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Abstract: Designing a target-specific insulin delivery via the oral route or the non-invasive mode using 

the polymer-based drug delivery systems is a research area attracting the researchers' attention 

worldwide. In the present short communication, we report a new nano-system with a bioactive 

component, nicotinic acid (NA). It was conjugated via the lipase-catalyzed reaction with polyethylene 

glycol (PEG400). NA and PEG were taken in a 1:1 molar ratio along with 1% of lipase and reacted at 45 

°C. The PEGylated-NA was characterized for its structural aspects using different techniques. Swelling 

studies were carried out at pH 6.0, 7.0, and 9.0. The order of water uptake was 6.0 > 7.0 > 9.0. The 

PEGylated-NA was evaluated as a platform to load insulin at pH 7.4 and the physiological temperature 

of 37 ºC. It showed a high affinity for insulin with uptake of 82.68% with an adsorption capacity of 

206.7 mg/g. 
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1. Introduction 

In recent times, diabetes has been a serious problem challenging health management 

throughout the world [1-3]. Insulin is a regulatory hormone that plays an important role in 

controlling glucose homeostasis. It also allows cells present in the liver and muscle to circulate 

sugar from the blood and store it as glycogen in the liver and muscles [4]. Decreased level of 

insulin in the body causes diabetes mellitus; hence, its use in treatment is recommendable 

through the intravenous route to the patients to avoid side effects [5]. Targeted insulin delivery 

is the most effective therapy to treat diabetes [6]. The use of nano-insulin has become an area 

of much interest [7]. Drug delivery via the oral route is the most promising mode, considering 

its non-invasive operation, which leads to minimum discomfort for patients. Polymeric 

hydrogels with a high water retention capacity are good candidates to overcome hurdles in the 

way of effective and site-specific drug release [8-10].  

Conjugation of drugs with bioactive compounds leads to their targeted delivery directly 

to various organs or tissues by the controlled release that improves the pharmacokinetics of 

drug release and diminishes various side effects [11]. Hence, there is a need for some bioactive 

compounds which can decorate these drugs for target-specific delivery of drugs. For the 

targeted drug delivery system, conjugation of drug with polyethylene glycol (PEG) is clinically 

approved by FDA for humans because of its non-toxicity, non-immunogenicity, non-antigenic 

and amphiphilic nature with repeated ethylene oxide sub-units [12,13]. Conjugation of drug 
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with PEG-oligocholic acid increases circulation time, leading to sustained delivery to the 

target, as exemplified with PEG/poly(MAAc) reported to show resistance towards plasma [14]. 

There are many reports in which conjugation of PEG with various drugs resulted in controlled 

target-specific drug delivery in the literature. PEG attached with oligo acid and dendrimers has 

been reported for the targeted specific delivery of drugs [15,16]. Many other reports have been 

cited in the literature for sustained drug delivery by the covalent attachment of bioactive 

compound with PEG, which is clinically considered a potent technique [17,18]. In a study, 

PEGylated starch acetate nanoparticles were reported for the controlled delivery of insulin [19]. 

PEGylated chitosan hydrogels and cyclodextrin were also reported to enhance pharmaceutical 

activity and, consequently, sustain insulin release [20]. Given the above discussion, it is evident 

that the conjugation of some bioactive compounds with PEG is a more potent mode for site-

specific drug delivery. One study used folic acid as a bioactive component of the modified 

PEG-functionalized hydroxyapatite nanoparticles in paclitaxel delivery with enhanced activity 

[21]. The upload of insulin for oral delivery on biopolymers or bioactive materials has been 

reported in the literature [22-28]. In the present study, nicotinic acid (NA), a vitamin B, was 

PEGylated. It has lower molecular weight, higher water solubility, and a minimum side effect 

[29]. Its lower molecular weight is a positive feature for targeting molecules, a necessary and 

sufficient condition for conjugation. In a report, NA was used to investigate insulin resistance 

in the body [30].  

