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Abstract: Obesity, Diabetes, and Cancer are major health concerns worldwide. Studies are ongoing to 

find a molecular drug target that simultaneously regulates these diseases. One such protein is 

adiponectin which modulates numerous physiological processes and regulates pathways associated with 

these diseases. Here we have reviewed the potential of adiponectin as a drug target and discussed 

possible mechanisms by which herbal compounds can modulate its function. Adiponectin exerts its 

function by binding to its transmembrane receptors (adipoR1 and adipoR2), which stimulate signaling 

cascades involved in regulating these diseases. Adiponectin activity can be enhanced by the 

transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ), or several natural 

compounds(like curcumin). The mechanism by which these phytocompounds influence adiponectin 

activity at the molecular level is unclear. Here we have summarized various natural compounds that can 

modulate adiponectin activity and in silico, examined the mechanism by which curcumin regulates 

adiponectin activity. Our molecular docking studies results indicate that curcumin can act as a ligand 

for PPARγ and activate adiponectin. Understanding the adiponectin activation mechanism will help 

develop new herbal drugs to cure obesity, diabetes, and cancer. 

Keywords: adiponectin; curcumin; PPARγ; molecular docking; natural compounds; obesity; diabetes; 

cancer. 
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1. Introduction 

Adiponectin is the most abundant adipokine secreted by the white adipose tissues 

through adipocytes into the bloodstream in the form of oligomeric derivatives such as 

trimeric:67 kDa, hexameric:140 kDa, and high molecular weight polymeric:300 kDa with 

distinct features of these oligomeric form[1]. It ameliorates insulin sensitivity, reduces 

inflammation oxidative stress, and regulates metabolic diseases [2-4]. The protein is a 

biomarker for several conditions like obesity, diabetes, aging, and cardiovascular diseases [5]. 
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It plays a key role in maintaining the male and female reproductive system [6] and regulating 

the pathophysiology of several diseases in the liver and skeletal muscle.  

The protein acts on adipoR1 and adipoR2 receptors, which exist as isoforms, initiating 

the downstream signaling mechanism. Many adiponectin mimics [7] can also bind to these 

receptors and lead to signaling, as in the case of adiponectin. Prominent one of these receptor 

agonists is AdipoRon [8] which can be used to treat various physiological diseases. It needs to 

be extensively studied how these natural compounds modulate the adiponectin signaling 

pathway [9,10]. Several dietary compounds can also activate adiponectin like curcumin. A 

schematic representation of the adiponectin signaling pathway is shown in Fig. 1. The amount 

of circulating adiponectin is observed to be increased drastically in patients with a curcumin 

diet [11]. Here we have reviewed various natural compounds that can enhance adiponectin 

activity. Further, using curcumin as an example and molecular docking technique, we have 

explored the possible mechanisms by which it can modulate adiponectin activity.  

The adipoR1 and adipoR2 are seven-transmembrane helical proteins similar to G-

protein─coupled receptors (GPCRs) [12] with reversed polarity for C-and N-terminals. As 

biological membranes play a key role in a number of these cases [13,14], like curvature changes 

or hydrophobic mismatching [15], the role of biological membranes in adiponectin signaling 

needs to be considered to be explored. Here we have discussed possible mechanisms by which 

membranes may modulate this signaling pathway. A good understanding of this pathway will 

open avenues in pharmacy to develop new therapeutic drugs that can treat multiple diseases 

like cancer, cardiovascular disorders, obesity, and diabetes all at once. 

 
Figure 1. Schematic representation: The adiponectin signaling cascade initiates when the protein acts on its 

receptor AdipoR1 and AdipoR2, which further activates downstream signaling and pathways involved in 

obesity, diabetes, and cancer regulation. The transcription factor (PPARγ) and natural compounds can modulate 

adiponectin activity. 
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1.1. Adiponectin structure. 

The full-length protein consists of 244 amino acids and is made up of four domains: a 

signal peptide domain ranging from amino acid 1 to 18, a hypervariable domain from 19 to 41 

amino acids, a collagen-like fibrous domain constituting of 66 amino acids, and a C-terminal 

globular domain from 108-244 amino acids [1,16]. The function of the signal peptide domain 

is to secrete the hormone outside of the cell. The succination (non-enzymatic post-translational 

modification of cysteine (Cys36 in this case) residue) in the hypervariable region of the protein 

prevents the oligomerization state. Hence, this region is most active in the case of diabetic 

patients [1]. The highly ordered oligomers formation occurs in the collagenous domain. The 

formation of globular adiponectin (produced from the proteolysis of full-length protein) occurs 

in the C1q (C-terminal globular) domain. This proteolytically cleaved product is also active. 

