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Abstract: Cardiovascular diseases are the leading cause of disease burden globally. Sleep and 

cardiovascular connection represent a two-way lane. Recently, many reports have suggested that 

meditation practices have a beneficial effect on cardiovascular diseases. But the exact mechanism was 

not known. Several reports suggest that meditation induces the secretion of melatonin. The rhythm of 

melatonin follows a sleep pattern. Thus, the present hypothesis correlates the plausible mechanisms 

involved in meditation with enhancing cardiac health through melatonin synthesis. An altered modern 

lifestyle decreases the level of melatonin which disrupts the circadian rhythm, and subsequently, there 

is a high incidence of cardiovascular diseases. The disrupted cardiac energy metabolism is distorted due 

to altered circadian rhythm with elevated ROS. The increased level of ROS activates the inflammatory 

mediators' cytokines and damages the DNA, resulting in altered cardiac physiology. Melatonin 

regulates the circadian rhythm and acts as a silent regulator for the cardiac energy balance. Melatonin 

is the central player of circadian rhythm, and it protects cardiomyocytes by acting as an antioxidant, 

anti-inflammatory mediator, and repairing DNA damage. Meditation induces melatonin and improves 

cardiac health through the aforementioned mechanisms. 

Keywords: cardiovascular diseases; meditation; melatonin; ROS; DNA repair; circadian rhythm; 

Glucose; lipid metabolism. 
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1. Introduction 

1.1. Cardiovascular disease and meditation. 

Cardiovascular diseases (CVD) remain one of the most common causes of mortality 

globally among non-communicable diseases [1–3]. Compared to the high-income countries, 

CVD mortality in low- and middle-income countries is extremely high due to limited access to 

effective preventive and management programs [4–9]. In these settings, inexpensive 

intervention and lifestyle changes can prevent CVD development and improve outcomes.  
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From the wake of this century, yoga and meditation have attracted more and more 

attention as effective interventions to improve health. Meditation has beneficial effects on 

various organs, including the heart [10]. A practice of 12-week mindfulness meditation training 

for heart patients under usual care displayed significant improvement in blood pressure, heart 

rate, respiratory rate, NT-pro BNP level, and the results of 6 minutes walk test [11,12]. 

Meditation practices improve the rehabilitation process in patients with cardiovascular diseases 

[13,14]. American Heart Association advocates meditation as an adjunct therapy to enhance 

cardiac health [15]. The present article aims at comprehending the possible mechanisms 

through which meditation protects cardiac functions.  

1.2. Meditation and melatonin. 

Meditation is defined as a condition of contemplation, concentration, and reflection 

[16–18]. The practice has a thousand-year history of improving spiritual and emotional well-

being by achieving physical relaxation, inner calmness, and psychological balance by the 

participator, examining their thoughts and feelings. Mantra meditation, concentrating on a 

particular subject/point (such as heartfulness meditation, kundalini meditation), and 

mindfulness meditation are just examples of meditation types being practiced nowadays [19–

21]. The main goal of meditation is to create awareness of a given moment and forget the past 

bad moments in a non-judgmental fashion [22,23]. Yoga is a set of techniques, including 

postures, breath control, and meditation originated in India. Tai chi and qigong, traditional 

Chinese martial arts and medicine, also include meditation practices [24,25]. 

In the past two decades, a growing number of research reports suggested that meditation 

practices cure stress, pain, and anxiety-related conditions through psychological intervention 

[26–29]. Meditation is helpful as an antidote to both physiological and mental stress. 

Psychological stress is experienced as encountering obstacles to fulfilling an individual's 

requirements and aspirations and a perceived threat. The body responds to stress with increased 

heart rate, blood pressure, breath rate, sweating, weakened immunity, and blood clotting. In a 

meditative state, the human body switches into a state of restful awareness. The body responds 

with decreased heart rate, normalization of blood pressure, quiet breathing, reduced stress 

hormone production, strengthened immune system, reduced sweating, and improved blood 

flow. These observations suggest that meditation has a dramatic long-term structural effect on 

the body [30–33]. Recent findings demonstrate that meditation increases melatonin levels 

[10,34–36]. Meditation raises melatonin levels by delaying the hormone's hepatic metabolism 

or increasing its production in the pineal gland [37]. Melatonin receptors have been found all 

through the cardiovascular system, including in various vascular tissues [38,39]. Platelet 

aggregation, nocturnal hypertension, and serum catecholamine levels have all been found to be 

reduced by exogenous melatonin [40]. Thus, the influence of melatonin on cardiovascular risk 

factors via meditation is discussed in this review, as well as current advances in our 

understanding of meditation and melatonin's effects on cardiovascular illnesses. 

