Computational Investigation on the Efficiency of Small Molecule Inhibitors Identified from Indian Spices against SARS-CoV-2 Mpro

Chainee Das¹⁰, Dorothy Das¹⁰, Venkata Satish Kumar Mattaparthi^{1,*0}

- 1 Molecular Modeling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, (C.D.); dorthyds.1010@gmail.com Tezpur, Assam, 784028, India; chaineedas97@gmail.com (D.D.); mvenkatasatishkumar@gmail.com, venkata@tezu.ernet.in (V.S.K.M.);
- Correspondence:mvenkatasatishkumar@gmail.com, venkata@tezu.ernet.in(V.S.K.M.);

Scopus Author ID 54962670000

Received: 1.01.2022; Accepted: 5.02.2022; Published: 6.06.2022

Abstract: Recently, small compounds from Indian spices (Carnosol, Arjunglucoside-I, and Rosmanol) have been identified as SARS-CoV-2 main protease (Mpro) inhibitors. The structural dynamics and characteristic features of binding of these small molecules to the SARS-CoV-2 Mpro are not well understood. Here, we have constructed the potential of mean force (PMF) for dissociating Mpro-small molecule inhibitor complexes from the umbrella sampling simulations using the weighted histogram analysis method. Mpro-small molecule inhibitor complexes exhibited relatively higher dissociation energy values than the alpha-ketoamide-Mpro complex (positive control) from the PMF calculations. We found that binding affinity between protein and ligand is higher in Mpro-Arjunglucoside-I complex [$\Delta G_{\text{bind}} = -$ 19.74 kcal mol⁻¹ from MM-GBSA and $\Delta G_{bind} = -9.13$ kcal mol⁻¹ from MM-PBSA] than in other three SARS-CoV-2 small molecule complexes. The MM-GBSA/MM-PBSA calculations revealed that the small molecule inhibitors studied in this work have substantially higher binding affinity for Mpro. We found the residues present in SARS-CoV-2 Mpro's binding pocket contributed the most binding free energy to SARS-CoV-2 Mpro-small molecule interactions. Our findings emphasize the structural and binding features of the identified small molecule inhibitors with SARS-CoV-2 Mpro, which could be relevant in developing therapeutic candidates to combat SARS-CoV-2.

Keywords: MM-GBSA; MM-PBSA; the potential of mean force; molecular dynamics; per residue energy decomposition; COVID 19.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

A unique strain of SARS-CoV-2 coronavirus was first detected in Wuhan, a city in China's Hubei Province with a population of 11 million people, in December 2019, following a pneumonia outbreak with no clear reason. The virus has spread to more than 200 countries and territories around the world, and on March 11, 2020, the World Health Organization (WHO) declared it a pandemic[1, 2]. There was 288,767,991 laboratory-confirmed coronavirus disease 2019 (COVID-19) infection worldwide as of the 1st of January 2022, with 5,455,634 recorded fatalities. On 16 March 2020, outside of China, the number of cases and deaths surpassed those within the country [3]. SARS-CoV-2 belongs to the coronavirinae family of single-stranded RNA viruses, divided https://biointerfaceresearch.com/

into four genera: alpha, beta, gamma, and delta [4, 5]. The majority of this family's members are enzootic, with only a few species infecting humans (namely alpha and beta coronaviruses). It also causes minor infections in people, akin to the common cold, and is responsible for 10-30% of upper respiratory tract infections in adults. More severe infections are uncommon, but enteric and neurological diseases may be caused by coronaviruses [6]. A coronavirus might generally take up to two weeks to incubate [7]. Middle East Respiratory Syndrome (MERS), first reported in September 2012 in Saudi Arabia, and Severe Acute Respiratory Syndrome (SARS), first reported in 2003 in southern China, are two previous coronavirus outbreaks. MERS infected almost 2,500 people, resulting in more than 850 deaths, while SARS infected over 8,000 people, resulting in approximately 800 deaths. The case fatality rates were 35 percent and 10 percent for these conditions, respectively. SARS-CoV-2 is a novel coronavirus strain that has never been found in humans before. Although the incubation period of this strain is currently unknown, the US Centers for Disease Control and Prevention advise that symptoms can appear as soon as 2 days after exposure and as late as 14 days after exposure [7].

The current pandemic predicament has prompted the scientific community to conduct a time-sensitive quest for effective antiviral therapy techniques. Computational techniques are one of the most extensively used approaches for detecting potential therapeutic agents. Several drug-like or lead-like candidates have been found or repurposed against the SARS-CoV-2 drug target proteins.

It is well known that viruses that cause human disease encode one or more proteases, which are essential components of the viral life cycle. Proteases are the ideal therapeutic targets for viral infections because they cleave the viral polyprotein, allowing the virus to continue to replicate [8, 9]. In cases where the virus has evolved mutational resistance, protease inhibitors have been employed along with the drug treatment. Protease inhibitors were utilized in conjunction with nucleoside reverse transcriptase to treat viral disorders such as acquired immunodeficiency syndrome, and this combination therapy method to overcome drug resistance was successful. The SARS-CoV-2 replicase enzyme encodes pp1a and pp1ab polyproteins, which create all functional polypeptide units required for replication and transcription. The catalytic cleavage action of 3CLpro releases polypeptides at different subsites of polyproteins. For all coronaviruses, this cleavage mechanism is retained in 3CLpro. The protease 3CLpro has been identified as a possible therapeutic target for COVID-19 therapy due to its important role in viral replication and the lack of a similar homolog in humans [10-22]. SARS-CoV-2 Mpro plays a critical function in the processing of polyproteins transcribed from viral RNA, and therefore this protease is viewed as a key to critical survival and development. Despite its potential, the search for 3CLpro inhibitors that could be used to treat COVID-19 has so far been unsuccessful. For the COVID-19 treatment, many computational studies have focused on currently available antiviral medicines [23-42] targeting the viral replication process.

Computer-aided drug discovery technologies have developed as crucial and powerful tools in the drug development process over the last decade. They have been used to uncover protein inhibitors and analyze protein-drug and protein-protein interactions. Because turning a candidate drug into an approved drug is a time-consuming and costly process. A combination of computer methodologies such as virtual screening, docking, molecular dynamics (MD) simulation, and binding free energy evaluation can help identify potential drug candidates from compound libraries. Many *in silico* studies have been conducted to identify potential SARS-CoV-2 inhibitors. In one of the studies, using the virtual screening method, small chemical molecules (Carnosol (CAN), Arjunglucoside-I (ARJ), and Rosmanol (ROS)) from Indian spices have been identified, and the results showed that they have the capacity to inhibit SARS-CoV-2 Mpro and may have antiviral properties against nCoV [43]. Furthermore, anti-carcinogenic activities have been reported for these small chemical compounds [44-46]. However, more research into these inhibitors' effects on SARS-CoV-2 Mpro is needed before clinical trials may be undertaken.

In this study, we used the potential of the mean force method to show these small molecule inhibitors' likely binding (unbinding) approach with SARS-CoV-2 Mpro during the formation (dissociation) of the corresponding complex in terms of free energy as a function of the reaction coordinate.

We employed molecular docking and molecular dynamics simulations to study the binding interaction of the small molecule inhibitors with SARS-CoV-2 Mpro. These small molecule inhibitors SARS-CoV-2 Mpro complexes were subjected to binding free energy calculations and a per-residue energy breakdown study. The molecular mechanics Poisson Boltzmann surface area (MM-PBSA) and the molecular mechanics Generalized Borne Surface area (MM-GBSA) approaches were applied to compute the binding free energy and identify the residues of Mpro involved in interaction with the small molecule inhibitors. The MM-GBSA/MM-PBSA calculations exhibited that the small molecule inhibitors considered in this study showed a marked binding affinity with Mpro compared to the positive control (P3-Capped alpha-ketoamide inhibitor 40 (AKA)). In this study, we have considered AKA a positive control because recently, AKA was reported to be more potent than anti-HIV retroviral drugs such as lopinavir and darunavir [21]. The contribution of each residue to the binding free energy was examined to gain a better knowledge of the binding features of Mpro-small molecule inhibitor complexes. Our findings emphasize the structural and binding features of the identified small molecule inhibitors with SARS-CoV-2 Mpro, which could be relevant in developing therapeutic candidates to combat SARS-CoV-2.