The X-ray crystallography, cryo-EM studies, and other structural studies have greatly helped 

understand the adiponectin signaling pathway. The examples of the PDB (Protein Data Bank) 

structures available for adiponectin and different partners involved in its signaling pathway are 

depicted in Fig. 2. 

 
Figure 2. Comparison of different structures available in protein data bank. 
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Figure 3. Representation of adiponectin signaling pathway and key players involved in achieving the biological 

response. 

1.2. Role of oligomerization in adiponectin functioning. 

Adiponectin exists in different forms viz higher molecular weight (HMW) (12─36 

units), hexameric low-molecular-weight, and the trimeric form [6]. These different forms are 

related to various biological activities. The HMW form is related to lower adiposity and lower 

chances of the prevalence of type-2 diabetes [8,9]. The possibility of the HMW form being 
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active while the hexameric and trimeric forms their proteolytic products still need to be 

investigated. The HMW form is more prominent in women than men [7]. 

The structural organization of adiponectin is important in modulating its function. As 

mentioned above, adiponectin exhibits different oligomeric states with different functions. For 

example,adiponectin enhances nuclear factor-κB (NFκB) activation through high molecular 

weight forms [11,16]. Adiponectin also exhibits anti-inflammatory activity by improving 

nuclear factor-κB (NFκB) activation [17-19]. Similarly, The T-cadherin (an additional receptor 

for adiponectin) can function exclusively with hexameric and HMW forms of adiponectin [20]. 

T-cadherins were observed for their function chiefly in cell growth, survival, and proliferation 

phenomenons. In-vitro studies have shown that the dysregulation of the molecule can lead to 

several cancers. Interestingly, the oligomerization of this protein is not attributed to its 

hydrophobicity since the GRAVY (Grand average of hydropathicity) index of the protein is -

0.41, which is an indicator of its hydrophilic nature. The pair of chaperons present in the 

endoplasmic reticulum (ER), namely ERp44 (ER protein with MW44 kDa) and Ero1-Lalpha 

(ER oxidoreductase 1-Lα), regulates the oligomerization state of adiponectin. Hydroxylation 

and glycosylation are some of the post-translational modifications required to stabilize a 

higher-order oligomeric state [13]. How the metal ions [14] and disulfide bonds [15] result in 

the formation of an oligomeric state still need to be studied further.  

1.3. Adiponectin signaling mechanism and connection to diabetes, obesity, and cancer. 

There are three different major pathways by which adiponectin stimulates a biological 

response. The Adaptor Protein, Phosphotyrosine Interacting with pH Domain and Leucine 

Zipper 1 (APPL1) protein acts as an adaptor molecule in the pathways involved in the 

regulation of insulin and lipid metabolism. There is a crosstalk between APPL1, adiponectin 

signaling product, and insulin receptor substrate in the first binding mode. This mediator 

molecule directly binds to insulin receptor substrate 1 and 2 (IRS1/2), which in turn 

subsequently activates phosphatidylinositol 3-kinase (PI3K), PDK1(3-Phosphoinositide-

dependent kinase 1), AKT or Protein Kinase B (PKB), FOXO1 (Forkhead box protein O1), 

and biological response (increase in glycolysis and decrease in gluconeogenesis) [21]. In this 

way, adiponectin is involved in the regulation of diabetes (Fig. 3). Further, the adiponectin acts 

as a ligand for the adipoR1 receptor (Fig. 3). This adiponectin receptor predominantly found 

in skeletal muscles has a high affinity for globular protein.  

The over-expression of the adipoR1/R2 receptor in the liver is associated with 

exacerbating liver ceramide level and ameliorating insulin sensitivity levels. The adiponectin 

binds to the adipoR1 receptor and leads to conformational changes. There is a movement of 

helices IV and V of 3.6 Å and 11 Å, respectively, upon ligand binding [22]. This conformation 

is known as the open conformation—the adaptor protein APPL1 associates with the adipoR1 

receptor via the COOH-terminal PTB domain [23]. The binding of this molecule is followed 

by activation of protein phosphatase 2A and subsequently dephosphorylation of the LKB1 

(liver kinase B1) enzyme. This enzyme moves from the nucleus to the cytoplasm and activates 

the AMPK (AMP-activated protein kinase) enzyme by phosphorylation. This is a very 

important step in the adiponectin signaling pathway. This enzyme is involved in several 

pathways important in physiological processes. The association of this enzyme with 

adiponectin and how it links to GPCRs has been discussed later in this review. 

