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Abstract: The purpose of the study is to optimize the machining characteristics for milling ZE41A Mg 

alloy on a CNC milling by Taguchi-based Grey relational analysis (GRA) to achieve the maximum 

material removal rate (MRR), lowest corrosion rate (CR), and surface roughness (SR). After one week 

of immersion in simulated body fluid (SBF), weighing samples determined the corrosion rate. The 

process attributes, which include tool rotation cutting speed, feed rate, and depth of cut, are opted. The 

experiments were conducted using a Taguchi L16 orthogonal array (OA). Additionally, variance analysis 

(ANOVA) was used to determine the influence of process parameters on the responses. The study 

discusses the significance of machining process parameters concerning the degradation behavior of 

biomedical implant materials in a simulated body fluid (SBF). According to the current study, the most 

influential parameters in multi-objective optimization are the tool rotation cutting speed and feed rate. 

Thus, the results obtained with GRA of MRR: 492.25mm3/min, SR: 0.3112µm, and CR: 6.386mm/year 

with the experimental confirmatory test were close to the expected values. ZE41A Mg alloy machined 

samples at optimum end-milling parameters enhanced performance in reduced surface roughness and 

low in-vitro corrosion rate for ZE41A Mg alloy.  

Keywords: end milling; Mg alloy; machining characteristics; SBF; In-vitro corrosion; Taguchi method; 

Grey relational analysis. 
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1. Introduction 

Many orthopedic and cardiovascular implants use inert metals due to their superior 

corrosion resistance and mechanical characteristics compared to the adjacent living tissues [1]. 

Traditionally, these metallic inserts are intended to retain in the body continuously until they 

are removed via intervention [2]. However, using stable, inert materials to provide temporary 

support can result in several complications, including stress shielding over the period, resulting 

in the implanted tissue weakening and the need for subsequent surgery to remove the implants. 

Thus, the utilization of biodegradable implants in the bodily location and gradual load transfer 

to recovering tissue until cell regeneration can be viable solutions for addressing the 

disadvantages of inert implants [3,4]. A possible biomaterial, magnesium (Mg), has developed 

due to its biocompatibility, mechanical strength, and ability to degrade in the environment. Mg 

is a harmless element found in nature, with an adult daily consumption of 240–420 mg/day 
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being the recommended amount. This amount is over fifty times greater than the acceptable 

quantity of iron and zinc; both of them are viable implant materials in addition to titanium. 

Furthermore, magnesium and its alloys have displayed impressive biocompatibility under 

physiological settings [5,6]. 

Magnesium exhibits desirable mechanical properties along with its biocompatibility for 

an implant. Additionally, the modulus of elasticity of magnesium is approximately 45 GPa, 

which is comparable to the bone, which eliminates the stress shielding problem [7]. Mg 

degrades rapidly in physiological circumstances, resulting in a loss of mechanical integrity 

resulting in implant failure. Another vital concern related to the fast deterioration of magnesium 

implants is excessive hydrogen (H2) gas evolution. Accumulated gas bubbles can obstruct 

normal blood flow and cause tissue injury at implant sites [8,9]. Besides the fast uniform 

degradation caused by Mg's active nature, localized corrosion is yet another issue with Mg 

alloys. Localized corrosion is primarily caused by the growth of galvanic cells because of the 

potential difference between pure magnesium and its alloying components. Localized corrosion 

can result in the implant failing due to the degeneration of key sites. As a result, the factor of 

localized corrosion is a critical issue in alloy design. Therefore, this critical concern of 

deterioration must be addressed before the commercialization of magnesium implants. The 

ideal balance between mechanical strength, biodegradation rate, and biocompatibility has not 

yet been discovered [10,11].  

Surface morphology such as surface roughness (SR), micro-cracks, and porosities all 

have an important role in the degradation rate of magnesium alloys that varies according to the 

processing method used. There has been conducted majority of research on alloying, even 

though there is a very scarcity of specialized literature on the machining of magnesium alloys 

[12,13]. Mg-alloys' low density facilitates better machining with the least power requirements, 

long tool life, and superior surface integrity [14]. Therefore, traditional machining operations 

such as grinding, drilling, milling, and turning must be emphasized for the fabrication of 

magnesium alloy bone implants. Typically, this is accomplished by material removal in the 

form of chips. The size and shape of the chip removal, the rate of material removed, and the 

good surface quality are all closely correlated to the cutting kinematic interaction with the 

workpiece [15]. Dimensional precision, mechanical piece performance, and cost of production 

are all affected by surface roughness [3]. G. Okkaya [16] observed that the optimal cutting 

speed for achieving the lowest roughness seems to be up to 200m/min with feed rate (FR). 