2. Materials and methods

The methods and their objectives carried out in this work have been briefed in a flow diagram Supplementary (Figure S1).

2.1. Initial structure preparation and molecular docking.

2.1.1. Preparation of receptor (SARS-CoV-2 Mpro).

The receptor molecule for docking purposes was the 3-D structure of the SARS-CoV-2 Mpro with an unliganded active site (PDB ID: 6y84 with a resolution of 1.39 Å) which was obtained from the Research Collaboratory for Structural Bioinformatics Protein Data bank (www.rcsb.org) [47].

2.1.2. Preparation of ligands.

The Chemical structures of the ligands, namely (i) Alpha-ketoamide (positive control) (ii) Arjunglucoside-I (iii) Carnosol, and (iv) Rosmanol in SDF format, were retrieved from PubChem online server details are summarized in Table 1. The Open bable server was used to convert the SDF format of these small molecules to PDB format.

2.2. Preparation of the SARS-CoV-2 Mpro-ligand complexes.

The receptor molecule (SARS-CoV-2 Mpro) retrieved from Protein Data Bank was then docked to the ligands (Alpha-ketoamide, Arjunglucoside-I, Carnosol, and Rosmanol) using the PatchDock/Firedock [48] online docking server. PatchDock employs a structure-based molecular docking technique. The PatchDock algorithm splits the protein molecules' Connolly dot surface representation into three classes: convex, concave, and flat patches [49, 50]. The candidate transformations were then created by combining complementary patches.

S.no.	Name of small molecule	PubChem-ID	Structure
<u>S.no.</u> 1.	Name of small molecule Alpha-ketoamide (AKA)	PubChem-ID 6481510	$\underbrace{\mathbf{Structure}}_{H} \overset{H}{\overset{H}{}} \overset{O}{} \overset{H}{} \overset{H}{} \overset{O}{} \overset{H}{} \overset{H}{} \overset{H}{} \overset{O}{} \overset{H}{} \overset{H}{\overset{H}} \overset{H}{} \overset{H}{}} \overset{H}{} \overset{H}{}} \overset{H}{} \overset{H}{} \overset{H}{} \overset{H}{} \overset{H}{} \overset{H}{} \overset{H}{} \overset{H}{} }{} }{} }{} }{} }{} } $
2.	Arjunglucoside-I (ARJ)	14658050	
3.	Carnosol (CAN)	442009	
4.	Rosmanol (ROS)	13966122	

 Table 1. Details of the small molecule inhibitors obtained from the PubChem database.

A scoring function that includes the atomic desolvation energy and the geometric fit is also applied to evaluate each candidate transformation. First, the candidate solutions use root-meansquare deviation (RMSD) clustering to eliminate the redundant solution. The PDB coordinate files of protein and ligand molecules are used as input parameters for docking. In the PatchDock analysis, three key processes are followed: (i) surface patch matching, (ii) molecular shape representation, and (iii) filtering and scoring. From the PatchDock server, many resulting docked model complexes were generated for the four SARS-CoV-2 Mpro-ligand complex systems. The initial complex structure was chosen based on its atomic contact energy (ACE), geometric surface, and geometric shape complementarity score in all four complex systems. Using UCSF Chimera [51], the complex structure was examined, the ligand and receptor sections were separated, and their coordinates were stored in mol2 and PDB formats, respectively. Using the antechamber protocol, the selected solution structure was further curated in xleap. This includes bcc charge addition, fremod file generation, and PDB formats.

Using the antechamber protocol, the selected solution structure was further curated in xleap. This includes bcc charge addition, fremod file generation, and complex system in explicit and implicit solvation. The topology and coordinate files for each of the four complex systems were then prepared individually.

2.3. MD simulation of receptor-ligand complexes.

The initial coordinate and topology file for the separated receptor and ligands structures for all four complexes were produced using the AMBER ff99SB force field and the Leap module of the AMBER 14 software package. The receptor and its ligand were then loaded together. The coordinate and topology files of the loaded receptor-ligand complex were created using the Leap module in both implicit and explicit environments. The loaded system was solvated in all directions with the TIP3P [52] water model with a solvent buffer of 10 Å. The complex's charge was then neutralized by adding the appropriate number of counterions.

The four receptor-ligand complexes were then subjected to energy minimization in two phases using the AMBER 14 software package. The first 500 steps of steepest descents minimization (while preserving restraints over the solute) and the second 500 steps of conjugate gradient minimization (devoid of restraints on the solute).

The MD experiment was carried out according to a standard technique, which included heating dynamics, density, equilibration, and production dynamics. We used energy minimized receptor-ligand system as the starting structure for ensuing MD steps. The density procedure was performed after the individual receptor-ligand system was gradually heated from 0-300 K in constant volume (NVT) conditions. Later the system was equilibrated for 1 ns in NPT conditions (300 K and 1 atm pressure). The density, temperature, pressure, and energy graphs were plotted and examined to guarantee the system's successful equilibration. Then, applying the Particle Mesh Ewald (PME) method [53, 54], we ran a 10 ns MD production run for the equilibrated structure of the receptor-ligand system with a time step of 2 fs. During the simulation, a cut-off of 8 Å was used to tackle nonbonding interactions (short-range electrostatic and van der Waals interactions), whereas the PME approach was used to treat long-range electrostatic interactions. The SHAKE algorithm [55] was used to constrain all of the bonds in the system. The Berendsen weak coupling algorithm [56] maintained the pressure and temperature (0.5 ps of heat bath and 0.2 ps of pressure relaxation) constant throughout the simulation.

After the 10 ns of production dynamics of the four receptor-ligand complexes were completed, the RMSD clustering algorithm was used to extract the lowest energy conformer of each individual complex from the densely populated clusters, followed by the measurement of the center of mass(es) (CoM) distance between the receptor and the ligand in the complex structure. The extracted structures of each of the four complexes were then used as the starting point for PMF [57] analysis.

2.4. PMF calculation.

AMBER software was used to create PMF [38] for the four small-molecule inhibitor complexes of SARS-CoV-2 Mpro utilizing Alan Grossfield's Weighted Histogram Analysis Method (WHAM) [58] employing umbrella sampling (US) [59] simulations. PMF is used to determine free energy along a certain reaction coordinate, and this free energy profile aids in the identification of transition states, intermediates, and relative endpoint stabilities. However, simply running the MD simulation to generate free energy along the reaction coordinate will not generate accurate PMF because the energy barrier of interest is many times the size of kbT, so the MD simulation will either stay in the local minimum it started in or cross to different minima, rarely sampling the transition state. US sampling strategy is used with WHAM [48], which helps attain the interest samples' transition states. The reaction coordinates for the four small-molecule inhibitor complexes of SARS-CoV-2 Mpro were divided into a series of windows by the US, and then restraints were given to the samples to keep them close to the center of the window, ensuring that the samples were kept close to that the endpoints overlapped. The Hamiltonian was then augmented with biassing potentials to limit the molecular system to certain regions of phase space. The biassing potential is typically a harmonic potential that keeps the system close to a specified value in the reaction path. This was carried out in several windows throughout the reaction path. Equilibrium simulations were run in each window, and the biased probability distribution (histogram) was calculated. The optimal free energy constants for the combined simulations are then determined using the WHAM.