The activated AMPK stimulates numerous pathways like ACC (acetyl-CoA 

carboxylase), eNOS (Endothelial nitric oxide synthase), IKK/NFκB/PTEN, mTOR, PGC1ɑ, 
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and FOXO3 signaling pathways. The ACC pathway is involved in an increase in fatty acid 

oxidation (decrease in fatty acid synthesis) and energy expenditure. Thus the, adiponectin plays 

a key role in controlling obesity. The AMP phosphorylation is followed by activation of the 

eNOS pathway, leading to vasodilation and further blood flow in the section lacking oxygen. 

The halting of the IKK/NFκB pathway is one of the newest approaches currently used in cancer 

therapy [24]. The activated AMPK leads to inhibition of this pathway that prevents 

IKK/NFκB/PTEN stimulated apoptosis and causes cytoprotection. The mTOR (mammalian 

target of rapamycin) pathway is another target for activated AMPK enzymes. This pathway 

plays a key role in cell metabolism, growth, and survival. This pathway is also one of the 

therapeutic targets for colorectal cancer [25]. Therefore the role of adiponectin can be very 

important in curing cancer. The other pathways switched on after AMPK phosphorylation are 

PGC1ɑ [26,27] and FOXO3 [28] signaling pathways. They are involved in increasing 

mitochondrial biogenesis. The Rab5 is a small GTPase that is crucial in carrying substances 

from the plasma membrane to early endosomes [29]. The activation of Rab5 is associated with 

the internalization of GLUT4 (a glucose transporter) and glucose uptake. The reduced GLUT4 

transport is related to insulin resistance [29,30] and thus type II diabetes. This is another mode 

of action through which adiponectin signaling controls diabetes. 

In another pathway by which adiponectin regulates fatty acid oxidation, just as in the 

case of adipoR1 here, also APPL1 acts as an adaptor molecule [21-24]. The APPL1 drastically 

improves PPARα expression, an important transcription factor regulating metabolism. This, in 

turn, escalates acetyl coenzyme A oxidase (ACO) and uncoupling proteins, resulting in fatty 

acid oxidation. Another mechanism where adiponectin acts as a ligand includes T-cadherin 

receptor correlated signaling. It was observed that only high molecular weight (HMW) and 

hexameric forms of adiponectin interact with T-cadherin, which implies this pathway operated 

in the eukaryotic system. This molecule regulates smooth muscle cell vasculature [31] and 

prevents neointima proliferation and atherosclerosis [29]. It is also found that adiponectin 

exerts its effects to prevent cardiovascular diseases [32] and may play an important role in 

modulating cytokine storm in COVID-19 disease [33]. To summarize, adiponectin is a very 

important protein that plays a key role in several diseases, and understanding the system will 

help in drug development.  

1.4. Adiponectin crosstalk with peroxisome proliferator-activated receptor. 

An inflow of glucose in the adipose cells activates adiponectin [28]. The activation of 

transcription factors peroxisome proliferator-activated receptor alpha (PPARα) [34] and 

peroxisome proliferator-activated receptor-gamma (PPARγ) has been found to stimulate this 

adipokine [35]. There has been a direct correlation between PPARγ and adiponectin hormone 

levels. This transcription factor typically gets stimulated by the binding of ligands [36]. Several 

PPARγ agonists like thiazolidinedione (TZD) have increased circulating adiponectin activity 

by 5 to 10 times [37]. The mechanism by which PPARγ activates adiponectin is that it attaches 

to PPAR response elements (or PPREs), a particular DNA sequence found in the vicinity of 

the transcriptional start site of genes. This is followed by the recruitment of transcriptional 

coregulators that change local chromatin structure, stimulate the competent RNA polymerase 

complex congregation, and initiate transcription of the genes.  

In the case of the binding of PPARγ agonist, the binding of the ligand to the ligand-

binding domain (LBD) of the protein leads to its conformational change, which dissociates it 

from the co-repressors (NCoR and SMRT). The function of these receptors is to halt the gene 
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transcription activity, and once it gets dissembled, the transcriptional activity continues [38]. 