According to Santhanakrishnan et al. [17], the lowest value of SR (Ra) occurs at a higher speed 

and low feed rate. Al Hazza et al. [18] also identified the ideal surface roughness with a low 

feed rate and a high cutting speed. Increased FR results in an increased SR, lowering the quality 

of the surface finish [19]. 

Dry milling magnesium alloys is a cost-effective and environmentally friendly process 

that is widely utilized in industrial manufacturing as a high-performance cutting technique [20]. 

A rougher milled surface is more prone to pitting corrosion [21]. For WEDM machining, the 

corrosion rate increases with increasing SR due to the high discharge energy [22,23]. To obtain 

a high-quality surface with minimal degradation is required to employ optimization techniques 

to determine the ideal machining parameters. Using the Taguchi design approach, the paper 

analyses the effect of machining parameters on the surface characteristics of magnesium alloys 

[24,25]. The Taguchi method can systematically develop a procedural layout, analyze the 

significant effect of each investigational attribute using ANOVA, and finally determine the 

optimum parametric arrangement that results in the optimal milling situation. The S/N ratio 
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used by Taguchi can be used to reflect the mean (average) and variance (standard deviation) of 

results obtained [17].  

Grey Relational Analytics (GRA) techniques are commonly used to improve conflict, 

discrete data issues, and multiple input methods. GRA has been used extensively to optimize 

different process attributes of manufacturing techniques such as drilling [26], end milling 

[27,28],  dry turning [29,30], optimizing ECM process [31], TIG welding [32], and turning 

[33,34]. Dhiraj et al. [35] used Taguchi’s method with different process variables by using 

GRA and TOPSIS implemented on AISI M2 steel. Many studies found that researchers used 

GRA with entropy measurement by allocating the entropy weight to each output to optimize 

the process parameters [36]. Machining has a substantial impact on magnesium alloy's surface 

properties that affect the degradation rate of the material. Therefore, tool rotation speed, FR, 

and depth of cut are selected as process parameters in this experiment.  

In the present work, Taguchi’s L16 orthogonal array (OA) was used to consider the 

milling process attributes for MRR, SR, and DR as response parameters. GRA approach was 

used to analyze multiple performance parameters. The primary objective is to determine the 

machining parameters that will result in the maximum MRR, minimize SR, and minimum DR 

during the end milling process. Additionally, bio-mineralization (apatite) and the morphology 

of machined surfaces were discussed concerning milling process parameters. 

2. Materials and Methods 

2.1. Materials. 

The present study involves a sequence of machining tests on ZE41A Mg alloy using a 

CNC Milling (Hytech, model-MT250) machine. The milling operations are carried out in a dry 

environment. Milling was performed on workpiece samples of size 26 mm × 8 mm× 8 mm in 

triplicate. In the current investigation, an HSS end mill cutter of diameter 8 mm and four flutes 

was chosen as the cutting tool. The elemental composition of the material was determined by 

Wavelength Dispersive X-ray Fluorescence (WD-XRF) (Bruker, Germany), as given in Table 

1. Mechanical, physical, and other Properties of material are given in Table 2. The structural 

characterization of milling samples was examined using a field emission scanning electron 

microscope (FESEM) (JEOL model JSM-7610F Plus). The material's microstructure and 

energy dispersive spectroscopy (EDS) analysis is shown in Figure 1(a, b). Fig. 2 illustrates the 

schematic process flow diagram used in this work on the ZE41A Mg alloy.  

2.2. Experimental design. 

The research is designed to determine the influence of process parameters on the 

performance of the finished surface, cutting speed, and degradation rate. The experimental 

matrix in this research is designed using the Taguchi design approach. The Taguchi method is 

a structured technique to experiment planning based on the design of orthogonal arrays (OA) 

and outcomes in significantly reducing the number of experiments while maintaining highly 

acceptable results. The Taguchi L16 (4
3) OA is used to control mainly process parameters: tool 

rotation cutting speed (TRS) in RPM, feed rate (mm/min), and depth of cut (mm), with their 

levels specified in Table 3 [37] that effected the surface roughness (𝑅𝑎) of the machined 

substrate as taken by Kumar et al., 2022. According to Taguchi OA design L16, experiments 

were conducted twice for each configuration, with the average data reported in Table 4. 
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TRS (RPM) has been computed in the current investigation by machining time over a 

sample length during the milling operation. Milled samples were analyzed using an SR tester 

(Mitutoyo-SJ410 model) to determine the average Ra value on the milled surface. After the 

immersion test, the stereo microscope (Carl-Zeiss, Stereo Discovery.V20) images show the 

apatite development on materials. 

