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Abstract: Present study reveals the flow of a classical non-Newtonian fluid based on the Williamson 

model through a vertical flat plate. The free convective flow is generated because of the effect of 

buoyancy relating to the temperature. In addition to that, the influence of thermal radiation and heat 

source/sink in conjunction with the dissipative heat enhances the efficiency of transport phenomenon 

within the bounding surface. Well-proposed similarity transformation is used to transform the 

governing equation into ordinary. However, due to the dissipation, the nonlinear coupled problems are 

complex. For the solution, a semi-analytical approach such as differential transformation method 

(DTM) in association with the Padé approximant method is used instead of traditional numerical 

technique. Pade-approximant is useful to get a non-iterative solution without imposing the missing 

boundary conditions. It is a simple and effective way to determine the solutions of complex nonlinear 

problems with assumed boundary conditions at infinity. The physical significance of all the contributing 

parameters distinguished the flow properties are achieved and accessible graphically. Moreover, the 

validation of the present methodology with the traditional numerical technique is obtained, showing an 

excellent correlation in particular cases. 
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1. Introduction 

Body forces on fluid create natural convection flow problems that are frequently come 

across in fluid engineering. Such natural convection problems may be taken as convection flow 

about a plane surface, kept along the direction of the force. One of the cases was analyzed by 

Schmidt and Beckmann [1], considering the convection of air through a vertical surface in the 

existence of the earth’s gravitational field. The impact of the magnetic field upon an electro-

conductive fluid affecting the natural convection is generally experienced in aerospace 

engineering, design of nuclear reactors, and so many engineering applications. The heat 

transport phenomena of an electro-conductive non-Newtonian liquid through the surface via 

the interaction of magnetic field is analyzed by Mishra et al. [2]. Considering the impact of 

reacting species and non-uniformity in heat sources, they found that the applied magnetic field 
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has no effect on velocity distribution, but it has an opposite effect on the concentration and 

temperature of the fluid. Mishra et al. [3] also studied the MHD free convection flow by taking 

doubly stratified micropolar fluid. The transport phenomena on the natural convective of MHD 

fluid within a permeable medium were analyzed by Pattnaik and Biswal [4]. Impose of the 

importance of thermal radiation; several research works were carried out in fluid engineering. 

Many authors worked on the effect of solutal transport and radiating properties on MHD natural 

convective within a permeable medium [5, 6]. They have analyzed the effect in the case of an 

exponentially accelerated plane surface. Zhou [7] has introduced the differential transformation 

method (DTM), which is proved to be one of the most practical and well-established techniques 

to handle the governing equations. Later on, this method was verified with the decomposition 

method by Ayaz [8] and the numerical method by Kurnaz and Oturanc [9] for solving a system 

of linear and nonlinear differential equations. Further, DTM is used by Yaghoobi, and Torabi 

[10] to solve nonlinear problems, and results were compared with VIM (“variational iteration 

method”), HPM (“homotopy perturbation method”), PM (“perturbation method”) to verify its 

accuracy. It is proved that DTM is the most accurate method to obtain solutions to this type of 

problem. Recently, Sepasgozara et al. [11] used the DTM method to find out the momentum 

and heat transport phenomenon results for non-Newtonian fluid. They also find the validity of 

this method is in good accordance with the numerical method. DTM is also used by Usman et 

al. [12] to solve the problem of heat transfers in the case of nanofluid and compared the results 

with R-K method. It is found that both the methods are in good agreement with each other. 

DTM method holds good for solving problems in the bounded region, but the result 

becomes erroneous in the case of the unbounded region. So this method is jointly used with 

Pade approximation [13, 14] to solve nonlinear ordinary differential equations on an infinite 

domain. Later on, DTM Pade approximation is used by so many authors to obtain error-free 

solutions to more complex problems. A relative study was made considering DTM-Pade 

approximation and further numerical methods in solving a complex problem like convective 

flow within a permeable medium through a slant plate [15]. DTM and DTM Pade 

approximation was compared in solving the temperature distribution of MHD flow from a 

horizontal plane surface [16]. In both cases, the excellence of the DTM Pade approximation is 

established. A complex flow pattern, i.e., momentum characteristics in MHD flow, was 

examined by Azimi et al. [17] using DTM-Pade, and the result was compared with that 

obtained from numerical analysis to prove the supremacy of DTM-Pade over numerical 

analysis. Further infinite boundary conditions were worked out by Peker et al. [18] using the 

DTM-Pade method. The result was matched with that obtained from ADM (“Adomian 

decomposition method”) and VIM (“variational iteration method”).  