Another transcription factor (PPARα) is also associated with enhancing adiponectin action. 

The activation pathway for PPARα agonist is independent of that of PPARγ [39]. The PPARα 

agonist, Wy-14,643, has been shown to increase the activity of adipoR receptors and thus 

increase adiponectin action. 

1.5. Adiponectin as a drug target and its distinct relation to G-Protein-Coupled Receptors 

(GPCRs). 

Adiponectin is one of the potential drug targets against obesity, diabetes, and cancer. 

The protein exerts its activity specifically in the liver, skeletal muscles, and vasculature. 

Several studies suggest that adiponectin replacement therapy might be useful in treating 

multiple diseases, as mentioned above [1]. Adiponectin is also distinctly related to G-Protein-

Coupled Receptors (GPCRs), which are one of the major thrust areas in the field of 

biochemistry. These GPCRs are involved in major cellular functions like heartbeat regulation 

and vision—about 40 % of the drugs target GPCRs to treat diseases. The GPCRs are related to 

adiponectin via a sensor of a common energy regulatory AMP-activated protein kinase 

(AMPK). It is an important metabolic enzyme activated by some GPCRs like adrenoreceptors 

and cannabinoid receptors [40]. The AMPK maintains cellular homeostasis, and its activators 

can be used as therapeutic agents in many diseases [41]. Although AMPK is related to many 

physiological processes, it is not the best drug target since it lacks a tissue-specific effect. 

2. In silico Studies with Adiponectin and Subsequent Molecules in Adiponectin Signaling 

Adiponectin is a small molecular weight protein hormone involved in regulating 

multiple diseases, so it might seem a good candidate for computational docking studies. 

However, it exhibits multiple forms, including very high molecular weight forms, and it is 

challenging to work on in silico studies with adiponectin HMW species. Therefore, only a 

limited number of computational studies are performed with this system. The amino acid 

mutational studies can be performed using computational tools to identify the critical amino 

acids involved in adiponectin function related to HMW species. The crucial role of Arg131 

residue in protein oligomerization has been demonstrated using computational studies [42].  

There have been molecular docking [43] and Molecular Dynamics (MD) simulations 

[44] studies conducted to screen for adiponectin mimic or AdipoRs agonist. A few compounds 

identified can act like adiponectin, which binds to AdipoRs and activates downstream 

adiponectin signaling. The exact molecular mechanism by which these compounds can activate 

downstream signaling is not very well understood. However, possibly these AdipoRs agonists 

viz. AdipoRon [45] and ADP355 [46] bind to these membrane receptors. Upon binding, they 

lead to a conformational change in AdipoR1/R2 as in the case of adiponectin and stimulate the 

downstream signaling via PPARα and AMPK phosphorylation. AdipoRon has a low binding 

affinity to its receptors, having a dissociation constant in the µM range. Thus extensive 

computational and in vitro studies can be performed to screen for the AdipoRon derivatives, 

which can bind with higher affinity to AdipoR1/R2 receptors. A good quality crystal structure 

of adiponectin receptors (2.9 Å and 2.4 Å for Adipo R1 and adipoR2, respectively) is available, 

which can immensely help perform these computational studies [47-50].   

PPARs (Peroxisome proliferator-activated receptors)are a group of transcription factors 

stimulated by its agonist. The PPARα and PPARγ are two of its members involved in 

adiponectin signaling. The PPARγ is present upstream of adiponectin signaling, whereas 
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PPARα is present downstream of the signaling. Thiazolidinediones (TZDs) are known agonist 

of PPARγ, but it has side effects [51]. Furthermore, to overcome these side effects, natural 

bioactive/ayurvedic/herbal extracts and derived compounds need to be screened that can act as 

an agonist to PPARγ protein. Several polyphenols [52] and compounds from Rhizophora 

apiculata [53] have been found to possess a binding affinity for PPARγ receptors. Many other 

secondary metabolites/compounds like curcumin have increased serum adiponectin levels [54]. 

One possible pathway that can be tested in silico is that these compounds can bind to PPARγ 

and stimulate its activity, increasing adiponectin activity. We have discussed this possibility in 

the section below. The second member of this transcription factor family PPARα acts 

downstream of the pathway and regulates fatty acid oxidation and energy homeostasis. 