Table 1. Elemental composition of ZE41A Mg alloy [20]. 
Contents Zn Ce Zr Mn La Nd Na Al Si O C Pr Cl Mg 

Wt% 4.2 0.58 0.54 0.02 0.25 0.15 0.26 0.02 0.06 0.58 5.23 0.04 0.03 Bal 

 

Table 2. Mechanical, Physical, and other Properties of ZE41A Magnesium Alloy. 
Mechanical Properties Physical properties Thermal Properties 

Tensile 
strength, 

UTS (MPa) 

Yield Tensile 
Strength, YTS 

(MPa) 

Elongation, 
% 

Micro-
hardness 

(HV) 

Young’
s 

modulu

s, GPa 

Poisson’s 
ratio 

Density, 
g/cm3 

Thermal expansion 
coefficient (α) 

(µm/m°C) 

218.38 90 4.63 65.1 44.12 0.35 1.84 15.1 

 
(a)      (b) 

Figure 1. (a) Microstructure and (b) EDS analyses of ZE41A Magnesium alloy. 

 

 
Figure 2. A schematic process flow diagram for the present experimental study on ZE41A Mg alloy. 

2.3. In vitro immersion study.  

The corrosion rate (mm/year) or degradation rate was determined by weighing (g) 

ZE41A samples after immersion for seven days in SBF held in BOD (Bio-Oxygen Demand) 
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incubator with 95% air and 5% CO2 at 37±10C according to ASTM G31-72. SBF was prepared 

[38] to have the same pH as blood (7.40 ± 0.05) and ionic strength similar to those of human 

plasma [39]. For this test, the SBF volume of 0.20 ml/mm2 was used for the material surface 

[40]. 

Magnesium alloys experience the most corrosion or deterioration in the first 7 days of 

exposure to SBF [22]; after that, the protective film thickens and decreases the rate of 

degradation. Thus, the degradation rate was considered through the period of 7 days of 

immersion in body fluid. 

Thus, in this instance, the degradation rate was considered over the first 7 days of 

immersion in the fluid to ascertain the highest rate of degradation following milling under 

various parametric conditions. To remove corrosion products, magnesium alloy samples were 

washed with chromic acid and DI water after seven days, followed by an hour of oven drying 

at 60°C. The degradation in the form of corrosion rate was considered in mm/year using the 

weight loss equation (1) [6]. 

Corrosion Rate (CR) =
K×W

A×T×
 ……… (1) 

Where W = weight loss (in grams), K = constant (8.76×104mm/year), A= area (cm2), T =time 

of contact (hours), =density of ZE41A (1.84 g/cm3). 

The apatite formation and modified surfaces after immersion and degradation were 

observed by a Carl-Zeiss stereo microscope.  

Table 3. The process variables and their levels of machining of ZE41A Mg alloy. 

Process Parameters Symbol Levels 

1 2 3 4 

Tool Rotation  
Cutting Speed (RPM) 

TRS 1200 1700 2200 2700 

Feed Rate (mm/min) FR 25 50 75 100 

Depth of Cut (mm) DoC 0.5 0.75 1.0 1.25 

Table 4. Experimental design using L16 OA and the responses. 

Exp.  No Process parameters Response parameters 

TRS 

(RPM) 

FR 

(mm/min) 

DoC 

(mm) 

MRR 

(mm3/ min) 

SR 

(Ra) (µm) 

DR 

(mm/year) 

1 1200 25 0.5 161.022 0.374 7.15 

2 1200 50 0.75 485.902 0.452 7.81 

3 1200 75 1 1008.634 0.566 8.05 

4 1200 100 1.25 1702.565 0.679 8.63 

5 1700 25 0.75 253.476 0.361 6.65 

6 1700 50 0.5 355.115 0.379 7.29 

7 1700 75 1.25 1236.260 0.416 7.92 

8 1700 100 1 1337.825 0.478 7.94 

9 2200 25 1 349.869 0.34 6.649 

10 2200 50 1.25 864.136 0.386 7.48 

11 2200 75 0.5 577.082 0.337 6.70 

12 2200 100 0.75 1115.676 0.449 7.88 

13 2700 25 1.25 445.512 0.306 6.287 

14 2700 50 1 748.084 0.371 6.85 

15 2700 75 0.75 857.699 0.392 7.41 

16 2700 100 0.5 835.263 0.419 7.55 

3. Results and Discussion 

3.1. Analysis of process attributes on response parameter: Material Removal Rate (MRR). 

The machinability of Mg-alloy is defined by the maximum MRR that may be induced 

during machining, which is the desired process parameter to be optimized. Maintaining a high 