Given the previous work based on drug delivery from different biocompatible polymers 

[31-35], we have synthesized a versatile nano-sized hydrogel to modify NA by PEGylation and 

utilize the resultant polymer as vehicles for the upload of insulin. The modified PEG was 

characterized by Fourier transform infrared (FTIR), 1H nuclear magnetic resonance 

spectroscopy (1H- NMR), X-ray diffraction (XRD), and transmission electron microscopy 

(TEM). The swelling behavior of PEGylated-NA was studied to justify its drug uptake and 

release profiles. We are submitting this report as short communication as the release profile of 

the insulin-loaded material has not yet been carried out. There is no similar report in the 

literature. 

2. Materials and Methods 

2.1. Materials.  

Nicotinic acid (NA), triacylglycerin lipase, ethylene Glycol (EG) (Himedia Lab. Pvt. 

Ltd., India), polyethyleneglycol (PEG400) (Merck, Schuchardt, Germany), insulin human 

mixtard (Torrent Pharmaceuticals Ltd., India), sodium hydroxide, hydrochloric acid, di-sodium 

hydrogen orthophosphate anhydrous (Na2HPO4), sodium dihydrogen orthophosphate 

dehydrate (NaH2PO4.2H2O) (S.D Fine-Chemicals Ltd.), all of the analytical grade, were used 

as received.   

2.2. Synthesis of PEGylated-NA. 

NA was modified by the PEGylation method. Lipase (1% by weight of total reaction 

mixture) was used as a catalyst in the esterification reaction between NA and PEG (1:1 molar 

ratio) at 45 °C for 8 h in Chemical Reactor (MiniblockTM, Germany). The synthesized ester, 

named PEGylated-NA, was washed thoroughly (4 times) to remove unreacted materials. After 

purification, it was refluxed by thermal treatment under temperature 70 °C in the deionized 
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water to remove unreacted reaction components. PEGylated-NA was separated by washing 

with acetone and dried in an oven (Scheme 1). 

 
Scheme 1. Synthetic route of PEGylated-NA from nicotinic acid. 

2.3. Characterization of synthesized products. 

Synthesized product was characterized by Fourier transform infrared spectroscopy 

(Nicollet 5700); and transmission electron microscope images of the (Joel Stereoscan-150). 

Scanning electron microscopy of the synthesized sample was recorded on (SEM QUANTA 

250 D9393). 

2.4. Swelling study.  

The swelling behavior of the PEGylated-NA was studied as a function of pH and time 

at 37 ℃. A known weight (100 mg) of the material was immersed in the distilled water to 

optimize the period of swelling. Furthermore, the effect of pH on swelling was observed with 

respect to time (15–360 min) in buffer solutions of pH 6.0–9.0. The swollen polymer was taken 

out from the solution, wiped off, and then weighed immediately to calculate %swelling/water 

uptake (Ps) as [36]: 

                                

 𝐏𝐬 (%) =  
𝐖𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐬𝐰𝐨𝐥𝐥𝐞𝐧 𝐡𝐲𝐝𝐫𝐨𝐠𝐞𝐥 −  𝐖𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐝𝐫𝐲 𝐡𝐲𝐝𝐫𝐨𝐠𝐞𝐥

𝐖𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐝𝐫𝐲 𝐡𝐲𝐝𝐫𝐨𝐠𝐞𝐥
 × 𝟏𝟎𝟎            (𝟏) 

Fick's law was applied to determine the diffusion and swelling kinetics of the polymer and is 

expressed as [37,38]: 

                                                                   f =
Mt

Me
= ktn                                                                        (2) 

 

The linear form of Fick's law is represented as: 

                                                                 ln f = ln k + n ln t                                                                 (3) 

where f, Mt, Me, k, and n are the swelling fraction, swollen mas at a time 't', mass at equilibrium, 

kinetic constant, and diffusion exponential, respectively. The slope of the graph lnf vs. lnt gives 

the value of n. If n = 0.5, the solvent diffusion or transport rate is much higher than the rate of 

relaxation process of polymeric chains, which means swelling kinetics obey the Fickian model 

(Case I transport). For n = 1, the swelling kinetics obey the non-Fickian model (Case II), where 

solvent diffusion through the polymer is very fast compared to the relaxation rate, for 0.5 < n 

< 1.0, the swelling kinetics follow anomalous transport or non-Fickian model where swelling, 

and diffusion rate are analogous. For n > 1.0, swellings kinetics obey Super Case II transport 

where solvent transport occurs along with breaking of the polymeric chains.  