Phenoxazinones [55] and Kojyl cinnamate esters [56] are some PPARα agonists enhancing 

adiponectin signaling. The in silico and in vitro analysis can reveal the exact molecular 

mechanism these agonists work. Another important protein kinase that plays a key role in 

adiponectin signaling is the AMPK enzyme. The phosphorylation of this is required for its 

activation. This energy biosensor also regulates many processes downstream of adiponectin 

signaling. Computational studies are being done to screen for the compounds that can activate 

this enzyme [57,58]. Catechin and licochalcone-A are a couple of compounds that have been 

shown to exhibit AMPK activation activity (Fig. 4) [59]. 

3. Natural Bioactive Compounds that Can Regulate Adiponectin Signaling 

Several dietary and herbal compounds have been discovered to regulate the adiponectin 

pathway [60]. These compounds can act via different pathways and target different adiponectin 

signaling pathway components. Several natural compounds can enhance the downstream 

adiponectin pathway by activating adiponectin receptors just like adiponectin. These 

compounds fall into the category called adiponectin mimics [61]. The lifestyle modifications 

are also associated with increased adiponectin levels [62-64]. The molecular mechanism by 

which these herbal compounds stimulate adiponectin signaling has been studied for some of 

these compounds. In contrast, for some natural compounds, it is still a matter of research.  

3.1. Natural compounds acting on PPARγ. 

A considerable number of dietary products reported can activate PPARγ and increase 

circulating adiponectin secretion. Amorfrutin is one of these natural products derived from 

Amorphafruticosa, a flowering plant belonging to Fabaceae legume plants, which has been 

shown to increase the adiponectin expression in vitro [65]. They act upon PPARγ and stimulate 

the transcription genes involved in the adiponectin signaling pathway. Astragaloside II and 

Isoastragaloside I are compounds extracted from the herbal plant Radix Astragali and have 

been shown to selectively elevate adiponectin production in 3T3-L1 and primary mouse 

adipocytes [64]. Some of these astragalosides are known to be PPARγ agonists [65-67], and it 

is possible that they also target PPARγ for its activity [68,69]. Catechin is observed as another 

PPARγ activator [70,71] can also increase circulating HMW adiponectin concentration [72]. 

Catechin and relevant phytochemicals have been found to be effective for promoting 

transcription factors that they activate or inhibit (e.g., NF-κB, PPARγ) [73-75]. 

Tetrahydrocannabinol, kaempferol, quercetin, genistein, and amorfrutins are other herbal 

compounds that stimulate the adiponectin pathway [76-78]. Goto et al. performed a deep study 
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of phytochemicals, bixin, to evaluate its applicability to activate PPARα and found improved 

obesity-induced abnormalities of metabolism for carbohydrates and lipids in mice [79].  

3.2. Natural compounds acting on PPARα. 

Rigano et al. described that PPARɑ agonists could also escalate adiponectin signaling 

by a mechanism independent of PPARγ [80]. Bixin is one of the naturally occurring PPARɑ 

activators which can help in ameliorating obesity [79]. The extract of Ephedra species acts as 

herbal medicine against obesity by increasing PPARɑ concentration [81-84]. Carotenoids are 

also phytoproducts and another PPARα agonist that has been associated in direct relation with 

HMW adiponectin concentration [1,19]. Some naturally occurring flavonoids like hesperetin 

and naringenin act upon PPARα and improve adipocyte activity [85-87]. A depiction of 

different herbal compounds targeting PPARα and PPARγ is shown in Fig.4. In this study, 

PPARα activators were found significantly effective for obesity control through carbohydrate 

metabolism by the oxidation of fatty acids in the liver. In addition, it was noticed that the dietary 

cis derivatives of carotenoids had been wide applicabilities as coloring agents in food and 

textile industries [88-90], mainly bixin and norbixin, have been reported to the activation of 

PPARα by luciferase assays using GAL4/PPARα chimeric and full-length PPARα. The 

molecular mechanism by which these agonists act is not clearly understood. In addition, the 

structural changes associated with PPARα binding to its agonists can be studied extensively 

shortly. The information will be useful in generating effective drugs from natural products to 

boost adiponectin signaling. 

 
Figure 4. Depiction of compounds extracted from natural bioactive sources targets either PPARα or PPARϒ for 

stimulating adiponectin signaling. 