2. Melatonin and Circadian Rhythm  

Meditation practices synchronize the hypothalamo-pituitary-adrenal (HPA) axis and 

normalize the levels of cortisol and catecholamine [41,42]. Moreover, meditation increase the 

level of dehydrosterone [43] and anterior hypophyseal hormones such as growth hormone, 

thyrotropin-releasing hormone (TRH), prolactin, and melatonin [44]. 
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Melatonin has a crucial function in the physiological control of sleep, both in blind and 

sighted individuals [45]. The rhythm of melatonin follows a sleep pattern [46]. Melatonin 

exerts hypnotic properties by inhibiting the suprachiasmatic nucleus [47] and promoting 

peripheral vasodilation to hypothermic reaction. Melatonin is typically used to treat sleep cycle 

disruptions attributable to jetlag and insomnia [48]. Melatonin is not just an antioxidant and 

immunomodulatory agent [49]; it also acts as oncostatin and improves well-being [45]. Aging 

decreases the release of melatonin and thus influences sleep quality in the elderly. It was shown 

that mediation practices increase melatonin, serotonin, and noradrenaline levels. Meditation 

practices increase melatonin by restricting its hepatic metabolism or increasing pineal gland 

synthesis. Considering the melatonin function in sleep management, mediation activities may 

improve sleep quality by increased release of melatonin [50]. 

Sleep has been correlated with lowered heart rate, blood pressure, breath rate and 

rhythm, oxygen intake, fear or excitations, and reduced basal metabolic level [50]. In 

cardiovascular conditions, decreased level of circulating melatonin has been observed. On the 

other hand, the increased melatonin level protects the heart from other cardiovascular diseases 

in several mechanisms [51]. Until now, the mechanism of melatonin-mediated protection of 

cardiac function has not been elucidated. This review focuses on deriving the underlying 

mechanism of melatonin's protective effect through meditation.  

2.1. Role of circadian rhythm in cardiac metabolism correlated with melatonin. 

The cardiovascular system exhibits circadian rhythmicity with their acrophases in 

different parts of the 24-hour cycle [52,53]. The regular synchronization of circadian rhythm 

signals a biological system's functioning in a coordinated manner [52,54]. The circadian clock's 

timing is regulated by a signal obtained from the suprachiasmatic nucleus (SCN) through the 

retina [55,56]. The circadian rhythm is regulated by the clock gene [57,58]. Any disturbance 

in the clock gene renders impairment in the cardiovascular system [59]. A change in blood 

pressure synchrony with the circadian rhythm was observed in hypertensive rat strains [59,60]. 

In humans, circadian rhythm regulates carbohydrate metabolism, essential for glucose 

homeostasis and energy balance. The disparity between glucose and insulin in tissues and blood 

cells causes various disorders, including metabolic syndrome, obesity, type 2 diabetes, and 

cardiovascular diseases [61]. Reaven reported that insulin resistance and elevated circulating 

postprandial TAG concentration cause cardiovascular diseases [62]. For example, the 

individuals working in shifts at late hours who consume their food late night have relative 

glucose and lipid intolerance [63]. Among the workers working night shifts, elevated levels of 

circulating TAG are observed irrespective of their energy and nutrient intake because of the 

disrupted circadian rhythm. The increased level of TAG promotes cardiovascular disease [64]. 

Comparatively, night-time workers have an elevated chance of having cardiovascular diseases 

than day-time workers [65]. 

Melatonin is secreted when the eyes do not receive light, and they accelerate the 

production of 7α-hydroxypregnenolone. Understandably, the regulation of 7α -

hydroxypregnenolone synthesis is central to animal circadian rhythms [55,56]. Circadian 

change in spontaneous locomotor activity concerning the 7α-hydroxypregnenolone synthesis 

and melatonin secretion were evaluated [55,56]. A strong association between circadian rhythm 

and metabolism has been well established. [66–68]. The circadian rhythm regulates glucose 

homeostasis and energy balance through insulin [61]. 
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Melatonin can influence the circadian rhythm in the cardiovascular system by following 

pathways such as i) central oscillator in the SCN; ii) the sympathetic output to the heart and 

vessels; iii) interactions with other hormonal systems involved in cardiovascular system 

regulation [57]. Thus, melatonin protects the cardiovascular system through its influence on 

circadian rhythm. Continuous practices of meditation may influence melatonin production. 