 

https://doi.org/10.33263/BRIAC132.102
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC132.102  

 https://biointerfaceresearch.com/ 4 of 11 

 

2.5. Insulin loading study. 

Accurately weighed, 100 mg of insulin was dissolved in a minimum amount of distilled 

water in different measuring flasks. The volume of the solution was made up to 100 mL for 

each insulin solution (250 ppm) using the phosphate buffer pH 7.4. After separating the insulin-

PEGylated-NA from the drug solution, the optical density (OD) values of the solution 

containing the residual insulin were measured on a spectrophotometer at 660 nm. The 

hydrogels were washed thrice with the distilled water and were later dried under vacuum. The 

drug loading capacity (q) and entrapment/encapsulation efficiency (EE%) of the hydrogel were 

calculated from the following equations [39]:  

                                                              q =  
Tc − Rc

W
 × V                                                                     (4) 

                                                    EE (%) =
Tc − Rc

Tc
× 100                                                                 (5) 

where Tc is the total concentration of the drug solution in ppm taken for loading, Rc is the 

concentration of rejected/unloaded drug in solution, and V is the initial volume of insulin 

solution. Evidence of the insulin-loaded sample was obtained by recording FTIR spectra in the 

4000-500 cm-1 range in KBr on Nicolet 5700 spectrophotometer. 

3. Results and Discussion 

3.1. Characterization of polymers by different techniques. 

Conformation of synthesis of new PEGylated-NA by covalent conjugation of PEG with 

NA, loading of insulin on PEGylated-NA was obtained from the FTIR spectroscopy (Figure 

1). FTIR spectra of PEGylated-NA shows bands at 3142 cm-1 (C–H stretching vibrations), 2954 

cm-1 (CH2 symmetric stretching vibrations), 1639 cm-1 (C=N stretching vibrations of ring), 

1580 cm-1 and 1406 cm-1 (C=C stretching vibrations), 1381 cm-1 (CH3 symmetric bending 

vibrations), 1259 cm-1 and 1119 cm-1 (two strong C–O stretching bands due to asymmetric and 

symmetric stretching C–O–C group), 1059 cm-1 (C–H in-plane bending), 961 cm-1 (C–O–C 

stretching vibrations) and 844 cm-1 (C–H binding vibrations) [40,41] (Figure 1a). Insulin has a 

large number of functional groups, and its loading by the PEGylated-NA affects the intensity 

and stretching mode. After insulin uptake, all the bands remain preserved with a slight change 

in their position and intensity along with the appearance of the new bands at 3290 cm-1, 1659 

cm-1, and 1570 cm-1 due to N–H, amide I, and amide II bands (C=O stretching vibrations) which 

confirms loading of insulin onto PEGylated-NA (Figure 1b) [42].  
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Figure 1. FTIR spectra of (a) PEGylated-NA and (b) insulin-loaded PEGylated-NA. 

TEM/SEM images were used to study and reveal the polymeric structures' shape, size, 

or surface morphology. It provides evidence of changes affected in the surface morphology 

after derivatization. SEM image of the PEGylated-NA shows a long porous space between the 

molecules (Figure 2a). After insulin adsorption, the surface becomes less porous and denser, 

revealing the absorption of insulin on the PEGylated-NA matrix (Figure 2b).  

 
Figure 2. SEM images of (a) PEGylated-NA and (b) insulin-loaded PEGylated-NA. 

  
Figure 3. TEM images of (a) PEGylated-NA and (b) insulin-loaded PEGylated-NA. 