MRR while controlling tool wear and limiting energy used by volume of chip removed are the 
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primary goals in the metal removal procedure. Figure 3 depicts the effect of change in process 

parameters on MRR. Table 4 summarises the investigational results for process attributes in 

the form of MRR, SR, and DR. As can be seen, each of the three factors had a noticeable effect 

on the MRR value during the milling of material. The effect of FR and DoC is more significant 

than that of TRS, as already confirmed by Sunil et al. [41], and can be seen in response Table 

5. MRR reduces consistently between 1200 and 2700 rpm as cutting forces rise and hardness 

increases, influenced by a range of variables like cutting temperature, strain rate, etc. MRR 

consistently increases as FR and DoC values rise across all four stages. With FR and DoC, 

cutting force per unit area gradually increases with force amplitude, increasing material 

removal. Additionally, as the depth of the cut rises, the contact area expands, resulting in a 

greater MRR. In Figure 3, the feed rate exhibits the most variance, making it the most 

significant variable, followed by the DoC. 

 
Figure 3. Effect of change in process parameters on MRR.  

Table 5. Response Table for Means for MRR. 

Level TRS (RPM) FR (mm/min) DoC (mm) 

1 839.5 302.5 482.1 

2 795.7 613.3 678.2 

3 726.7 919.9 861.1 

4 721.6 1247.8 1062.1 

Delta 117.9 945.4 580.0 

Rank 3 1 2 

To assess the influence of process parameters, variance analysis (ANOVA) with a 5% 

significance level on the output was considered. All process variables significantly influence 

MRR, as declared in Table 6. The most significant process variables for MRR are FR (74.11% 

contribution) and DoC (25.01% contribution). The maximum MRR is predicted at the 

characteristic settings TRS1: 1200RPM; FR4: 100mm/min; DoC4: 1.25mm, with an anticipated 

S/N ratio of 64.3982 and a mean of 1607.72 obtained from the Taguchi analysis for single 

response optimization. 
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Table 6. Analysis of Variance for MRR. 

Parameters DF Seq SS Adj MS F-Value P-Value Contribution 

TRS (RPM) 3 0.05095 0.01698 18.93 0.002 0.79% 

FR (mm/min) 3 4.75126 1.58375 1765.24 0.000 74.11% 

DoC (mm) 3 1.60366 0.53455 595.81 0.000 25.01% 

Error 6 0.00538 0.00090   0.08% 

Total 15 6.41126    100.00% 

3.2. Effect of process variables on Surface Roughness (SR). 

The surface integrity of magnesium based products can use to forecast their 

performance because surface imperfections are a major source of corrosion [42]. By altering 

the roughness of the implant surface, cell and tissue response can be improved by enhancing 

the implant area close to the bone and therefore boosting cell adhesion to the bone. Various 

parameters, including roughness, texture, and direction of imperfections, have been used to 

classify implant surfaces. There are three levels of roughness for implant surfaces: slightly 

rough (0.5-1m), intermediately rough (1-1.5m), and severe rough (2-3m) surfaces. Concave 

and convex textures can be seen on the surface of implants, which can be categorized as either 

additive or subtractive treatments, such as hydroxyapatite (HA) coating or titanium plasma 

spraying. The abnormalities on the implant's surface can also be categorized: A isotropic 

surface is one that has the same topography regardless of the measurement direction. 

Directionality and variation in roughness are two characteristics of anisotropic surfaces [43]. 

As many studies show, the cutting variables have a significant effect on the SR [44]. From 

1200 rpm to 2700 rpm, the SR declines in proportion to the TRS (see Fig. 4). TRS increases 

result in more heat being generated at the work surface, which softens the material and reduces 

the cutting force needed to cut the material. So, as a result, with increasing TRS, surface 

roughness reduces. In addition, fast cutting speeds decreased built-up edges and scaling effects, 

which resulted in a decline in the SR [45]. 

 
Figure 4. Effect of change in process parameters on SR.  