Overall, it is apparent that melatonin protects the heart by regulating circadian rhythm (Figure 

1).  

 
Figure 1. Role of melatonin in circadian rhythm. Regulation of circadian rhythm via melatonin synthesis 

correlated with glucose and lipid metabolism. 

3. Role of Melatonin in Cardiac Energetic Metabolism 

The energy needs demand of a healthy heart is primarily met by fatty acids (80%) and 

the rest from glucose (20%). At rest, cardiomyocytes use 15-20% of maximal oxidative 

capacity [69]. Any metabolic disturbance triggers cardiac dysfunction. Altered cardiac energy 

metabolism impairs ATP synthesis [70], gradually increasing cardiac failure risk [71]. On the 

other hand, dyslipidemia is a significant risk factor for cardiovascular diseases [72]. Melatonin 

decreases low-density lipoprotein (LDL) level and body weight in high-fat diet-induced non-

alcoholic fatty liver disease mice [72]. 

Studies have reported that melatonin influences carbohydrate metabolism [73,74] in 

pinealectomized animals. It upregulates the expression levels of enzymes involved in lipolysis, 

β-oxidation, and mitochondrial biogenesis-related genes [74]. Thus, melatonin maintains an 

adequate energy balance by regulating the energy flow and expenditure [15]. 

Glucose and lipid metabolism are linked together in several ways. There is a crosstalk 

between melatonin and insulin signaling [75]. Melatonin promotes glucose transport glycogen 

synthesis, inhibits lipolysis, regulates body weight and glucose metabolism through the 

phosphorylation of IRS-1 under insulin [56,76]. Membrane-bound melatonin receptors, MT1 

and MT2, reduce the intracellular cAMP level and control cAMP-dependent phosphotyrosine 
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phosphatase activity, thereby accelerating insulin phosphorylation [76]. This process implies 

strong evidence regarding the protective effect of melatonin by balancing glucose and lipid 

metabolism. The alteration in the carbohydrate metabolism induced by glucose intolerance and 

insulin resistance may be reversed by melatonin [77]. It is one of the functions to maintain the 

energy balance in the heart.  

4. Role of Melatonin in Oxidative Stress 

In diabetic complications of microvascular and cardiovascular systems, oxidative stress 

plays a vital role in promoting the disease. Oxidative phosphorylation plays a crucial role in 

oxidative stress through electron leakage in the form of O2
–[78], H2O2, and HO [79] and triggers 

apoptosis [80]. Also, the overproduction of mitochondrial ROS triggers hyperglycemia and 

causes tissue damage [80] by activating nuclear factor kappa B (NF–kB) [81], which further 

leads to tissue fibrosis, induced by inflammation [82]. Also, excessive ROS disrupts 

mitochondrial function by activating the release of inflammatory cytokines, growth factors, 

elastases, and vasoconstrictors [83–85]. These factors activate other ROS sources such as 

NADPH oxidases, cyclooxygenases, and lipoxygenases, which further increase ROS 

production in the pulmonary vasculature causing pulmonary vascular endothelial damage [86–

88], leading to reduced blood pressure in the heart. A decade ago, Ianas et al. first reported 

melatonin's free radical scavenging activity [89]. It also stimulates the antioxidants to directly 

neutralize the free radicals, reactive oxygen, and nitrogen species [90]. The hormone can also 

reduce nocturnal blood pressure [91]. Paul and Simko reported that melatonin guards the heart 

against ischemia-reperfusion injury through its effective ROS scavenging activity [92]. 

 
Figure 2. Mechanism of oxidative stress in cardiac function. 

Mitochondrial nitric oxide synthase (NOS) plays a vital role in the formation of reactive 

nitrogen species (RNS), which induces cellular damage and causes cardiovascular risk [93]. 

The lack of nitric oxide scavenging could adversely affect [94]. The function of mitochondria 

complex I and IV are influenced by melatonin [95,96]. Melatonin intensifies the activity of 
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endogenous antioxidative enzymes [97] and neutralizes the nitric oxide, hydrogen peroxide, 

singlet oxygen, peroxynitrite anion, and hypochlorous acid [90] or directly scavenges NO and 

ONOO or inhibits the synthesis of NOS [98–100]. Melatonin also stimulates antioxidant 

enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase [90].  