(b) (a) (a) 

(a) (b) 

(a) 
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TEM images were recorded to study and reveal the shape and size of the polymeric 

structures pre– and post-drug loading. The TEM image of the PEGylated-NA shows a long 

smooth nanorod-type structure (Figure 3a). The size of these rods is < 100 nm. Nanorod shape 

or structure and smooth surface result from the self–assembly of the PEG chains on the one 

end and residual NA moiety at the other end. Later, in insulin-loaded PEGylated-NA, insulin 

molecules get deposited on the PEGylated-NA surface, which is evident from Figure 3b. 

3.2. Swelling study of PEGylated-NA. 

The PEGylated-NA behaves as hydrogel by absorbing a large amount of water (Figure 

4). Such property augurs well for its use as a drug delivery device—the appreciable high water 

uptake results from the self-assembled structure of the amphiphilic PEG chains. In the case of 

PEGylated-NA, water molecules interact with the PEG chains.  
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Figure 4. Ps of PEGylated-NA at different pH as a function of time at 37 oC. 
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Figure 5. Swelling kinetic plots at different pHs. 

The maximum equilibrium swelling of 1295% was attained within 300 min at 37 ºC. 

Structure and environment-dependent swelling has been reported in the literature for PEG 

microspheres [43]. Along with the high-water uptake by the PEGylated-NA, another important 

attribute of this nanomaterial is its stimuli-responsive swelling. These two features are related 
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to the high drug loading and the site-specific drug release. PEGylated-NA can partition a large 

amount of drug or bioactive molecules from water and release that at an appropriate site 

depending on the stimuli-responsive nature, or pH in this case. The maximum swelling was 

observed with the order of pH responsiveness to water uptake as the swelling order was found 

to be 6.0 > 7.0 > 9.0 at 37 ºC (Figure 4). From Fick's law, the value of n was found to be 1.193, 

1.28, and 1.18 for pH 6, 7, and 9, respectively, that swelling kinetics follows Super Case II 

transport of solvent (Figure 5). 

3.3. Preliminary investigation of insulin uptake.  

Loading insulin onto the PEGylated was carried out at the maximum solubility of the 

drug at pH 7.4 under the phosphate buffer saline (PBS) medium and at the physiological 

temperature of 37 ºC. It has uptake up to 82.68% with q value up to 206.7 mg/g. These values 

are far higher than reported in an earlier study [34]. High loading of insulin has many 

pharmaceutical applications as a single dose large amount of drug for a large therapeutic range 

can be used for the localized use at a part of the body (Figure 6).  
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Figure 6. Insulin uptake study by PEGylated-NA. 

A comparative study of the insulin uptake capacity and entrapment efficiency of the 

synthesized hydrogel with other polymeric systems is shown in Table 1, revealing that the 

synthesized hydrogel is an efficient drug delivery device for insulin delivery.  

Table 1. Comparison of insulin uptake capacity (q) and encapsulation efficiency EE (%) of the synthesized 

hydrogel with some polymeric systems. 

S. No. Polymeric materials EE (%) References 

1. Chitosan/TPP nanoparticles 69.37 ± 4.71 [42] 

2. mPEG10%-CS-GMC10% 71.3 ± 1.02 [44] 

3. Bipolymer lipid hybrid nanocarrier 50.94 [45] 

4. Chitosan hydrogels 78.0 ± 0.7 [46] 

5. Polycation complexes > 50.0 [47] 

6. Carboxymethyl chitosan nanocarriers 83.78 ± 3.73 [48] 

7. Polyelectrolyte complex (Ins/NGs-PEC) 85.2 [49] 

8. PEGylated-NA 82.68 Present study 
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4. Conclusions 

The present work aimed to design a versatile hydrogel by PEGylation of nicotinic acid 

(NA), without using a crosslinker via the lipase-catalysis. The PEGylated-NA has nanorod 

shaped structure with smooth surface morphology. These undergo high swelling when studied 

under media of different pH, from 6.0-9.0. The PEGylated-NA absorbs 82.68% of insulin at 

pH 7.4 and 37 oC. These NA-based nanorods have attractive applications in insulin release 

studies. 
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