More correct solutions were obtained in the case of DTM-Pade. However, this 

technique is also used to establish the velocity pattern imposing magnetic field by Thiagarajan 

and Senthil Kumar [19]. More complicated problems like MHD flow through plane surface 

within a permeable medium are solved by Baag et al. [20] using both DTM combined with 

Pade and R-K, based on shooting to check the reliability of both methods. Later on, MHD 

Falkner-Skan flow of an electroconductive liquid through a permeable medium is investigated 

by Pattnaik et al. [21] using both DTM-Pade and Runge-Kutta fourth-order method. They 

established that solutions with higher accuracy are obtained in the case of DTM-Pade in solving 

nonlinear boundary layer problems. 

In recent times some effective studies have been done by researchers [24-31]. Few latest 

methods are developed by different researchers to prepare the augmentation in the flow 
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phenomena. The literature review revealed that because of the several industrial as well as 

engineering applications, the role of radiative heat transport is vital in this investigation. 

Therefore, in response to earlier studies presented in [32-34], it is noteworthy to analyze the 

current topic. This paper will discuss the heat transfer of MHD fluid flow using DTM. 

2. Analysis of the Problem and Formulation 

Free convection of non-Newtonian magnetohydrodynamic Williamson liquid past a 

vertical plate embedding with the porous medium is considered in the present investigation. 

Influences of gravitational force caus by buoyancy are incorporated in the momentum profiles, 

and in addition to that, the heat source and the thermal radiation enhance the flow properties. 

The flow pattern is considered laminar along the x-direction, and a uniform transverse magnetic 

field is imposed along the normal direction (Figure 1).  

 
Figure 1. Flow geometry. 

Assuming the aforementioned physical conditions the flow phenomena along with their 

boundary conditions are [1]. 
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Eq. (3) then reduces to,  
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3. Solution Technique  

3.1. DTM approximations. 

Zhou [7] in 1986 performed the study of differential transform. This is one of the 

processes to solve the set of differential equations using the semi-analytical technique. The 

basis of the method is Taylor series expansion, in which the equations are transformed into a 

recurrence relation in terms of polynomials to obtain a series solution. Firstly, the use of one-

dimensional conversion of the problem to solve IVPs as well as BVPs for ordinary differential 

equations.  

The differential transform of an analytical function ( )f x is defined as  
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By substituting equation (10) in (11) we get, 
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However, the concept of these transformations is obtained from Taylor series 

expansion.  

The fundamental DTM transformations are listed below in tabular form Table 1. But 

the DTM transformations we have used in our work are listed in Table 2. By taking the 

differential transforms of Eqs.7 and 8, respectively, we obtained Eqs. 13 and 14, respectively.
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where ( )f t  and ( )t  are the inverse differential transforms of ( )F k and ( )k respectively. 

Also, the transformed Boundary conditions are  

[0] 0, [1] 0, [2] , [0] 1, [1] .
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Solving Eqns. (13 - 15) we can get the DTM solution as, 
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But to get accuracy in the solution of the boundary value problem of the present study, 

we have adopted Pade Approximant after applying DTM.  

3.2. Pade Approximant. 

A Pade approximation of ( )f  on [ , ]a b  can be expressed as a rational function that 

contains, ( )NP  and ( )MQ  , two polynomials of degrees N and M, respectively [13]. Here, 

[ / ]N M the ratio will denote the quotient. Moreover, to get better approximate results, the 

combined DTM and the diagonal Pade [ / ]N N will be more powerful. 

To accelerate the process of convergence of the obtained series, Baker and Morris [13] 

employed the so-called Pade approximant. Assuming  a function ( )f  of the form, 
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Here, ic , 0,1,2,. . .i =  are the constant coefficients and ( )f   is the associated function.
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The above expression shows that, ib may be found. The coefficients contained in the 

numerator
 0 1, ,....... La a a follow immediately from the equation (20) by equating the coefficients 
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Therefore, equations (20) and (23) evaluate the Pade numerator and denominator. 

Following, we have calculated diagonal Pade approximant of order [2/2] of ( )f  and ( )g  , 
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Solving Eqns.(24) and (25) for A  and B as, 
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with some default values of all the parameters (varies in corresponding Figs.) as 

1 21, 0.5, 1, 1, 0.1,Pr 0.71, 1, 0.1M Kp R Ec S = = = = = = = =  we get 0.401892A =  and 

0.427302B = − . So Eqns. (16) & (17) gives the desired solutions as:  
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           (28) 

4. Results and Discussion 

Free convective properties of an electrically conducting Williamson fluid past a vertical 

plate embedding within a permeable medium is considered in the present investigation. 

Inclusion of the dissipative heat caused by both the viscous and Joule affect the flow 

phenomena and also forms the system into coupled and nonlinear. Moreover, the energy 

equation is enhanced with the additional effects of heat source/sink and the thermal radiation. 