The metabolites of melatonin, such as N1-acetyl-N2- formyl-5-methoxy kynuramine 

and N-acetyl-5-methoxykynuramine, also have a potent antioxidant activity [99,101,102]. Due 

to scavenging activity on OH, a highly toxic ROS, counteract lipid peroxidation [103,104] 

(Figure 2). Thus, directly and indirectly, melatonin decreases oxidative stress by antioxidant 

enzymes and reduces cardiovascular diseases. Overall, it is clear that melatonin and the 

regulation of circadian rhythm promote cardiac health by reducing oxidative stress.  

4.1 The role of melatonin in anti-inflammatory activity correlated with oxidative stress in the 

cardiovascular system. 

In oxidative stress, the H2O2 production in human chondrocytes induces the release of 

IL-1b, IL-8, CXCR-4, TXNIP, STS, and IFI-6-16 [105]. Nian et al. reported that the cytokines 

such as TNFα and interleukin-6 (IL-6) are involved in myocardial ischemic injury and regulate 

the myocyte survival or apoptosis of the cellular inflammatory response [106]. In cardiac 

failure, IL-1 signaling plays a negative role by repressing the contractility of the heart, 

stimulating myocardial hypertrophy, and prompting apoptosis of cardiomyocytes [107].  

Some physiological and psychological stresses trigger inflammation leading to chronic 

inflammatory diseases [108,109]. The overexpression of CXCR4 in cardiomyocytes might 

stimulate the inflammatory cells, increase TNF-α production, and induce cell death/apoptosis 

[110]. The activation of CXCR4 interacts with beta-adrenergic receptors and stimulates 

downstream signaling. CXCR4 plays a critical role in neuro-humoral regulation of the heart 

and the progression of heart failure [111]. Chronic inflammation may lead to apoptosis and 

myocardial remodeling [112]. Overall, myocardial damage is further intensified by 

inflammation (Figure 3). 

The expression of specific cytokines (iNOS, COX-2, TNF-α, and IL-6) and pro-

inflammatory mediators is coordinated by NF-κB [113]. Though in some instances, NF-κB acts 

as a cardioprotective mediator, in acute hypoxia and reperfusion injury, chronic activation of 

NF-κB promotes heart failure through its downstream signals. NF-κB signaling triggers 

chronic inflammation and pro-inflammatory cytokines release (iNOS, COX-2, TNF-α, and IL-

6). It may lead to stress response in the endoplasmic reticulum resulting in cardiomyocyte death 

[114]. The association between elevated circulating chemokine levels and cardiac dysfunction 

has been well established [115–117]. 

Stress modulates the expression of immune response genes through the central nervous 

system (CNS) via the effects of hormones and neurotransmitters on the gene transcription 

control pathway [118]. In psychological stress, melatonin suppresses norepinephrine and 

epinephrine expression levels in rodents [119–122]. In addition, reduced melatonin level leads 

to elevated oxidative stress and the release of inflammatory mediators. Oxidative stress-

mediated cytotoxicity and up-regulation of inflammatory mediators were observed in cases of 

decreased melatonin levels [112]. The anti-inflammatory effect of melatonin is mediated 

through counteracting the inflammatory process by free radical scavenging and activation of 

the endogenous antioxidant defense machinery [123–128]. 

Melatonin down-regulates the expression of SIRT1, which elicits anti-inflammatory 

activity [129]. Melatonin blocks hydrogen peroxide-induced phosphorylation of PI3K/Akt, 
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p38, ERK, JNK, and MAPK and the activation of NF-κB, which is reversed by sirtinol and 

SIRT1 siRNA. Thus, NF-κB does not directly induce or promote cardiac failure by eliciting 

the downstream signals. Melatonin decreases the expression of iNOS and COX-2 and also the 

production of NO and PGE2 [129]. 

Melatonin has been shown to modulate the immune system by regulating cytokines 

[130]. Melatonin promotes immune-stimulatory effects on several immune parameters, such as 

antibody-dependent cellular cytotoxicity [131,132]. Melatonin reduces the synthesis of TNF-

α, IL-1β, IL-8 release, and CXCR-4, TXNIP, STS, and IFI-6-16 [129]. Thus, they do not 

increase the neuro-humoral regulation in the heart and the progression of heart failure. It was 

reported that melatonin acts as an antioxidant and exerts numerous anti-inflammatory functions 

[133–137]. In consequence, melatonin plays a critical role in heart neuro-humoral regulation 

and the progression of heart failure. Melatonin blocks the production of H2O2 and exerts its 

anti-inflammatory activity in maintaining the metabolic activity of the cardiovascular system 

[138,139]. The aforementioned process implies that melatonin acts as a cardioprotective agent 

by reducing oxidative stress and inflammatory mediators such as NF-κB. 