 

As shown in Fig 4, SR significantly enhances with FR and DoC. The material rate 

removed due to shear and cutting forces has increased, as discussed in an earlier section, due 

to the increase of FR and DoC. Higher built-up edges can be seen afterward with high DoC, 

which increases roughness [46]. To achieve a smoother finish, the higher TRS (2700 RPM) 
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and lower FR and DoC (0.5mm) values decreased SR. Chips attach to the tool face because of 

the cutting tool friction, affecting tool life and surface morphology [47]. The surface 

topography of machined surfaces captured by SEM in the experiments is shown in Figs. 5 (a) 

and (b). Feed marks, plowing grooves, micro-pits, metal debris, cracks, and other surface 

imperfections can be seen on the Mg sample's machined surface. Work hardening occurs due 

to increased FR and DoC, which increase cutting force and deformation. SEM in Fig 5(a) shows 

that the surface noticed the plowing and perturbances generated while milling samples.  

Table 7. ANOVA for SR. 
Parameters DF Seq SS Adj MS F-Value P-Value Contribution 

TRS (RPM) 3 1.2081 0.40269 14.72 0.004 38.90% 

FR (mm/min) 3 1.5340 0.51135 18.69 0.002 49.40% 

DoC (mm) 3 0.1992 0.06639 2.43 0.164 6.41% 

Error 6 0.1641 0.02735   5.29% 

Total 15 3.1054    100.00% 

TRS and FR are extremely influencing variables having a P-Value  0.05 impacting the 

SR, accounting for 38.90% and 49.40% of its total effect on the SR, respectively (Table 7). 

Figure 4 shows that the least SR attained relates to the settings of TRS4:2700RPM; 

FR1:25mm/min; DoC1:0.5mm; and predicted S/N ratio of 10.9421 and Mean of 0.256375 

determined by the Taguchi techniques for SR. 

 
  

Figure 5. SEM images of the ZE41A Mg samples (a) Milled surface (b) micro-cracks observed on the machined 

surface (c) apatite formation on the machined surface of Mg alloy. 

3.3. Effect of process variables on Degradation Rate (DR). 

After immersing ZE41A samples in SBF for seven days, the corrosion in the form of 

DR (mm/year) has been computed by equation (1). The degradation rate (DR) is proportionate 

to the weight loss rate (mg/cm2/day) that relies heavily on the material's surface properties 

through which the SBF accesses and promotes corrosion. Weight loss is detected due to 

released ions in the SBF solution via anodic dissolution and depends on the immersion period. 

When Mg-alloy is submerged in SBF, it has been observed that the metal ions are released at 

a quicker rate during the first few days of exposure and subsequently decrease as the immersion 

period increases. As a result, seven days of immersion were chosen for this investigation to 

obtain a consensus estimate of the corrosion rate. Dry machining operations resulted in a drop 

in DR as surface integrity improves due to increasing TRS and decreased cutting forces because 

of the working sample's thermal softening. Figure 6 illustrates the effect of change in process 
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parameters on DR of ZE41A Mg alloy. DR gradually increases with a feed rate (FR) of 25 to 

100 mm/min. By increasing the FR, the cutting tool’s travel speed over the working sample is 

increased, reducing the available time for heat to be delivered to the work material. As a result, 

most of the heat created is passed through the metal chips rather than the work material. 

Additionally, extreme plowing causes an increase in surface roughness and burr growth, which 

increases DR. Increased DoC makes the contact area increase between the metal chips and tool-

tip, which results in increased temperature generation at the tool-tip, which results in the 

formation of built-up edges. Due to the degradation of the surface morphology caused by the 

built-up edge, DR increases as the DoC enhances to 1.25 mm. 

 
Figure 6. Effect of change in process parameters on DR.  

 
 

Figure 7. Surface morphology observed by stereo microscope (a) before and (b) after removal of apatite from 

the samples after immersion in SBF. 

SEM images show micro-cracks on the machined substrate due to residual stress 

generation, as shown in Figure 5(b) by SEM images. Micro-cracks are effective attractors for 

bodily fluid (SBF) to penetrate beneath the substrate; they may attract the corrosion site to 

become more exposed. Following seven days of immersion in SBF, Figs. 5 (c) and 7 (a) 

indicate the apatite formation (bio-mineralization) by SEM and stereo microscope, and Fig 7 

(b) shows corroded states after removing apatite corresponding to samples after immersion in 

SBF. Larger crack densities and wider cracks indicate a faster degradation rate. 