The PMF calculation for studying the degree of association between the corresponding small molecule inhibitor and the SARS-CoV-2 Mpro was done by increasing and decreasing the CoMs distance between the corresponding small molecule inhibitor and the SARS-CoV-2 Mpro in two separate directions from the starting point. The CoMs distance between the small molecule inhibitor and the SARS-CoV-2 Mpro was altered from 8 Å to 25 Å in all four small-molecule inhibitor complexes of SARS-CoV-2 Mpro, spanning diverse configurations. Because the buffer of water is 10 Å out of solute, it is expected that a component of the complex structure will emerge out of the solvation box for bigger distances of separation (more than 15 Å) of the ligand and receptor units in the complex. So, at a wider umbrella sampling distance (for each window of the US simulation), we took the solute (complex) and resolved it with TIP3P water molecules with a solvent buffer of 10 Å enclosing the complex from all sides, as well as neutralized the system with counterions. Before the US simulation, we ensured that the complex system's periodic boundary conditions and equilibration were in place. The system was run for 5 ns of MD simulation with harmonic potentials at each distance of the US window to keep the CoM distance between the two monomeric units near the required values. For all four small-molecule inhibitor complexes of SARS-CoV-2 Mpro, we calculated the PMF as a function of the reaction coordinate.

https://biointerfaceresearch.com/

2.5. MD simulation of the structure with the lowest energy of the SARS-CoV-2 Mpro- small molecule inhibitor complexes.

A structure with the lowest potential energy was chosen from the ensemble of related SARS-CoV-2 Mpro small molecule inhibitor complex structures at the reaction coordinate corresponding to the minimum PMF values and then subjected to MD simulation to examine its prominent structural features. Then the same conventional approach was utilized for minimization, heating, density, equilibration, and production dynamics of the lowest energy structure of the SARS-CoV-2 Mpro- small molecule inhibitor complexes, but with a 50 ns modification in the duration of the production run. The PTRAJ (short for Process TRAJectory) and CPPTRAJ (a rewriting of PTRAJ in C++) modules [60] of AMBER 14 Tools were used to evaluate the MD trajectories for the four complexes. To assess the convergence of the four complex systems, we looked at the RMSDs for the ligand and complex, using the corresponding initial structure as a reference. We also calculated the RMSFs and Rg to examine the four complexes' flexibility and size. In addition, intermolecular hydrogen bond analyses were carried out for each of the four complex's stability is altered during MD simulation.

2.6. Binding free energy (BFE) analyses for the four SARS-CoV-2 Mpro- small molecule inhibitor complexes.

The four SARS-CoV-2 Mpro-small molecule inhibitor complexes were subjected to BFE investigations. The MMPBSA.py script [61] of the AMBER 14 suite was used to calculate the relative BFE and per-residue energy decomposition (PRED) of the interface residues of the four complexes in this work. The Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics-Generalized Borne Surface Area (MM-GBSA) algorithms are used to create this script. To determine the binding free energy (ΔG_{bind}) and comprehend the roles of electrostatic and van der Waals terms in the formation of complexes, the MM-PBSA/GBSA methods were used.

The equations (1-6) show the formulas for computing the BFE and their decomposed energy components. The free energy difference between the bound state complex ($G_{complex}$) and the free state individuals of the receptor ($G_{receptor}$) and ligand (G_{ligand}) is represented by the total BFE (ΔG_{bind}). ΔG_{bind} can be divided into enthalpy (ΔH) and entropy (-T ΔS) using the second law of thermodynamics. The enthalpies were determined with a low computing effort using Poisson– Boltzmann or Generalized-Born surface area continuum solvation (MM-PBSA/MM-GBSA) method [62, 63], and the entropy was evaluated using normal mode (nmode) analysis [64, 65]. After calculating MM-PBSA/MM-GBSA using all of the trajectories, three components of the individual four complexes were analyzed: (i) ligand (ii) receptor (iii) complex. Many recent insilico investigations [66-76] have employed the methodologies and protocols that we evaluated in this study to estimate the binding free energy.

BFE for the four complex systems was calculated using Eqn. (1):

$$\Delta G_{\text{binding}} = \Delta G_{\text{complex}} - \left[\Delta G_{\text{receptor}} + \Delta G_{\text{ligand}}\right] \tag{1}$$

where $\Delta G_{\text{binding}}$ is the total binding free energy.

Thermodynamically:

$$\Delta G = \Delta H - T \Delta S \tag{2}$$

$$\Delta G = \Delta E_{MM} + \Delta G_{sol} - T\Delta S \tag{3}$$

$$\Delta E_{MM} = \Delta E_{int} + \Delta E_{ele} + \Delta E_{vdw}$$
⁽⁴⁾

and

$$\Delta G_{\rm sol} = \Delta E_{\rm PB/GB} + \Delta E_{\rm SURF} \tag{5}$$

$$\Delta E_{SURF} = E_{NP} + E_{dis} \tag{6}$$

2.7. Enthalpy calculations with MM-GBSA/PBSA.

 $\Delta G_{complex}$, $\Delta G_{receptor}$ and ΔG_{ligand} indicate free energy contributions from small molecule inhibitor-SARS-CoV-2 Mpro (complex), SARS-CoV-2 Mpro (receptor), and small-molecule inhibitor (ligand) for the four complex systems, as given in Eqn. (1).

As stated in Eqn. (3) the enthalpy portion is derived by adding the change in molecular dynamics energy (ΔE_{MM}) and the solvation free energy (ΔG_{sol}). ΔE_{MM} is composed of internal energy (ΔE_{int}) (bond, angle, and dihedral energies), electrostatic interaction (ΔE_{ele}), and van der Waals interaction (ΔE_{vdw}). The solvation-free energy is divided into polar ($\Delta E_{PB/GB}$) and non-polar (ΔE_{SURF}) contribution Eqn. (5). $\Delta E_{PB/GB}$ is derived using Poisson-Boltzmann/Generalized-Boltzmann models, and ΔE_{SURF} is the sum of non-polar contribution calculated by PB (E_{NP}) and dispersion energy (E_{dis}) using Solvent accessibility surface area (SASA).

2.8. Conformational entropy calculation based on nmode.

The normal mode analysis [64, 65] and the python-based mmpbsa py nabnmode tool were used to compute the conformational entropy (T Δ S) during the interaction of receptor and ligand units in the four complexes. The normal modes for the complex, receptor, and ligand were determined and then averaged to obtain a binding entropy estimate in this study. The PRED analysis calculates the energy contribution of each protein residue by examining its molecular interactions across all of the complex's residues.

3. Results and Discussion

3.1. PMF profile of SARS-CoV-2 Mpro-ligand complexes.

To analyse the unbinding pathway of each of these small molecule inhibitors and the positive control AKA from the SARS-CoV-2 Mpro, a PMF study was done by combining MD simulations with the umbrella sampling (US) method [77, 59]. The equilibrated complex structure of Mpro –AKA/other small molecule inhibitors (ARJ, CAN, ROS) were chosen as the starting structure for the US simulation. We plotted the density, temperature, potential energy, kinetic energy, and total energy of the AKA/small molecules-SARS-CoV-2 Mpro complex as a function of simulation time to ensure that our NPT simulation algorithm was correct shown in Supplementary (Figures S2, S3, S4, and S5).

Figure 1 shows the PMF profile for Mpro – AKA/ small molecules (ARJ, CAN, ROS) in water at normal temperature as a function of the reaction coordinate. The reaction coordinate is

defined as the distance between the AKA/small molecules and SARS-CoV-2 Mpro centers of mass. For the Mpro – AKA/ small molecules, 5 ns simulations were performed for each window to assure the sampling convergence of US simulations. And as shown in Supplementary (Figure S6), after each nanosecond of simulations, the convergence of PMF was assessed. The strategy that we have employed to check the convergence of PMF was the standard one and used in earlier works [78].