 
Figure 3. Mechanism of the inflammatory mediator in cardiac function. Overexpression of IL-1b and CXCR4 

affect cardiac function leads to cell apoptosis. IL-1b – Interleukin and CXCR4 – Chemokine Receptor 4, TNFα- 

Tumour Necrosis Factor α 

5. Role of Melatonin in DNA Damage Repair 

Single-stranded DNA damage-induced response is also involved in heart failure. In 

general, DNA damage can occur due to metabolic and hydrolytic processes. In the metabolic 

process, the release of reactive oxygen, nitrogen and carbonyl species, lipid peroxidation 

products, and alkylating agents cause DNA damage [140,141]. Reports show that ROS causes 

DNA damage at a frequency of at least 10,000 times per cell per day in humans [142,143].  

In the hydrolytic process, the modification of the molecular structure of DNA causes 

disturbance in the function of the heart as the unpaired DNA single-strand break (SSB) 

activates DNA Damage Response (DDR) and also the inflammatory cytokine expression 

through NF-kB signaling [140]. The activation of DDR causes the pathogenesis of heart failure 

triggered by pressure overload [140] (Figure 4). Minamino et al. observed that DDR activation 

in cardiomyocytes occurs in patients with end-stage heart failure. They also reported that 

excess pressure causes heart failure in mice [144].  
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Melatonin protects DNA from damage and oxidation by balancing oxidant-antioxidant 

balance, inhibiting neutrophil infiltration, and reducing the 8-OHdG level [145]. The hormone 

plays a pivotal role in maintaining cardiac metabolism. Melatonin stimulates antioxidant 

enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSHPx) [146–148], 

and glutathione reductase (GR) to neutralize or directly scavenge the free radicals [149,150]. 

Thus, by reducing the DNA damage induced by oxidative stress, melatonin prevents 

pathological conditions in the heart. Melatonin neutralizes the free radicals causing DNA 

damage and gives protection through inactivating the DNA damaging agents [151,152]. 

Melatonin potentiates the DNA repair capacity against strand breaks caused by DNA damaging 

agents [153,154].  

 
Figure 4. Mechanism of the DNA repair in cardiac function. 

6. Hypothesis 

Meditation has well been documented to improve cardiac health. Cardiomyocytes 

derive 80% energy from lipids such as fatty acid and 20% from other sources such as glucose, 

ketone bodies, etc. Glucose and lipid homeostasis is maintained by circadian rhythm in the 

heart. Melatonin synthesized from the pineal gland regulates the circadian rhythm. In addition 

to maintaining circadian rhythm, melatonin also regulates glucose and lipid metabolism.  

Melatonin receptors are G protein-coupled receptors with two subtypes, MT1 and MT2, 

regulating glucose metabolism through phosphorylating insulin as crosstalk with insulin and 

accelerating insulin phosphorylation glycolysis for glucose homeostasis cytoplasm. CoQ 

neutralizes the free radicals formed during oxidative phosphorylation. Interestingly, the 

expression of CoQ is regulated by PINK1, whose expresses is dependent on melatonin.   

Elevated ROS caused by O2
-, H2O2, and WHO upon entering the pulmonary artery 

causes pulmonary endothelial damage and reduces the blood flow and blood pressure, 

ultimately resulting in cardiac dysfunction. On the other hand, the increased production of ROS 

also causes DNA damage. The DNA damage causes pressure overload and congestive heart 

failure. Free radicals also trigger the IL-1, IL-8, CXCR-4, TXNIP, STS, and IFI-6, which 

mediates cartilage breakdown. They also activate the NFκB, which acts as an anti-

inflammatory agent, but prolonged exposure causes cell apoptosis leading to a decreased heart 

size. Melatonin also acts as DNA repairing agent repairing the DNA damage in cardiomyocytes 

and preventing subsequent inflammatory reactions.  

Collectively, melatonin, in addition to being the regulator of circadian rhythm, acts as 

an antioxidant, anti-inflammatory, DNA repair agent. Further, melatonin also regulates glucose 

and lipid metabolisms. A number of reports suggest that the melatonin level is increased during 
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meditation. Independently, meditation has been shown to promote cardiac health. Therefore, 

we hypothesize that meditation-mediated improvement in cardiac health is through the action 

of melatonin. (Figure 5). 