4. In silico Analysis of the Possible Mode of Action of Natural Compounds on how it 

Increases Circulating Adiponectin Concentrations 

Several dietary compounds have been shown to increase circulating adiponectin levels, 

but their mechanism of action is not well known. The compounds, including curcumin derived 

from turmeric [91,92], ingredients of ginger and red pepper, gingerol, and capsaicin [93], are 

found ethnomedicinal important to cure cancer, obesity, diseases [94-98]. There are several 

different mechanisms by which these compounds can exert their effects. They can act upon 

PPARγ and activate the transcription factor. Secondly, they can associate with adiponectin and 
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enhance its production. To intensify the adiponectin signaling pathway, they can also act on 

adipoR1 and adipoR2 receptors [98,99]. It may also have a multimode action mechanism where 

the dietary compound can interact with different receptors and increase adiponectin activation. 

In this mode of action, a synergetic effect (because of the combination of two different effects) 

will be seen. The net outcome will be achieved by combining the effects from individual 

interactions. 

Here we have conducted an in silico analysis to examine the possible mode of action of 

these natural compounds using curcumin as an example. We investigated the binding affinity 

of curcumin with PPARγ, adiponectin, adipoR1, and adipoR2 receptors, respectively, using the 

swiss dock online server. The PPARγ is a known agonist of adiponectin. We also wanted to 

check if curcumin can bind and activate adiponectin, so we also examined the binding affinity 

of curcumin to adiponectin. Lastly, to study if curcumin can act as an adiponectin mimic, we 

investigated the binding affinity of curcumin with adipoR1 and adipoR2. We generated a 3D 

computational model of adiponectin (QMEAN -1.34) and PPARγ (QMEAN -2.52) using the 

Swissdock model. The primary sequence was extracted from UniProt. The molecular docking 

studies were conducted using an online swiss dock online server. We compared the ΔG values 

of these interactions to check the binding affinity of curcumin with them. The binding site was 

predicted using a .pdb structure already known. We found the curcumin has the highest binding 

affinity with PPARγ which is about -9.03 KJ/mol (Fig. 5) compared to adiponectin (ΔG =-7.47 

KJ/mol), adipoR1 = 7.62 KJ/mol, adipoR2 = -7.37 KJ/mol). There is an insignificant difference 

between the binding affinity of curcumin with the other three potential candidates. Our results 

found that curcumin acts as a PPARγ agonist and stimulates circulating adiponectin serum 

levels. It is also possible that curcumin might be functioning by a multimode mechanism[100]. 

In addition to acting as an agonist, it is also binding to the adipoR1, adipoR2 receptors, or 

adiponectin to activate it. An extensive study needs to be conducted to examine its mechanism 

further. 

 
Figure 5. The binding affinity of curcumin with different potential candidates. 
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5. Conclusion and Future Direction 

Adiponectin is a protein hormone involved in regulating multiple diseases like obesity, 

diabetes, and cancer and can act as a potential drug target against these diseases simultaneously. 

The protein exhibits different oligomeric forms, which are associated with different functions. 

Various synthetic drugs (line TZD) have been discovered to stimulate the adiponectin signaling 

pathway, but they have side effects, which is a concern. Studies are being shifted to examine 

natural bioactive compounds that ameliorate adiponectin signaling. These herbal compounds 

can act upstream of the pathway, like in the case of PPARγ agonist, or downstream of the 

pathway like the PPARα activator. They may also act like adiponectin mimics. Various natural 

compounds have been shown to have a positive regulatory effect on adiponectin with the 

increase in circulating adiponectin levels.  

However, the molecular mechanism by which these compounds act is not clearly 

understood. Here we have conducted in silico studies and performed molecular docking using 

curcumin as a prototype to unveil the possible mechanism by which these natural compounds 

may enhance adiponectin signaling. We studied the binding of curcumin with different 

receptors and examined the binding energy of the interaction. Based on the binding affinity 

results, we believe these compounds can bind to PPARγ and activate it to stimulate adiponectin 

signaling. It is also possible that curcumin might also be interacting with other receptors in a 

multimode action to stimulate adiponectin signaling. In the future, in-vitro and in vivo studies 

can be conducted extensively to explore the effect of these herbal products on the adiponectin 

pathway. Understanding this system will help develop new drugs using natural compounds, 

which is one of the thrust areas in the field of biochemistry and pharmacy and can be used to 

cure obesity, diabetes, and cancer all at once.  
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