, achieved 8.1% efficiency by adjusting the 

concentration of lithium ions in the electrolyte [86]. The lithium ions will intercalate or 

aggressively adsorbs to the surface of TiO2. The surface adsorption produces a positive shift in 

the TiO2 conduction band, resulting in a significant decrease in the cell’s open-circuit voltage. 

On the other hand, the efficiency of Ru(4,4-dicarboxylic acid-2,2’-bipyridine)(4,4’-bis(2-(4-

(1,4,7,10-tetraoxyundecyl)phenyl)ethenyl)-2,2’-bipyridine)(NCS)2 (K60) dyes is increased to 

8.4% by lengthening the conjugation of the peripheral ligands, and their durability is longer 

when exposed to 60℃ of direct sunlight [87]. Even though thiophene groups are less stable in 

the complexes, Chen et al. did introduce a ruthenium dye with an alkyl bithiophene group in 

CYCB1 dyes, which had thiophene groups in its ancillary ligands. Surprisingly, the efficiency 

recorded was at par with the references dyes [88]. CYC-B11 dye is the innovation from CYCB1 

dyes by substituting the alkyl chain with an electron-rich thioalkyl group in order to obtain 

much higher efficiency [89]. In addition, cis-Bis(isothiocyanato)(2,2’-bipyridyl-

4,4’dicarboxylato)(4,4’-bis(5-hexylthiophen-2-yl)-2,2’-bipyridyl)ruthenium(II) (C101) [90] 

and cis-Bis(isothiocyanato)(2,2’-bipyridyl-4,4’-dicarboxylato)(4,4’-bis(5-

(hexylthio)thiophen-2yl)-2,2’-bipyridyl)ruthenium(II) (C106) dyes [91] are other examples of 

Ru-based sensitizers  in which the bipyridine ligand is functionalized by a single thiophene 

ring. The DSSCs constructed with both dyes recorded 11.7% and 10.57% overall efficiencies. 

The insertion of electron-donating antennas in the auxiliary ligands, on the other hand, resulted 

in an efficiency of 10.78 percent for the heteroleptic polypyridyl ruthenium complex (RC-43) 

dyes. In RC-43, a stronger electron-donating antenna-methoxy-triphenylamine (MeO-TPA)-is 

connected to the bipyridine ligand, while the spacer is used between the MeO-TPA and 

bipyridine units is ethylene-dioxythiophene (EDOT) to increase the ancillary bipyridine 

ligand’s electron-donating capacity and conjugation length [82]. The derivation diimine 

ligands of 4,5diazafluorene (C2, C3) and the Ru(II) complexes also show photovoltaic 

properties. The C2 ligand is bound to a catechol anchoring group, while C3 ligand is bound 

with boronic acid. Occasionally, carboxylic acids are used as an anchoring group, but the low 

pKa values weaken the binding between sensitizers and TiO2, which causes sensitizers to 

disengage from the TiO2 surface in the existence of water. Alternative anchoring groups such 

as catechol and boronic acid are introduced to overcome these limitations. The boronic acid 

has two monodentate or four bridging bidentate anchoring modes on the TiO2, which makes it 

favorable as a substitute to carboxylic acid anchors [92]. Whereas the five-membered ring 

constructed between Ti4+ and the catechol moiety influenced the superiority of the binding 

between the complexes and the anchoring groups to the TiO2 surface. Even though prior studies 

of catechol anchoring groups do not go over 2% PCE, the [Ru(C2)2(NCS)2](PF6)2 sensitized 

cell recorded the best PCE at 2.83% when chenodeoxycholic acid (CDCA) was added to it, 

which enhanced its performance by stopping dye aggregation and obstructing charge 

recombination [92].  

Table 2. List of Ru-based sensitizer used in DSSCs. 