The PMF depths from the US simulation of SARS-CoV-2 Mpro small-molecule systems were found to be larger than those from the SARS-CoV-2 Mpro-AKA complex system (Figure 1), indicating a deeper energy potential depth and hence a longer residence period of the small molecules in the SARS-CoV-2 Mpro binding pocket.

Figure 1. Potential of mean force for the association and dissociation of the SARS-CoV-2 Mpro-small molecule complexes.

We observed the use of distinct reaction coordinates (RCs) when small molecules dissociate from the AKA binding pocket of SARS-CoV-2 Mpro, as stated according to a comparative study of PMF curves. When ligands (small molecule inhibitors) moved out of the AKA binding pocket of SARS-CoV-2 Mpro, different phases of vertical elevation of the PMF (Figure 1) were observed. The small molecules were seen to move out of the AKA binding pocket when the biased potential rises. In the case of the Arjunglucoside-I small molecule inhibitor (Figure 1), when the ligand moves out of the binding pocket of SARS-CoV-2 Mpro, the PMF of RCs is upgraded. At 20 Å of RC, the ligand completely dissociates with a potential energy value of 12 kcal/mol. Similarly, as the PMF curve rises, the other small molecule inhibitors are seen gradually moving out of the binding pocket of SARS-CoV-2 Mpro (Figure 1). We detected an energy barrier when the AKA small molecule was unbound from the binding pocket of SARS-CoV-2 Mpro and at 22.0 Å of RC, with a potential energy value of 8 kcal/mol, AKA dissociates from its binding site far more easily than other small molecule inhibitors. The snapshots of all the complex systems taken at various windows of separation distances during the simulation were shown in Supplementary (Figures S7, S8, S9, and S10).

https://biointerfaceresearch.com/

The PMF profiles of all small molecule inhibitors and AKA with SARS-CoV-2 Mpro were compared. According to PMF plots, AKA has the lowest dissociation energy barrier of all the small molecules investigated here and is thus expected to be easily released from the binding site of SARS-CoV-2 Mpro. The order of dissociation of small-molecule inhibitors from the AKA binding site of SARS-CoV-2 Mpro was determined by PMF plots to be AKA < Rosmanol < Carnosol < Arjunglucoside-I.

From Figure 1, we see that the four small-molecule- SARS-CoV-2 Mpro complexes show the minimum PMF values at different separation distances and exhibit different dissociation energy values in kcal mol⁻¹. The results have been summarized in Table 2.

	Tuble 2. Details of Onlotena Sampling Simulation.												
S.no.	Name of the complex	Equilibrium distanc	Dissociation	Distance	Duration (ns)for umbrell:								
		(Å) at minimum PM	energy (kcal/mol)	samples (Å)	sampling, each window sid								
		value			being 5ns.								
1.	AKA- SARS- CoV2 MAIN PROTEASE	19.5	9	8-25 Å	90 ns								
2.	ARJ- SARS- CoV2 MAIN PROTEASE	20	11	8-25 Å	90 ns								
3.	CAN- SARS- CoV2 MAIN PROTEASE	15	10	8-25 Å	90 ns								
4.	ROS- SARS- CoV2 MAIN PROTEASE	17.5	9.5	8-25 Å	90 ns								

Table 2. Details of Umbrella Sampling Simulation.

When the distance between the small molecule inhibitors and the SARS-CoV-2 Mpro crosses 22 Å, we noticed no more interactions between them. The PMF was observed to increase when the inter-molecular distance between SARS-CoV-2 Mpro and the small molecules was lowered below the optimum equilibrium distance (15 Å in the case of Carnosol, 18 Å in the case of Rosmanol, 19 Å in the case of Arjunglucoside-I and Alpha-ketoamide).

3.2. Salient structural features of the minimum PMF structure of the small molecule inhibitors-SARS-CoV-2 Mpro complex.

3.2.1. Molecular dynamics analysis.

Because it works with atomic-level interactions, MD is a useful computational tool for deciphering the physical foundation of biological macromolecule structure and function. From their corresponding 50 ns MD simulation trajectories, changes in the structure and stability of small molecule inhibitors-SARS-CoV-2 Mpro complexes were investigated. The trajectories obtained from 50 ns simulation for SARS-CoV-2 Mpro complexed with AKA (positive control), Arjunglucoside-I, Carnosol, and Rosmanol were analyzed using the CPPTRAJ module of the Amber program. The 3-D structure of the four complexes isolated at their minimum PMF value was used as starting structure for the corresponding simulation.

3.3. Stability profile analysis of the SARs-CoV-2 Mpro protein-ligand complexes.

The dynamic stability and structural behavior of the SARS-CoV-2 Mpro-small molecule inhibitor complexes were investigated using MD simulations. The MD simulation data trajectory files were obtained over a 50-ns simulation time period.

3.3.1. RMSD analysis.

The atom-positional root-mean-square deviation (RMSD) generated by roto-translational least-squares fitting is perhaps the most widely used for structural comparison and stability measure. The degree of structural variability in a particular ensemble is captured by RMSD values, which can be related to the intrinsic flexibility of a specific structure or the uncertainty of the structural refinements. The arithmetic mean is frequently used to summarise the parameters of this distribution, which is typically determined for backbone atoms. RMSD from the starting structure for the C-α backbone atoms from all the residues of Mpro complexed with AKA (positive control), Arjunglucoside-I, Carnosol, and Rosmanol were calculated (Figure 2) from the 50 ns MD simulations. The simulation findings showed that when the Mpro was complexed with the small molecule inhibitors, the final RMSD variation from the initial model of C- and backbone atoms showed stable conformation, which was maintained throughout the simulation time of 50 ns. RMSD plots of Mpro complexed with the four ligands were similar, ranging between 0.7 Å and 1.7 Å. The fluctuation amplitude and the modest change in the average RMSD value of the Cbackbone atoms clearly show that the four SARS-CoV-2 Mpro protein-ligand complex structures have a stable dynamic behavior. In the four complexes, we have also calculated the RMSD of the four small molecule inhibitors (Figure 3) to check whether they are stable in the active site of SARS-CoV-2 and identify their possible binding modes. From the RMSD analysis of ligands, we found that AKA showed larger fluctuations in the RMSD values among the four ligands. So the small molecule inhibitors identified from Indian spices are stable in the active site compared to the positive control.

Figure 2. Root Mean Square Deviation (RMSD) analysis of the SARS-CoV-2 Mpro-small molecule inhibitor complexes as a function of simulation time in picoseconds.

Figure 3. Root Mean Square Deviation (RMSD) analysis of the small molecule inhibitors in the complexes as a function of simulation time in picoseconds.

3.3.2. RMS Fluctuation (RMSF) of Protein.

Residues root mean square fluctuation (RMSFs) analysis was used to determine the residues responsible for complex structural fluctuations in the four SARS-CoV-2 Mpro complexes (Figure 4). The average position of fluctuations of all the Cα-atoms in the amino acid residues of the complex is depicted by RMSF analysis. In all the four SARS-CoV-2 Mpro-ligand complexes, greater fluctuations were observed at the residues near the binding site of the ligand.

Figure 4. Root Mean Square Fluctuation (RMSF) Analysis of the SARS-CoV-2 Mpro-small molecule inhibitor complexes as a function of Residue index.

3.3.3. Radius of gyration analysis.

The mass-weighted root-mean-square distance of atoms from their center of mass is known as the radius of gyration (Rg). (Figure 5) depicts the information about the compactness, shape, and folding of the four complex structures at various point scales throughout the 50 ns of MD simulation trajectory. Throughout the 50 ns simulation time, all four complexes showed a similar pattern in terms of Rg value. It denotes the four complexes' long-term stability and compactness.

Figure 5. The radius of gyration analysis (Rg) of the SARS-CoV-2 Mpro-small molecule inhibitor complexes as a function of simulation time in picoseconds.