Fig 8 of FESEM and EDS analysis determined the machined samples having apatite 

deposition with majorly constituent elements of Ca, Mn, Na, P, and Mg [48], and the presence 

of element O reflects the oxidation that takes place during machining and after that in 

immersion. 

(a) (b) 
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Figure 8. (a) FESEM and (b) EDS analysis of apatite formed on the machined sample with mineralization 

elements. 

As depicted in Fig. 7 (b), removing corrosion products reveal micro-porosity and 

localized degradation on the substrate surface, and degraded geometry clearly distinguishes 

weight loss criteria. Many studies reported the alloys’ deterioration mechanisms in 

physiological environments and highlighted the difference between the rate of bone repair and 

alloy degradation due to fast corrosion, which reflects the challenge in biomedical applications 

of Mg alloys [49]. 

Table 8. Analysis of Variance for DR. 
Parameters DF Seq SS Adj MS F-Value P-Value Contribution 

TRS (RPM) 3 2.2301 0.74337 16.02 0.003 31.88% 

FR (mm/min) 3 3.7871 1.26236 27.21 0.001 54.14% 

DoC (mm) 3 0.6999 0.23331 5.03 0.045 10.01% 

Error 6 0.2784 0.04640   3.98% 

Total 15 6.9955    100.00% 

 

ANOVA is used to compute the DR. TRS and FR are both significant, as indicated in 

Table 8, followed by TRS, as illustrated in Figure 6. TRS4:2700RPM; FR1:25mm/min; 

DoC1:0.5mm is the projected parametric setting for minimum DR and expected S/N ratio -

15.8229 and Mean 6.10146 using the Taguchi approach for DR. 

3.4. Grey relational analysis: multiple response optimization technique. 

3.4.1. Taguchi-based Grey relation optimization. 

Increased MRR, decreased SR, and DR are recommended requirements for optimizing 

machining process parameters. GRA is used to optimize multiple influencing factors with 

multiple feature characteristics simultaneously. The grey relational grade (GRG) establishes 

the quality condition on a ‘larger is better’ basis, prioritizing the best acceptable response 

characteristics [50]. The process flow adopted for GRA is given in Fig. 9. 

All experimental results are normalized to a value between 0 and 1. Because data 

patterns were compared using a variety of levels and units, pre-processing is extremely 

beneficial in GRA. Figure 10 illustrates the workflow for determining GRG. The quality 

requirements for output characteristics in this study include maximization of MRR, and thus 

mean values for MRR were normalized using Eq (2). The present investigation’s quality 

requirements for performance parameters include the maximization of MRR, and hence mean 

values for MRR were normalized using Eq (2). For surface roughness and corrosion rate, the 

lower, the better response adopted and the normalization done as perusing Eq (3). 
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A. Data Pre-processing and Normalizing mean data of Response Parameters: 

 

a) Larger the better characteristics 

𝑌𝑖(𝑘) =
{Xi(k)−min 𝑋𝑖(𝑘)}

{max 𝑋𝑖(𝑘)−min 𝑋𝑖(𝑘)}
….. (2) 

 

b) Smaller the better Characteristics 

𝑌𝑖(𝑘) =
 {max 𝑋𝑖(𝑘)−𝑋𝑖(𝑘)}

{max 𝑋𝑖(𝑘)−min 𝑋𝑖(𝑘)}
 …….(3) 

                

 Where; Yi (k) is a grey relational generation of normalized values; Xi (k) is measured  experimental mean 

values, 

max Xi (k) = highestvalue for the kth term 

min Xi (k) = lowest value for kth term (k = 1,2,3; response characteristics) 

 

B. Calculation of  Deviation Sequence and Grey relational coefficient (𝐅𝐢): 

 

𝐹𝑖(𝑘) =
(∆𝑚𝑖𝑛+Ѱ∆𝑚𝑎𝑥)

(∆𝑂𝑖(𝑘)+Ѱ∆𝑚𝑎𝑥)
   …….(4) 

 

Where, the deviation sequence [Δ0i(k)] = |Yo (k) – Yi (k)|, Ψ= characteristic coefficient, which ranges from 0 

≤ Ψ ≤ 1 and is selected as 0.5 in the present work. Δmin= minimum response for Δ0i and Δmaxis the maximum 

responsefor the Δ0i. 