Dyes  Jsc (mA/cm 2) Voc (V) FF ƞ (%) References 

N3  18.2 0.72 0.73 10.00 [80] 

N749  20.53 0.72 0.704 10.40 [83] 

Z907  14.2 0.764 0.676 7.80 [85] 

Z910  17.2 0.777 0.764 10.20 [81] 

K51  16.6 0.738 0.679 8.10 [86] 

CYC-B1  23.92 0.65 0.54 8.54 [88] 

K60  16.7 0.715 0.69 8.44 [87] 
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Dyes  Jsc (mA/cm 2) Voc (V) FF ƞ (%) References 

N719  17.73 0.846 0.75 11.20 [82] 

CYC-B11  20.05 0.743 0.77 11.50 [89] 

C106  18.28 0.749 0.772 10.57 [91] 

C101  10.5 0.747 0.76 11.70 [90] 

RC43  20.21 0.725 0.73 10.78 [93] 

3.3.2. Copper sensitizers.  

Metals such as copper, manganese, iron, nickel, and zinc are used to fabricate inorganic 

dyes in the quest to discover earth-abundant alternatives to ruthenium. The capability to recycle 

copper from thrown electronics and other scrap metals helps the maximum utilization of 

copper. In 2015, nearly one-third of the used copper originated from recycled copper because 

copper does not deteriorate or lose its chemical or physical attributes in the recycling process 

[94]. Cu forms complexes in the oxidation states +1 and +2; nevertheless, the shape of the 

complexes is distinctive. Copper(I) complexes desire a tetrahedral coordination domain which 

permits more structural distortions than other complexes with higher coordination numbers. 

The earliest copper coordination compounds used in DSSCs were homoleptic Cu(I) complexes, 

although the efficiencies achieved were around 0.1% to 3.0%. It was recorded that the copper 

complex that coordinated with two 6,6’-dimethyl-2,2’-bipyridine-4,4’-dibenzoic acids showed 

33% relative efficiency with respect to 100% of N179 as the reference dye. Homoleptic dyes 

are less efficient as sensitizers than heteroleptic dyes because they cannot merge efficiently 

with anchoring and ancillary domains [95]. A completely equipped DSSC was constructed by 

the Constable and his co-workers with [Co(bpy)3]
2+/3+ as the redox couple, and the heteroleptic 

Cu(I) complexes dye consists of anchoring ligand and ancillary ligand which were ((6,6’-

dimethyl-[2,2’-bipyridine]-4,4’-diyl)bis(4,1-phenylene)bis(phosphonic acid)) and 2-

(diphenylaminophenyl)-1H-phenanthrol[9,10-d]imidazole derivative, respectively. This DSSC 

achieved 1.73% efficiency and 25% relative efficiency compared with reference I-/I3
- 

electrolyte [96]. In 2014, Odobel and co-workers reported a fully masked heteroleptic copper-

based DSSC with 4.66%  photoconversion effectiveness concerning ƞ ~ 7.5% in  N719, the 

reference dye [95].   

The engagement of porphyrins as sensitizers in DSSCs has lately increased. It was 

reported that the energy conversion efficiency of a DSSC sensitized with Cu(II)-porphyrin 

complexes easily reached up 2.6% [97–99]. The absorption of porphyrins is influenced by the 

substituents linked to the macrocycle, the identity of the complexed metal ion, and the position 

of those substituents. For instance, the incompleted orbital of copper(II) ion was contributed to 

the Soret band of copper(II) complex of 5,10,15,20-tetrakis-(3,4-dibenzyloxyphenyl)porphyrin 

(CuTDBOPP). This shift happens due to metal-to-ring charge transfer, which raises the energy 

of the 𝜋 to 𝜋∗ transition in the porphyrin ligand. At the same time, the maximum wavelength 

was seen to be altered when the metal was inserted into the porphyrin. This CuTDBOPP dye 

is a symmetrical porphyrin that is easy to synthesize with changeable substituents. CuTDBOPP 

dye is used to make statistically significant comparisons between the efficiency of solar cells 

made with various porphyrins. The open current-voltage (Voc) of CuTDBOPP cell is almost 

52% [100].  