3.4. Protein-ligand contact profiles.

The protein-ligand interaction patterns for all ligands with SARS-CoV-2 Mpro were obtained from the MD simulation trajectories, as shown in Supplementary (Table S1-S4 and Figure S11). During the 50 ns simulation of the SARS-CoV-2 Mpro alpha-ketoamide complex, we found the residues GLU165, LEU166, PRO167, GLN188, ASN141, SER143, HIE162, HIE163, MET48, THR26 of SARS-CoV-2 Mpro have been involved in interaction with the ligand via hydrogen bonding, hydrophobic, ionic, and water bridge interactions. In other small molecule inhibitors-SARS-CoV-2 Mpro complexes, during the 50 ns of simulation, residues around the active site of Mpro were involved in interactions with the ligands via hydrogen bonding, hydrophobic, ionic, and salt bridge interactions. In addition, we have also determined the total number of intermolecular hydrogen bonds at different points throughout the 50 ns simulation time in the four complexes, as shown in (Figure 6). Individual occupancies of detected H-bonds per ligand are detailed in Supplementary Tables (Table S5-S8). From the plots, we can see for the four complexes, the number of intermolecular hydrogen bonds follows the order SARS-CoV-2 Mpro-Arjunglucoside > SARS-CoV-2 Mpro-Carnosol > SARS-CoV-2 Mpro-Alpha-ketoamide > SARS-CoV-2 Mpro-Rosmanol. These observations suggested the ligands from Indian spices as a strong inhibitor against SARS-CoV-2 Mpro.

Figure 6. The number of intermolecular hydrogen bonds between SARS-CoV-2 Mpro and the small molecule inhibitors as a function of simulation time in picoseconds.

3.5. Binding free energy (BFE) and per residue energy decomposition (PRED) analysis.

The molecular mechanic energies were integrated using the MM-PBSA/GBSA method to further study the free energy of the binding of small molecules with the SARS-CoV-2 Mpro. Because MM-PBSA/GBSA approach uses a continuum solvent technique to determine the binding free energies of a complex system, the binding energy values here represent the relative binding free energy, not the absolute or total binding free energy. The main goal of these methods is to determine the difference in free energy between the bound and unbound states of protein-ligand complexes. The MM-PBSA/GBSA approach was used to calculate all of the thermochemical characteristics by using the AMBER suite for each coordinate at every 10 ps sampling frequency throughout the MD trajectory for all of the protein-ligand complexes. The most stable complexes were considered to be those with the lowest binding energy. The binding free energy analysis for SARS-CoV-2 Mpro- small molecule inhibitor complexes were tabulated in detail in Supplementary (Tables S9-S16), and the summary of the findings was presented in (Table 3) (MM-GBSA) and (Table 4) (MM-PBSA). The total free energies (ΔG_{bind}) obtained from MM-GBSA, and MM-PBSA for the protein-ligand complexes show comparable values (-13.14 kcal mol⁻¹ from MM-GBSA and -5.31 kcal mol⁻¹ from MM-PBSA for the SARS-CoV-2 Mpro-Alphaketoamide complex, -19.74 kcal mol⁻¹ from MM-GBSA and -9.13 kcal mol⁻¹ from MM-PBSA for the SARS-CoV-2 Mpro-Arjunglucoside-I complex, -16.81 kcal mol⁻¹ from MM-GBSA and -9.98 kcal mol⁻¹ from MM-PBSA for the SARS-CoV-2 Mpro-Carnosol complex, -14.05 kcal mol⁻ ¹ from MM-GBSA and -5.87 kcal mol⁻¹ from MM-PBSA for the SARS-CoV-2 Mpro-Rosmanol complex). ΔG_{bind} showed the least value for the SARS-CoV-2 Mpro and Arjunglucoside-I complex, followed by SARS-CoV-2 Mpro-Carnosol complex, SARS-CoV-2 Mpro-Rosmanol

complex, and SARS-CoV-2 Mpro-Alpha-ketoamide complex. These findings point to these small molecules derived from Indian spices as potential SARS-CoV-2 Mpro inhibitors.

 Table 3. Binding Free Energy analysis for SARS-CoV-2 main protease(Mpro) –small molecule inhibitor complexes using Molecular Mechanics-Generalized Borne Surface Area (MM-GBSA) approach.

	6			·
S.No.	Name of the Complex	▲ G _{GBTOT}	▲ G _{TSTOT}	▲ G _{bind}
		(kcal/mol)	(kcal/mol)	(kcal/mol)
1.	SARS-CoV-2 Mpro-	-35.90	-22.76	-13.14
	AKA complex			
2.	SARS-CoV-2 Mpro-AR	-40.39	-20.65	-19.74
	complex			
3.	SARS-CoV-2 Mpro-CAN	-34.93	-18.12	-16.81
	complex			
4.	SARS-CoV-2 Mpro-	-34.19	-20.14	-14.05
	ROS complex			

Final estimated binding free energy ($\blacktriangle G_{GBTOT}$); total entropic contribution ($\blacktriangle G_{TSTOT}$); binding free energy ($\blacktriangle G_{bind}$).

 Table 4. Binding Free Energy analysis for SARS-CoV-2 main protease(Mpro) –small molecule inhibitor complexes using Molecular Mechanics-Generalized Borne Surface Area (MM-PBSA) approach.

	0			· 11
S.No.	Name of the Complex	▲ Gpbtot	▲ GTSTOT	▲ G _{bind}
		(kcal/mol)	(kcal/mol)	(kcal/mol)
1.	SARS-CoV-2 Mpro-	-28.07	-22.76	-5.31
	AKA complex			
2.	SARS-CoV-2 Mpro-AR	-29.78	-20.65	-9.13
	complex			
3.	SARS-CoV-2 Mpro-CAN	-28.10	-18.12	-9.98
	complex			
4.	SARS-CoV-2 Mpro-	-26.01	-20.14	-5.87
	ROS complex			

final estimated binding free energy (\blacktriangle G_{PBTOT}); total entropic contribution \blacktriangle (G_{TSTOT}); binding free energy (\blacktriangle G_{bind}).

3.6. The decomposition of residue.

To better understand the protein-ligand binding mechanism, the contribution of each individual residue to the binding free energy has been studied in depth. To construct the residue-ligand interaction spectrum, the binding free energy is decomposed in terms of interacting residue-ligand pairs., shown in Supplementary (Figures S12-S15). The method of residue decomposition is particularly useful for explaining the protein-ligand binding mechanism at the atomic level and analyzing each residue's contribution to the binding free energy. The contribution toward binding free energy of several key residue-ligand pairs is split into vdW energy, the sum of electrostatic energy and polar solvation energy, and non-polar solvation energy, according to the analytic result residue-ligand interaction spectrum. The results have been depicted in Supplementary (Figures S12-S15). From the analysis, we can see the residues in the binding pocket of SARS-CoV-2 Mpro make a significant contribution to binding free energy

4. Conclusions

This study found that small molecule inhibitors (Carnosol, Arjunglucoside-I, and Rosmanol) from Indian spices can act as possible SARS-CoV-2 Mpro inhibitors. We used an in silico approach to conducting research in this regard. Our findings suggested that Arjunglucoside-I inhibits the SARS-CoV-2 Mpro the most, followed by Carnosol, Rosmanol, and then Alpha-

ketoamide (positive control). The PMF calculations revealed that the small molecule inhibitors have a deeper energy potential depth and, consequently, a longer residence period (Arjunglucoside-I, Carnosol, and Rosmanol) in the binding pocket SARS-CoV-2 Mpro. The order of inhibition among the small molecule inhibitors and Alpha-ketoamide (positive control) was determined using binding free energy calculations. ΔGbind showed the least value for the SARS-CoV-2 Mpro-and Arjunglucoside-I complex, followed by SARS-CoV-2 Mpro-Carnosol complex, SARS-CoV-2 Mpro-Rosmanol complex, and SARS-CoV-2 Mpro-Alpha-ketoamide complex. These findings point to small molecule inhibitors derived from Indian spices as potential SARS-CoV-2 Mpro inhibitors. From the PRED analysis, we found the residues present in the binding pocket of SARS-CoV-2 Mpro have a major contribution to the total binding energy for the SARS-CoV-2 Mpro-small molecules interactions. Our findings shed light on the binding pathway and degree of association between SARS-CoV-2 Mpro and the small molecules (Arjunglucoside-I, Carnosol, and Rosmanol, Alpha-ketoamide (positive control)) in the complex formation. These findings could aid in the development of novel SARS-CoV-2 Mpro inhibitors.