 
Figure 5. Schematic diagram depicting the possible mechanism of meditation-mediated improvement in cardiac 

health through melatonin. Meditation stimulates the pineal gland to synthesize the melatonin and subsequent 

induction the 7-α hydroxypregnenole to regulate the circadian rhythm. The circadian rhythm regulates cardiac 

glucose and lipid homeostasis. In an altered modern lifestyle, circadian rhythm is disrupted, and consequently, 

there is a high occurrence of cardiovascular diseases. The altered circadian rhythm with elevated ROS disrupt 

glucose and lipid homeostasis. The increased level of ROS activates the inflammatory mediators' cytokines and 

damages the DNA, resulting in altered cardiac physiology. Melatonin is the central player of circadian rhythm, 

and it protects cardiomyocytes by acting as an antioxidant, anti-inflammatory mediator. Melatonin also repairs 

DNA damage. The red color refers to the inhibition of the mechanism. MT1/MT2 – Melatonin receptor 1& 2; 

TCA – Tricarboxylic acid; ROS – Reactive Oxidative Species; IL-1, IL-8 – Interleukin 1& 8; CXCR – 

Chemokine receptor; TXNIP - Thioredoxin Interacting Protein; STS – Steroid Sulfatase; IFI-6 – Interferon 6; 

NF-κB - Nuclear Factor kappa-light-chain enhancer of activated B cells. Red color lines indicate inhibition. The 

blue color background implies meditation regulates melatonin. The brown color background implies a Circadian 

rhythm. Dark blue implies – Mitochondrial function (Glucose and lipid metabolism and Antioxidants). Light 

Orange color implies – Anti-inflammatory. Light pink color Implies – DNA Damage. 

7. Conclusions 

Sleep and cardiovascular connection are two-way lanes. With heart disease, someone 

might have other health issues, including sleep disorders. Likewise, heart disease signs may 

worsen by sleep issues, such as obstructive sleep apnea (OSA) and insomnia. It is necessary to 

sleep a decent night, whether or not your heart is stable. Sleep improves both the heart and 

energy, thought abilities, and fitness. People will feel more pressure from the core if they are 

willing to cope with the sleep issues. 
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Owing to the frequent rising of sleep apnea patients, they have inadequate quality sleep 

and remain tired all day long. They may have impaired cardiovascular function as well. Sleep 

dysfunction is 47-83 percent, 35 percent, and 12-53 percent of those with coronary disease, 

auric fibrillation (heart rhythm disturbances, and stroke). The cardiac condition is exceptionally 

susceptible. Researchers report that sleep apnea that is not treated is one to five times more 

likely to die from heart failure. The meditation on sleep is a rare, directed experience that 

provides all-around sleep relief alone and helps us let go of the day — all that happened and 

all that was said — to relax the mind while relaxing the body at the same time. Scientifically 

speaking, meditation helps decrease the heart rate by ignition and relaxing breathing, 

improving the chances of a quality night's sleep. 

Cardiovascular diseases (CVD) are increasing the risk factor worldwide. Nowadays, 

yoga and meditation pay considerable attention to the defense of CVD. But the scientific 

mechanism of meditation behind CVD protection was not known. Meditation strategies have 

been documented to improve some amounts of HPA. Data from the American Journal of 

Practice were taken from the report. Studies have shown that melatonin impacts ischemia-

reperfusion, transient myocardial hypoxia, pulmonary hypertension, elevated blood pressure, 

valvular cardiac failure, artery disorders, and lipid metabolism. 

Although melatonin's function in the sense of heart failure has been studied in a few 

clinical trials, recent laboratory research results support the possible usage of melatonin in heart 

failure as preventive and adjunctive curative therapy. Melatonin could be a promising treatment 

alternative for cardiovascular disorders as cheap and well-accepted medicine. Recently several 

reports suggested that the continuous practice of meditation increases the production of 

melatonin, a hormone. Based on these, we derived the plausible meditation mechanism, which 

protects the heart from CVD. In these, we revealed the connection between meditation and 

melatonin and the role of melatonin in cardiovascular protection. Melatonin regulates the 

circadian rhythm, but it can also act as an anti-inflammatory, antioxidant agent and have a role 

in glucose and lipid homeostasis and DNA repair mechanisms because these are the reason 

which leads to cause cardiovascular diseases. Melatonin, which produces during the night only 

due to the modern lifestyle, decreased melatonin production. Recently shreds of evidence from 

the science community revealed melatonin production during the meditation. Thus, we 

conclude that melatonin production during meditation protects the heart from CVD. Further, 

we need to prove our hypothesis in real-time experiments. 
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