3.3.3. Zinc sensitizers.  

Porphyrin possesses two types of absorption bands in the visible region which are Soret 

and Q-bands, which are located in the red and blue regions [101–103]. The position of these 
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bands can be altered by changing the ligand of the complexes and subsequently increasing the 

number of photons that are absorbed by the complexes. Thus, the efficiency of DSSC can be 

increased tremendously. Porphyrin compounds have high molar extinction coefficients, are 

cheaper, are facile to synthesize, and are environmentally friendly. A DSSC sensitized by zinc 

porphyrin complex shows an open circuit potential (Voc) of 0.65 and a short current density 

(Jsc) of 11.60 with a PCE of about 5.53%. The high effectiveness of the Zn porphyrin complex 

sensitized cell can be associated with great electron injection outcome and low charge 

recombination rate due to large attachment groups that refrain the accumulation of dye on the 

TiO2 surface. The accumulation of dye molecules on the TiO2 electrode surface increases 

intermolecular charge transfer between dye molecules while suppressing charge transfer from 

dye molecules to the TiO2 electrode surface. In addition, the value of Jsc can be affected by the 

molar extinction coefficient of the dye molecule. A high molar extinction coefficient, in 

general, has a robust light-harvesting potential and gives a great Jsc. Porphyrin dye's incident 

photon-to-current conversion efficiency (IPCE) exhibits a maximum plateau around 550 ~ 700 

nm. The IPCE value of a DSSC depends on the effectiveness of electron injection into the 

conduction band of metal oxide [104]. Employing high 𝜋-delocalized substituents will help to 

boost the light-harvesting features and photovoltaic potentials of the DSSCs.  

Insuasty and co-workers synthesized new porphyrin dyes consisting of 

diphenylamineZn(II)-porphyrin with vinylfluorene as the 𝜋 −bridge, and cyanoacrylic acid or 

dicyanorhodanine as the anchoring groups [105]. Among these dyes, the dyes with a 

cyanoacrylic acid acceptor group exhibited the highest photocurrent densities with 4.13% PCE. 

This is because cyanoacrylic acid anchoring group is prone to facilitating fast electron injection 

into the semiconductor and arranging the dyes perpendicularly to the TiO2 surface. The 

perpendicular orientation hinders immediate inner-path recombination between the 

semiconducting electrode and the dye cation after the electron injection.  

3.3.4. Iron sensitizers.  

Iron metal is one of the environmentally friendly d-block elements which exhibit 

intense MLCT absorption. Making iron complexes usable in DSSCs, on the other hand, is 

extremely difficult due to the rapid deactivation of MLCT states into metal-centered (MC) 

states and the impedance of electron injection into the sensitized semiconductor [106–108]. 

In Fe(II) polypyridyl complexes, for example, the MLCT states lie at higher energy 

than MC states, as shown in Figure 2. This eventually causes the photon energy to be available 

only in a very short period of time, and the functional photochemical process becomes shorter 

than the intramolecular relaxation rates. The effectiveness of Fe(II) sensitizers can be enhanced 

by making the interfacial electron transfer (IET) quicker than the intersystem crossing (ISC) 

procedure by elevating the rate of IET via constructional adjustment in the ligands of 

sensitizing dyes. In addition, the application of a hydroxamate linker instead of a carboxylic 

acid linker increases the amount of IET. Thus, Fe(II) polypyridines with hydroxamate are more 

effective as photosensitizers. Furthermore, engaging strong-field ligands around the iron center 

helps delay the ISC process if pseudo t2g and eg orbitals are more separated. By contrast, the 

addition of electron-acceptor group and ligand with longer 𝜋-conjugation  also subsequently 

lowers the energy of MLCT states [111]. Iron-based sensitizers for DSSCs were first 

introduced by Ferrere using the Fe(dcbpy)2(CN)2 dye [112]. However, there was no significant 

progress since then until Wärnmark and co-workers found that the N-heterocyclic carbenes 
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(NHC) could increase the MLCT lifetime caused by the destabilization of MC states which 

was affected by strong 𝜋donating effects [113–115]. Iron(II) bipyridyl complexes with NHS- 

axial ligands are characterized by both MLCT and ligand-to-ligand charge transfer (LLCT) in 

the range of 350–700 nm [84]. It was recorded that the PCE for a DSSC sensitized with 

homoleptic Iron-NHC complexes achieved 0.13% and 0.03% efficiencies. Whilst, the 

heteroleptic Iron-NHC complexes achieved PCEs of  0.10%, 0.11% and 0.10% [116].   