Funding

This research received no external funding.

Acknowledgments

The authors extend their deepest gratitude to Tezpur University and University Grants Commission, India, for the start-up grant.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed **2020**, 91, 157–160, https://doi.org/10.23750/abm.v91i1.9397.
- Touret, F.; Gilles, M.; Barral, B.; Nougairède, A.; Decroly, E.; Lamballerie, X.D.; Coutard, B. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. *Scientific Reports* 2020, *10*, 13093, https://doi.org/10.1038/s41598-020-70143-6.
- 3. Kickbusc, I.; Leun, G. Response to the emerging novel coronavirus outbreak. *BMJ* **2020**, 368, https://doi.org/10.1136/bmj.m406.
- 4. Banerjee, A.; Kulcsar, K.; Misra, V.; Frieman, M.; Mossman, K. Bats and coronaviruses. *Viruses* **2019**, *11*, 41, https://dx.doi.org/10.3390%2Fv11010041.
- 5. Yang, D.; Leibowitz, J.L. The structure and functions of coronavirus genomic 3' and 5' ends. *Virus Res.* 2015, 206, 120–133, https://doi.org/10.1016/j.virusres.2015.02.025.
- Ward, M.P.; Li. X.; Tian, K. Novel coronavirus 2019, an emerging public health emergency. *Transbound Emerg. Dis.* 2020, 67, 469-470, https://doi.org/10.1111/tbed.13509.
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus Infections-More than Just the Common Cold. JAMA 2020, 6, 476-477, https://doi.org/10.1001/jama.2020.0757.
- 8. Krausslich, H.G.; Wimmer, E. Viral proteinases. *Annual Review Biochem.* **1988**, *57*, 701–754, https://doi.org/10.1146/annurev.bi.57.070188.003413.
- 9. Tong, L. Viral proteases. Chem. Rev. 2002, 102, 4609–4626, https://doi.org/10.1021/cr010184f.

- Mengist, H.M.; Dilnessa, T.; Jin, T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. *Front. Chem.* 2021, 9, 622898, https://doi.org/10.3389/fchem.2021.622898.
- Citarella, A.; Scala, A.; Piperno, A.; Micale, N. SARS-CoV-2 M^{pro}: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. *Biomolecules* 2021, *11*, 607, https://doi.org/10.3390/biom11040607.
- Huff,S.; Kummetha,I.R.;Tiwari, S.K.; Huante,M.B.; Clark,A.E.; Wang,S.; Bray,W.; Smith,D.; Carlin,A.F.; Endsley,M.; Rana,T.M. Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors. J. Med. Chem. 2022, 65, 4, 2866–2879, https://doi.org/10.1021/acs.jmedchem.1c00566.
- 13. Krumm, Z.A.; Lloyd, G.M.; Francis, C.P.; Nasif, L.H.; Mitchell, D.A.; Golde, T.E.; Giasson, B.I.; Xia, Y. Precision therapeutic targets for COVID-19. *Viro. J.* **2021**, *18*, 66, https://doi.org/10.1186/s12985-021-01526-y.
- Li, J.Q.; Gao, H.; Zhai, L.; Sun, L.Y.; Chen, C.; Chigan, J.Z.; Ding, H.H.; Yang, K.W. Dipyridyl-substituted thiosemicarbazone as a potent broad-spectrum inhibitor of metallo-β-lactamases. *Bioorg Med Chem.* 2021, 38,116128, https://doi.org/10.1016/j.bmc.2021.116128.
- Gossen, J.; Albani, S.; Hanke, A.; Joseph, B.P.; Bergh, C.; Kuzikov, M.; Costanzi, E.; Manelfi, C.; Storici, P.; Gribbon, P.; Beccari, A.R.; Talarico, C.; Spyrakis, F.; Lindahl, E.; Zaliani, A.; Carloni, P.; Wade, R.C.; Muziani, F.; Kokh, D.B.; Rossetti, G. A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. *ACS Pharmacol. Transl. Sci.* 2021, *4*, 1079–1095, https://doi.org/10.1021/acsptsci.0c00215.
- Sharma, A.; Vora, J.; Patel, D.; Sinha, S.; Jha, P.C., Shrivastava, N. Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. J. Biomol. Struct. Dyn. 2022, 40, 3296-3311, https://doi.org/10.1080/07391102.2020.1846624.
- Liu, J.; Zhu, J.; Xue, J.; Qin, Z.; Shen, F.; Liu, J.; Chen, X.; Li, X.; Wu, Z.; Xiao, W.; Zheng, C.; Wang, Y. In silico-based screen synergistic drug combinations from herb medicines: a case using Cistanche tubulosa. *Sci. Rep.* 2017, 7, 16364, https://doi.org/10.1038/s41598-017-16571-3.
- Rahimi, A.; Mirzazadeh, A.; Tavakolpour, S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. *Genomics* 2021, *113*, 1221-1232, https://doi.org/10.1016/j.ygeno.2020.09.059.
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. *Science* 2020, *368*, 409–412, https://doi.org/10.1126/science.abb3405.
- Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. *Chembiochem.* 2020, 21, 730–738, https://doi.org/10.1002/cbic.202000047.
- 21. Sk, M.F.; Roy, R.; Kar, P. Exploring the potency of currently used drugs against HIV-1 protease of subtype D variant by using multiscale simulations. *J. Biomol. Struct. Dyn.* **2020**, *39*, 3649-3661, https://doi.org/10.1080/07391102.2020.1724196.
- 22. Cui, W.; Yang, K.; Yang, H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. *Front. Mol. Biosci.* **2020**, *7*, 616341, https://doi.org/10.3389/fmolb.2020.616341.
- 23. Abdellatiif, M. H.; Ali, A.; Ali, A.; Hussien, M. Computational studies by molecular docking of some antiviral drugs with COVID-19 receptors are an approach to medication for COVID-19. *Open Chem.* **2021**, *19*, 245-264, https://doi.org/10.1515/chem-2021-0024.
- Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. *J. Biomol. Struct. Dyn.* 2021, *39*, 2673-2678, http://doi.org/10.1080/07391102.2020.1752802.
- 25. Mongia, A.; Saha, S.K.; Chouzenoux, E.; Majumdar, A. A computational approach to aid clinicians in selecting antiviral drugs for COVID-19 trials. *Sci. Rep.* **2021**, *11*, 9047, https://doi.org/10.1038/s41598-021-88153-3.
- Behera, S.K.; Vhora, N.; Contractor, D.; Shard, A.; Kumar, D.; Kalia, K.; Jain. A. Computational drug repurposing study elucidating simultaneous inhibition of entry and replication of novel corona virus by Grazoprevir. *Sci. Rep.* 2021, *11*, 7307, https://doi.org/10.1038/s41598-021-86712-2.
- 27. Egieyeh, S.; Egieyeh, E.; Malan, S.; Christofells, A.; Fielding, B. Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). *PLoS ONE* **2021**, *16*, e0245258, https://doi.org/10.1371/journal.pone.0245258.