First, the governing equations are solved using the approximate analytical method employing 

DTM, and the Pade approximant technique obtains better accuracy. In particular cases, the 

current outcome validates with earlier established results numerically with a good agreement 

and shown in Figures. However, the comparison of the present computational result of 

longitudinal velocity, transverse velocity, and the temperature profiles with the numerical 

solution is obtained and displayed via graphs.  

4.1. Validation of profiles. 

In several cases, the present computational results validate with earlier numerical 

results and those are displayed in Figures 2-5. Figure 2 exhibits the comparison of longitudinal 

and transverse velocity profiles and the temperature profiles with numerical results in the 

particular case by withdrawing (write the parameters) and shows a good correlation for each 

distribution. 

Figure 3 displays the comparison graph of stream function with respect to all the 

methodology applied, i.e., the DTM, DTM-Pade with numerical technique within a particular 

domain mentioned in the figure. It is observed that both the DTM and DTM-Pade agree well 

with each other, whereas the slight deviation of numerical results is remarked as the domain 

increases.   
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Figure 2. Validation of stream function, velocity, and temperature profile.  

It is clear to conclude that higher-order Pade is useful to get the coincidence of the 

results. Figures 4 and 5 compare the velocity profile and the temperature profiles for the 

computational results by both DTM, DTM-Pade, and the earlier numerical method. The 

observation is similar to that of the results shown in Figure 3. 

 
Figure 3. Comparison plot of stream function. 

 
Figure 4. Comparison plot of the velocity profile. 
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Figure 5. Comparison plot of the temperature profile. 

4.2. Velocity profiles. 

Figure 6 portrays the behavior of magnetic parameters in both the cases of the 

appearance/non-appearance of the porous matrix. From the mathematical point of view, the 

assumed value of Kp , ( 100)Kp =  validates with the case of absence and Kp , ( 0.5)Kp =  

represents the presence of porous matrix. Inclusion of magnetic parameter exhibits an opposing 

force formed by the resistive force produced by “Lorentz force” that retards the flow domain. 

Therefore, the velocity profile retards the entire region of the boundary layer regardless of the 

occurrence/absence of the porous matrix. Similar to that, porosity is also a resistive force that 

retards the velocity profile as well. Figure 7 elaborates the influences of the thermal buoyancy 

parameter and the non-Newtonian parameter on the velocity distribution for the 

absence/presence of porous matrix. Pick in the flow velocity near the sheet is marked with an 

increasing value of the buoyancy parameter; however, the bounding surface thickness retards 

significantly.  

 

Figure 6. Influence of M and 
Kp

on the velocity profile. 
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It is interesting to observe that, from the pick position, the profiles retards with opposite 

characteristics to that occurs near the plate to meet requisite conditions. An increase in porosity 

also retards the bounding surface thickness. It is also seen that the non-Newtonian parameter 

due to the flow characteristics of Williamson fluid retards the profiles near the sheet, and 

reverse effect is encountered from the point of inflection 1.5 =   to meet the appropriate 

boundary conditions. 

 

Figure 7. Influence of 


and 
2

 on the velocity profile. 

4.3. Temperature profiles. 

The behavior of several contributing parameters on the temperature profiles of the non-

Newtonian fluid is exhibited in Figures 8 and 9 for fixed values of other characterizing 

parameters. Figure 8 displays the effect of the Prandtl number on the fluid temperature in the 

presence of both magnetic and porosity. Is a usual phenomenon for the Prandtl number is that 

it decelerates the fluid temperature, resulting in the thermal boundary layer thickness retards. 

From the definition, it is clear that the Prandtl number increases mean there is a decrease in the 

thermal diffusivity. Therefore, the fluid temperature decreases. In the present case, the value 

of the Prandtl number is taken as 0.71 for the air at room temperature approximately 18o C  and 

the value 1 and 2 for gasses like ammonia (nearly 1.38). Hence, in the case of 1Pr   the 

thermal diffusivity dominates to enhance the fluid temperature. Figure 9 exhibits the influences 

of magnetic parameter, Eckert number, thermal radiation, and heat source/sink parameter on 

the fluid temperature. It is seen that for the increase of all the contributing parameters, the 

temperature increases significantly. Inclusion of magnetic parameter that retards the velocity, 

the amount of stored energy boosts up to increase the thermal boundary layer. The appearance 

of the coupling parameter is due to the inclusion of dissipative heat energy in the energy 

equation. The increase of the Eckert number expresses the decrease in enthalpy difference, and 

that resulted in enhancing the profile. The emission of electromagnetic waves from all matter 

undergoes due to the radiative heat energy and causes an increase in fluid temperature of the 

non-Newtonian fluid. In advance, the heat source encourages the phenomenon, whereas the 

sink opposes it throughout the thermal boundary layer. 
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Figure 8. Influence of Pr on Temperature Profile. 

 
Figure 9. Influence of (a) (b) (c) (d)M Ec R S on temperature profile. 