 
(a)                                                                          (b) 

Figure 2. Energetic diagrams of (a) Ruthenium polypyridine complexes; (b) Iron polypyridine [109,110]. 

   

Quercetin is a flavonoid molecule with numerous hydroxyl groups that could easily 

form complexes with metals like Au3+, Os8+, Fe2+, Fe3+, Cu2+, Zn2+, Al3+, Ru3+ and so forth. 

The UV-Vis absorbance spectrum of Fe-quercetin complex dye is strong in the visible region 

and reaches the near-infrared region. The highest absorption bands of Fe-quercetin appear at 

453 nm, with a significant red shift. The color of quercetin solution is yellow; however, it can 

change to dark brown from yellow in some cases. This color changer affects the UV-Vis 

absorption of the sensitizers as well as their cell effectiveness. Because of the improved light-

harvesting room, the efficiency of the quercetin-iron dye DSSC is 67 percent greater than that 

of the quercetin-based cell [117].  

3.3.5. Cobalt sensitizers.  

Many other types of inorganic and organic dyes have lately been employed as 

sensitizers, and the influence of their structures on the PCE has been thoroughly studied 

[36,118,119]. The results demonstrate a close link between PCE, the dye ligand structure, and 

the maximum absorption wavelength. Even though bipyridine ligand-based copper complexes 

are proven to be high-efficiency sensitizers owing to fast electron transfer, their efficiency are 

still under par for commercialization [120].  

 In 2019, Chenab and co-workers introduced cobalt complex of 2, 3, 4, 5-

tetra(4pyridyl)thiophen ligand with nitrate anchoring groups as sensitizers for DSSCs. This 

cobalt complex sensitized DSSC exhibited high light-harvesting efficiency (LHE) with ample 

absorption wavelength at 498 nm and 650 nm with good photovoltaic parameters such as fast 

ηreg and acceptable ηcoll. Despite high LHE around ~61%, cobalt complex sensitized DSSCs 

usually suffer from low quantum efficiency of electron injection (φing) caused by low short-

circuit current, which is highly affected by the cobalt complex molecular structure [121]. 

  

https://doi.org/10.33263/BRIAC126.85438560
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC126.85438560  

 https://biointerfaceresearch.com/ 8554 

4. Conclusions and Outlook  

In this paper, we reviewed the versatility of photosensitizers that exist in DSSCs. Recent 

progress of photosensitizers in DSSC currently focuses on natural dyes, metal-free organic 

dyes, and inorganic dyes. Ru(II) is the first element used for DSSC, found by O’Regan and 

Grӓtzel in 1991. This precious element has unique characteristics such as octahedral 

coordination geometry that allows for fabricating various complexes with numerous ligands 

and excellent redox properties with good stability. The highest recorded efficiency of DSSC 

Ru-based sensitizer is up to 10% ~ 11%. However, due to the scarcity and toxicity of Ru metal, 

alternative sensitizers such as natural dyes, metal-free organic dyes, and inorganic dyes have 

been introduced. Although these sensitizers are economical and environmentally friendly, they 

have lower efficiencies than Ru, hindering commercialization. For instance, the highest 

efficiency recorded for natural dye sensitizers is only around 3.04%, whereby metal-free 

organic dyes and inorganic dyes are up 5.56%. 

Nevertheless, organic dyes are facile to be synthesized with less complicated 

purification steps compared to inorganic dyes. There are various ways to improve the quality 

of the dye sensitizers for commercial purposes. Based on current studies, hybridizations 

between two metal-free organic dyes such as alkoxysilyl-anchor dye (ADEKA-1) and a 

carboxy-anchor organic dye of 3-{6-{4-[bis(2’,4’-dibutyloxybiphenyl-4-yl)amino-

]phenyl}4,4-dihexyl-cyclopenta-[2,1-b:3,4-b’]dithiophene-2-yl}-2-cyanoacrylic acid (LEG4) 

have successfully achieved outstanding efficiencies up to 14.30%. In conclusion, DSSCs are 

indeed effective alternatives for the photovoltaics industries. Thus, there is still room for more 

distant improvement of these technologies. 
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