- Coban, M.A.; Morrison, J.; Maharjan, S.; Medina, D.H.H.; Li, W.; Zhang, Y.S.; Freeman, W.D.; Radisky, E.S.; Le Roche, K.G.; Weisend, C.M.; Ebihara, H.; Caulfield, T.R. Attacking COVID-19 progression using multi-drug therapy for synergetic target engagement. *Biomolecules* 2021, *11*, 787, http://doi.org/10.3390/biom11060787.
- 29. Basak, S.C.; Kier, L.B. COVID-19 pandemic: how can computer-assisted methods help to rein in this global menace? *Curr. Comput.-Aided Drug Des.* **2021**, *17*, http://dx.doi.org/10.2174/157340991701210112103215.
- Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Allemailem, K.S.; Almatroudi, A.; Moustafa, M.F.; Hegazy, M.E.F. In silico evaluation of prospective anti-COVID-19 drug candidates as potential SARS-CoV-2 main protease inhibitors. *Protein J.* 2021, 40, 296-309, https://doi.org/10.1007/s10930-020-09945-6.
- 31. Singh, S.K.; Upadhyay, A.K.; Reddy, M.S. Screening of potent drug inhibitors against SARS-CoV-2 RNA polymerase: an in silico approach. *3 Biotech* **2021**, *11*, 93, http://doi.org/10.1007/s13205-020-02610-w.
- 32. Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. *J. Biomol. Struct. Dyn.* **2021**, *39*, 3092–3098, http://doi.org/10.1080/07391102.2020.1760136.
- Mahanta, S.; Chowdhury, P.; Gogoi, N.; Goswami, N.; Borah, D.; Kumar, R.; Chetia, D.; Borah, P.; Buragohain, A.K.; Gogoi, B. Potential antiviral activity of approved repurposed drug against main protease of SARS-CoV-2: an in silico based approach. *J. Biomol. Struct. Dyn.* 2021, 39, 3802–3811, https://doi.org/10.1080/07391102.2020.1768902.
- 34. Beura, S.; Chetti, P. In-silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. J. Biomol. Struct. Dyn. 2021, 39, 3747–3759, http://doi.org/10.1080/07391102.2020.1772111.
- Mittal, L.; Kumari, A.; Srivastava, M.; Singh, M.; Asthana, S. Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. J. Biomol. Struct. Dyn. 2021, 39, 3662–3680, http://doi.org/10.1080/07391102.2020.1768151.
- Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 3225–3234, http://doi.org/10.1080/07391102.2020.1762743.
- Selvaraj, C.; Dinesh, D.C.; Panwar, U.; Abhirami, R.; Boura, E.; Singh, S.K. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 guanine-N7 methyltransferase (nsp 14) for identifying antiviral inhibitors against COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 4582-4593, http://doi.org/10.1080/07391102.2020.1778535.
- Hassab, M.A.E.; Ibrahim, T.M.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Eldehna, W.M. In silico identification of novel SARS-COV-2 2-O-methyltransferase (nsp16) inhibitors: structure-based virtual screening, molecular dynamics simulation and MM-PBSA approaches. J. Enzyme Inhib. Med. Chem 2021, 36, 727–736, http://doi.org/10.1080/14756366.2021.1885396.
- Elmaaty, A.A.; Darwish, K.M.; Khattab, M.; Elhady, S.S.; Salah, M.; Hamed, M.I.A.; Al-Karmalawy, A.A.; Saleh, M.M. In a search for potential drug candidates for combating COVID-19: computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins. *J. Biomol. Struct. Dyn.* 2021, 1-28, https://doi.org/10.1080/07391102.2021.1918256.
- Al-Karmalawy, A.; Dahab, M.; Metwaly, A.; Elhadi, S.S.; Elkaeed, E.B.; Eissa, I.H.; Darwish, K.M. Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease. *Front Chem* 2021, *9*, 661230, https://doi.org/10.3389/fchem.2021.661230.
- Sharanya, C.S.; Sabu, A.; Haridas, M. Potent phytochemicals against COVID-19 infection from phyto-materials used as antivirals in complementary medicines: a review. *Futur. J. Pharm. Sci.* 2021, 7, 113, https://doi.org/10.1186/s43094-021-00259-7.
- Nabi, F.; Ahmad, O.; Khan, Y.A.; Nabi, A.; Amiruddin, H.M.; Qais, F.A.; Masroor, A.; Hisamuddin, M.; Uversky, V.N.; Khan, R.H. Computational studies on phylogeny and drug designing using molecular simulations for COVID-19. *J. Biomol. Struct. Dyn.* 2021, 1-10, http://doi.org/10.1080/07391102.2021.1947895.
- Umesh; Kundu, D.; Selvaraj, C.; Singh, S.K.; Dubey, V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. *Journal of biomolecular structure and dynamics* 2021, 39, 3428-3434, https://doi.org/10.1080/07391102.2020.1763202.
- 44. Cui, W.; Yang, K.; Yang, H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. *Front.Mol.Biosci.* **2020**, *7*, https://doi.org/10.3389/fmolb.2020.616341.

- Alsamri, H.; Hasasna, H.E.; Baby, B.; Alneyadi, A.; Dhaheri, Y.A.; Ayoub, M.A.; Eid, A.H.; Vijayan, R.; Iratni, R. Carnosol Is a Novel Inhibitor of p300 Acetyltransferase in Breast Cancer. *Front. Oncol.* 2021, *11*, 664403, https://doi.org/10.3389/fonc.2021.664403.
- 46. Lo, A.H.; Liang, Y.C.; Shiau, S.Y.L.; Ho, C.T.; Lin, J.K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. *Carcinogenesis* 2002, 23, 983–991, https://doi.org/10.1093/carcin/23.6.983.
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. *Nucl. Acids Res.* 2000, 28, 235-242, https://doi.org/10.1093/nar/28.1.235.
- Duhovny, D.; Nussinov, R.; Wolfson, H.J. Efficient Unbound Docking of Rigid Molecules. In: *Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI* 2002. *Lecture Notes in Computer Science* vol 2452, Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-45784-4_14.
- 49. Connolly, M.L. Analytical molecular surface calculation. J. Appl. Crystallogr. 1983, 16, 548–558, https://doi.org/10.1107/S0021889883010985.
- 50. Connolly M.L. Solvent-accessible surfaces of proteins and nucleic acids. *Science* **1983**, *221*, 709–713, https://doi.org/10.1126/science.6879170.
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. *J. of Comp. Chem.* 2004, 25, 1605–1612, https://doi.org/10.1002/jcc.20084.
- 52. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. **1983**, 79, 926–935, http://dx.doi.org/10.1063/1.445869.
- 53. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N · log (N) method for Ewald sums in large systems. J. *Chem. Phys.* **1993**, *98*, 10089-10092, https://doi.org/10.1063/1.464397.
- 54. Salomon-Ferrer, R.; Gotz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. *J. Chem. Theory Comput.* **2013**, *9*, 3878-3888, https://doi.org/10.1021/ct400314y.
- 55. Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. *J. Comp. Phys.* **1977**, *23*, 327–341, https://doi.org/10.1016/0021-9991(77)90098-5.
- 56. Berendsen, H.J.; Postma, J.V.; Van, G.W.F.; DiNola, A.R.H.J.; Haak, J.R. Molecular dynamics with coupling to an external bath. *J. Chem. Phys.* **1984**, *81*, 3684-3690, https://doi.org/10.1063/1.448118.
- 57. Roux, B. The calculation of the potential of mean force using computer simulations. *Comp. Phys. Comm.* **1995**, 91, 275–282, https://doi.org/10.1016/0010-4655(95)00053-I.
- Kumar, S.; Rosenberg, J.M.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A. The weighted histogram analysis method for freeenergy calculations on biomolecules. I. The method. *J. Comp. Chem.* 1992, *13*, 1011–1021, https://doi.org/10.1002/jcc.540130812.
- Souaille, M.; Roux, B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. *Comput. Phys. Commun.* 2001, 135, 40–57, https://doi.org/10.1016/s0010-4655(00)00215-0.
- 60. Roe, D.R.; Cheatham III, T.E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. *J. Chem. Theor. Comp.* **2013**, *9*, 3084–3095, https://doi.org/10.1021/ct400341p.
- Miller III, B.R.; McGee Jr, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: an efficient program for end-state free energy calculations. *J. Chem. Theor. Comp.* 2012, *8*, 3314-3321, https://doi.org/10.1021/ct300418h.
- 62. Chen, F.; Liu, H.; Sun, H.; Pan, P.; Li, Y.; Li, D.; Hou, T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. *Phys. Chem. Chem. Phys.* 2016, *18*, 22129-22139, https://doi.org/10.1039/c6cp03670h.
- 63. Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. *Exp. Opin. Drug Dis.* **2015**, *10*, 449-461, http://doi.org/10.1517/17460441.2015.1032936.
- 64. Case, D.A. Normal mode analysis of protein dynamics. *Curr. Opin. Struc. Bio.* **1994**, *4*, 285-290, https://doi.org/10.1016/S0959-440X(94)90321-2.