4.4. Engineering coefficients. 

Finally, Figures 10-12 display the engineering coefficients such as shear rate and rate 

of heat transfer coefficients due to the variation of different parameters. The rate of shear stress 

versus magnetic parameter for the variation of thermal buoyancy parameter and the non-

Newtonian parameter is exhibited in Figure 10. It displays that the rate increases as the 

magnetic strength increases and the increasing buoyancy also enhance it significantly. 

However, the non-Newtonian parameter has an opposing effect of lowering the shear stress 

rate. Figure 11 portrays the heat transfer rate versus the magnetic parameter with an increasing 

Prandtl number and the coupling parameter. It is seen that the Prandtl number is favorable to 

increase the rate, whereas retardation occurs due to the increase in the Eckert number. The rate 

of heat transfer with respect to the magnetic parameter for the improvement of heat source/sink 

and the radiation parameter is shown in Figure 12. It is clear that the source decreases the rate, 

whereas the sink increases. The increase of radiative heat energy boosts the rate significantly, 

whereas the increase of magnetic parameters ceases to decrease with a greater amount. 
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Figure 10. Variation of Skin Friction Coefficient with 1 2, andM   . 

 
Figure 11. Variation of Nusselt number with , and PrM Ec . 

 

Figure 12. Variation of Nusselt Number with , andM R S . 
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Table 1. Standard Transformation rules of DTM. 

Original Function Transformed Function 

( ) ( ) ( )f x u x v x=   

( ) ( )f x u x=  

( ) mf x x=  

 

( )
( )

n

n

d u x
f x

dx
=  

( ) ( ) ( )f x u x v x=  

 

( ) ( ) ( )f x u x v x =  

 
 

( ) ( ) ( )f x u x v x=  

[ ] [ ] [ ]F k U k V k=   

[ ] [ ]F k U k=  

1,
[ ]

0, otherwise

k m
F k

=
= 


 

[ ] ( 1)( 2) . . .( ) [ ]F k k k k n U k n= + + + +  

0

[ ] [ ] [ ]
k

n

F k U k V k n
=

= −  

0

[ ] ( 1)( 1) [ 1] [ 1]
k

n

F k n k n U k V k n
=

= + − + + − +  

0

[ ] ( 1) [ ] [ 1]
k

n

F k k n U k V k n
=

= − + − +  

Table 2. Transformations used in the present problem. 

Original Function Transformed Function 

( ) ( )f x f x  

0

( 1) ( ) ( 1)
k

r

k r F r F k r
=

− + − +  

( ) ( )f x f x  

0

( 1)( 2) ( ) ( 2)
k

r

k r k r F r F k r
=

− + − + − +  

( ) ( )f x f x  

0

( 1)( 2)( 3) ( ) ( 3)
k

r

k r k r k r F r F k r
=

− + − + − + − +  

( ) ( )f x f x   

0

( 1)( 2)( 1) ( 1) ( 2)
k

r

k r k r r F r F k r
=

− + − + + + − +  

( ) ( )f x f x   

0

( 1)( 2)( 3)( 1)( 2) [ 1] [ 3]
k

r

k r k r k r r r F r F k r
=

− + − + − + + + + − +  

( )
2

( )f x  

0

( 1)( 1) ( 1) ( 1)
k

r

k r r F r F k r
=

− + + + − +  

( ) ( )f x g x  

0

( 1) ( ) ( 1)
k

r

k r F r G k r
=

− + − +  

( ) ( )f x g x  

0

( 1)( 2) ( ) ( 2)
k

r

k r k r F r G k r
=

− + − + − +  

( ) ( )f x g x   2

0

( 1) ( 1) ( 1)
k

r

k r F k r G k r
=

− + − + − +  

( ) ( )f x g x  

0

( 1)( 2) ( ) ( 2)
k

r

k r k r G r F k r
=

− + − + − +  

5. Conclusions 

An approximate analytical approach to the study of an electrically conducting 

Williamson non-Newtonian fluid past a vertical plate is presented in the current investigation. 

The inclusion of dissipative heat energy enhances the heat transfer properties significantly. 

Flow behavior and the heat transfer characteristics are observed for various contributing 

parameters and displayed via graphs. The physical properties of these parameters are 

deliberated in the discussion section. However, the main focus towards the significant results 

is appended as conclusive remarks. The current solution validates the earlier established results 

showing the proposed method's convergence criteria. The resistive force offered by the Lorentz 

force for the inclusion of magnetic field retards the velocity profiles. The stored energy boosts 

the fluid temperature due to the enhanced values of the Eckert number and dissipative heat 
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energy. The Williamson parameter is favorable to decrease the rate of shear stress coefficient. 

Heat source retards the heat transfer rate, whereas the impact becomes opposite for the sink 

parameter.  
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