 

C. Computation of Grey Relational Grade (χ): 

 

 χi = 1/n{∑ wk Fi(k)} n
k=1  ……..(5) 

 

Where n is the number of performance parameters and w = weight of the kth performance attribute 

∑ 𝑤𝑛
𝑖=1 i =1 ………(6) 

 

D. Estimation of Grey relational grade (GRG) at optimal settings  and Confirmation Experiment: 

 

χopt= χm +∑ (
𝑞
𝑖=1 χi − χm)  ……..(7) 

 

χopt = optimal grey relational grade (estimated); χm = total mean of GRG; χi = mean of the GRG at the optimal 

level, and q  is the number of significant process parameters. 

Figure 9. The process flow used in GRA for computing and analyzing GRG. 

 
Figure 10. General steps of GRA technique. 

Table 9. Pre-processing of data and determination of the grey relational grade (GRG). 

Exp. 

No. 

Normalization means 

response parameters 

Deviation 

sequence 

Grey relational coefficient 

(GRC) GRG Rank 

MRR SR DR MRR SR DR MRR SR DR 

1 0.00 0.818 0.633 1.00 0.18 0.37 0.333 0.733 0.577 0.558 8 

2 0.21 0.609 0.351 0.79 0.39 0.65 0.388 0.561 0.435 0.465 15 

3 0.55 0.303 0.246 0.45 0.70 0.75 0.526 0.418 0.399 0.444 16 

4 1.00 0.000 0.000 0.00 1.00 1.00 1.000 0.333 0.333 0.533 11 

5 0.06 0.853 0.845 0.94 0.15 0.16 0.347 0.772 0.763 0.642 4 

6 0.13 0.804 0.570 0.87 0.20 0.43 0.364 0.719 0.537 0.549 10 

7 0.70 0.705 0.303 0.30 0.29 0.70 0.623 0.629 0.418 0.553 9 
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Exp. 

No. 

Normalization means 

response parameters 

Deviation 

sequence 

Grey relational coefficient 

(GRC) GRG Rank 

MRR SR DR MRR SR DR MRR SR DR 

8 0.76 0.539 0.295 0.24 0.46 0.70 0.679 0.520 0.415 0.531 12 

9 0.12 0.909 0.845 0.88 0.09 0.15 0.363 0.846 0.764 0.672 3 

10 0.46 0.786 0.492 0.54 0.21 0.51 0.479 0.700 0.496 0.562 6 

11 0.27 0.917 0.825 0.73 0.08 0.17 0.406 0.857 0.741 0.681 2 

12 0.62 0.617 0.317 0.38 0.38 0.68 0.568 0.566 0.423 0.516 14 

13 0.18 1.000 1.000 0.82 0.00 0.00 0.380 1.000 1.000 0.814 1 

14 0.38 0.826 0.760 0.62 0.17 0.24 0.447 0.742 0.676 0.630 5 

15 0.45 0.769 0.521 0.55 0.23 0.48 0.477 0.684 0.511 0.561 7 

16 0.44 0.697 0.458 0.56 0.30 0.54 0.471 0.623 0.480 0.527 13 

In this case, GRG was determined by Eqn 5 by allocating the following weights to each 

characteristic: MRR: 30%, SR: 35%, and DR: 35%, with the consideration that each parameter 

desirability is mostly based on surface roughness and degradation. Experiment No 13 has the 

maximum value of GRG reflecting the optimum results; therefore, the optimal set of parametric 

values is determined. The computed GRC and GRG are declared in Table 9. The objective is 

to optimize MRR, SR, and DR with the optimal parameter combination concerning a larger 

GRG value. 

ANOVA, a variance analysis using Minitab 19 version, has confirmed that process 

variables substantially affect the output at the 95% confidence level. The larger, the better 

criteria were used to evaluate the GRG values. Table 10 responds using GRG. ANOVA Table 

11 illustrates the TRS (37.55%), FR (35.45%), and DoC (7.55%) contribution to the GRG 

computation. The maximum GRG is predicted at the characteristic settings TRS4: 2700RPM; 

FR1: 25mm/min; DoC4: 1.25mm, with an anticipated S/N ratio of -2.25012 and a mean of 

0.765443 obtained from the Taguchi analysis for single response optimization as shown in Fig. 

11. 

 
Figure 11. Effect of change in process parameters on GRG. 

Table 10. Response Table for Means for Grey Relational Grade. 

Level TRS (RPM) FR (mm/min) DoC (mm) 

1 0.5001 0.6715 0.5789 

2 0.5686 0.5515 0.5461 

3 0.6081 0.5600 0.5693 

4 0.6332 0.5270 0.6157 

Delta 0.1331 0.1446 0.0696 

Rank 2 1 3 
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Table 11. ANOVA for Grey Relational Grade. 

Parameters DF Seq SS Adj MS F-Value P-Value Contribution 

TRS (RPM) 3 0.37338 0.12446 3.86 0.075 37.55% 

FR (mm/min) 3 0.35251 0.11750 3.65 0.083 35.45% 

DoC (mm) 3 0.07512 0.02504 0.78 0.548 7.55% 

Error 6 0.19336 0.03223   19.45% 

Total 15 0.99437    100.00% 

3.4.2. Computing optimal value for GRG and a confirmatory test. 

ANOVA, which reveals the most significant characteristics, can forecast GRG’s 

optimum values. Three process attributes are considered in this case while establishing the 

optimal GRG value. It has been estimated by determining GRG at optimum settings using 

Equation 7, and the predicted GRG value is 0.7654. 

χopt (estimated)=0.5775+(0.6332-0.5775)+(0.6715-0.5775)+(0.6157-0.5775)=0.7654 

Table 12. Multi response optimization using GRA and confirmatory experimental results. 

Method Response Optimal condition % deviation 

± (P-E) /P*100 Predicted/expected 

optimal value (P) 

Experimental value 

(E) 

TRS4-F1-D4 TRS4-F1-D4 

GRA based Multi 
response 

optimization 

MRR (mm3/min) 544.46 492.25 -9.59% 

SR (µm) 0.3259 0.3112 4.51% 

DR (mm/Year) 6.5058 6.386 1.84% 

Similarly for Material Removal Rate: 

The entire mean MRRµ = 770.88 mm3/min, so the estimated value of MRR is computed as  

MRRp = (Tm4+ Fm1+ Dm4) – (q-1) MRRµ (where q = number of process variables used) 

= (721.639+302.47 +1062.12) – 2*770.88 = 544.46 mm3/min 

For Surface Roughness: SRp =0.3259µm 

For Degradation Rate: DRp = 6.5058 mm/year 

The GRG is anticipated based on the experiment results listed in Table 9, with process 

attributes established at each level. Table 12 describes the best-expected values and experiment 

results for multi-response optimization. Investigation No. 13 (Table 9) has the greatest GRG 

(0.814), exhibiting the optimal multiple performance characteristics using the process set of 

TRS4 -FR1-DoC4. 

To authenticate the optimum outcome estimated through Taguchi based GRA, the 

experiments were conducted using the optimal combination of TRS-2700RPM; FR- 

25mm/min; DoC-1.25mm for MRR: 492.25 mm3/min, SR: 0.3112µm, and DR: 6.386 mm/year 

as noticed in Table 12. The experimental results are close to the expected values.  

4. Conclusions 

The end-milling characteristics TRS, FR, and DoC were investigated experimentally 

for the ZE41A magnesium alloy. The experimental design was planned using Taguchi-based 

L16 OA, and the multi-objective optimization was performed using the grey relational analysis 

MRR, SR, and DR values were decreased due to increasing TRS. The FR has a greater effect 

on all three performance parameters. Since the cutting forces and volume of working sample 

sheared per unit time involved have grown with increasing FR and DoC; MRR, SR, and DR 

have risen substantially. It is noticed that the residual stresses are generated along the grain 

boundaries as the ZE41A surface compresses immediately after machining with chip removal. 

Thus, generated micro-cracks in Mg-alloy in SBF increase the degradation rate. In the present 
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experiment, the Taguchi technique found the optimal process parameters for each performance 

characteristic, and the results were as follows: TRS1-1200RPM; FR4-100mm/min; DoC4-

1.25mm for maximum MRR; TRS4-2700RPM; FR1-25mm/min; DoC1-0.5mm for minimum 

SR and DR. However, Taguchi-based GRA recommended that the TRS4-2700RPM; FR1- 

25mm/min; DoC4-1.25mm is the optimal combination for multi-objective optimization. The 

biomineralization (or corrosion rate) increases with increasing surface crack density, according 

to the Immersion investigations. Thus apatite elements such as Ca, Mg, P, and Na are the most 

common in mineralized products in developing apatite, according to EDS. 

Further research can be considered the impact of surface properties with H2 evolution 

rate and mechanical strength loss with ion release rate through Atomic absorption spectroscopy 

(AAS)/  Microwave plasma atomic emission spectroscopy (MP-AES) etc, for an extended 

period of immersion to determine the end milling procedure for making biodegradable 

magnesium alloy implants. 
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