- 65. Karplus, M.; Kushick, J.N. Method for estimating the configurational entropy of macromolecules. *Macromol.* **1981**, *14*, 325-332, https://doi.org/10.1021/ma50003a019.
- Chen, J.; Yin, B.; Pang, L.; Wang, W.; Zhang, J.Z.; Zhu, T. Binding modes and conformational changes of FK506binding protein 51 induced by inhibitor bindings: insight into molecular mechanisms based on multiple simulation technologies. J. Bio. Struc. Dyn. 2020, 38, 2141-2155, https://doi.org/10.1080/07391102.2019.1624616.
- Du, Q.; Qian, Y.; Yao, X.; Xue, W. Elucidating the tight-binding mechanism of two oral anticoagulants to factor Xa by using induced-fit docking and molecular dynamics simulation. J. Bio. Struct. Dyn. 2020, 38, 625-633, https://doi.org/10.1080/07391102.2019.1583605.
- Sanabria-Chanaga, E.E.; Betancourt-Conde, I.; Hernandez-Campos, A.; Tellez-Valencia, A.; Castillo, R. *In silico* hit optimization toward AKT inhibition: fragment-based approach, molecular docking and molecular dynamics study. *J. Bio. Struc. Dyn.* 2019, *37*, 4301-4311, http://doi.org/10.1080/07391102.2018.1546618.
- Gao, J.; Wang, Y.; Chen, Q.; Yao, R. Integrating molecular dynamics simulation and molecular mechanics/generalized Born surface area calculation into pharmacophore modeling: a case study on the proviral integration site for Moloney murine leukemia virus (Pim)-1 kinase inhibitors. *J. Bio. Struc. Dyn.* 2020, *38*, 581-588, http://doi.org/10.1080/07391102.2019.1571946.
- Joshi, T.; Joshi, T.; Sharma, P.; Chandra, S.; Pande, V. Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of *Xanthomonas oryzae pv. Oryzae* by targeting Peptide Deformylase. J. Bio. Struc. Dyn. 2021, 39, 823-840, https://doi.org/10.1080/07391102.2020.1719200.
- Sk, M.F.; Roy, R.; Kar, P. Exploring the potency of currently used drugs against HIV-1 protease of subtype D variant by using multiscale simulations. J. Bio. Struct. Dyn. 2021, 39, 988-1003, https://doi.org/10.1080/07391102.2020.1724196.
- Sun, H.; Duan, L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; Zhang, J.Z.H.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of endpoint binding free energy calculation approaches. *Phys. Chem. Chem. Phys.* **2018**, *20*, 14450-14460, https://doi.org/10.1039/C7CP07623A.
- Tian, S.; Ji, C.; Zhang, J.Z. Molecular basis of SMAC–XIAP binding and the effect of electrostatic polarization. J. Bio. Struc. Dyn. 2021, 39, 743-752, https://doi.org/10.1080/07391102.2020.1713892.
- 74. Wan, Y.; Guan, S.; Qian, M.; Huang, H.; Han, F.; Wang, S.; Zhang, H. Structural basis of fullerene derivatives as novel potent inhibitors of protein acetylcholinesterase without catalytic active site interaction: insight into the inhibitory mechanism through molecular modeling studies. *J. Bio. Struc. Dyn.* 2020, *38*, 410-425, https://doi.org/10.1080/07391102.2019.1576543.
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. *Chem. Rev.* 2019, *119*, 9478-9508, https://doi.org/10.1021/acs.chemrev.9b00055.
- Zhang, W.; Yang, F.; Ou, D.; Lin, G.; Huang, A.; Liu, N.; Li, P. Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals. *J. Bio. Struc. Dyn.* 2019, *37*, 4274-4282, https://doi.org/10.1080/07391102.2018.1547222.
- 77. Torrie, G.M.; Valleau, J.P. Monte Carlo study of a phase-separating liquid mixture by umbrella sampling. J. Comput. Phys. 1977, 23, 187–199, https://doi.org/10.1063/1.434125.
- Sun, H.; Tian, S.; Zhou, S.; Li, Y.; Li, D.; Xu, L.; Shen, M.; Pan, P.; Hou, T. Revealing the favorable dissociation pathway of type II kinase inhibitors via enhanced sampling simulations and two-end-state calculations. *Sci. Rep.* 2015, *5*, 8457, https://doi.org/10.1038/srep08457.

Supplementary Information

Figure S1. Flowchart represents the methods and protocols followed in this work.

Figure S2. a) Density, b) Temperature, and c) Energy plots of SARS-CoV-2-Alpha-ketomaide complex system as a function of simulation time.

Figure S3. a) Density, b) Temperature and c) Energy plots of SARS-CoV-2-Arjunglucoside-I complex system as a function of simulation time.

Figure S4. a) Density, b) Temperature, and c) Energy plots of SARS-CoV-2-Carnosol complex system as a function of simulation time.

Figure S5. a) Density, b) Temperature, and c) Energy plots of SARS-CoV-2-Rosmanol complex system as a function of simulation time.

Figure S6. Convergence of the PMFs calculated by umbrella sampling for (A) SARS-CoV-2-Alpha-ketoamide (B) SARS-CoV-2-Arjunglucoside-I (C) SARS-CoV-2-Carnosol (D) SARS-CoV-2-Rosmanol complex where 5 ns US simulation were performed.

Figure S7. Snapshots of SARS-CoV-2 Mpro-Alpha-ketoamide complex structures at a discrete distance of separation (in Å) between their center of mass.

Figure S8. Snapshots of SARS-CoV-2 Mpro-Arjunglucoside-I complex structures at a discrete distance of separation (in Å) between their center of mass.

Figure S9. Snapshots of SARS-CoV-2 Mpro-Carnosol complex structures at a discrete separation distance (in Å) between their center of mass.

Figure S10. Snapshots of SARS-CoV-2 Mpro-Rosmanol complex structures at a discrete distance of separation (in Å) between their center of mass.

Figure S11. Amino acid residual interactions of the protein-ligand interface in (a) SARS-CoV-2-Alpha-ketoamide (b) SARS-CoV-2-Arjunglucoside-I (c) SARS-CoV-2-Carnosol (d) SARS-CoV-2-Rosmanol complexes. The hydrogen bond interactions are represented by dashed lines. The amino acid residues involved in the hydrophobic interactions are shown as starbursts.

Figure S12. Decomposition of the binding free energy on (A) per-residue basis (B) per-residue basis into the contribution from vdW energy, the sum of electrostatic energy and polar solvation energy, and non-polar solvation energy for SARS-CoV-2 Mpro-Alpha ketoamide complex.

Figure S13. Decomposition of the binding free energy on (A) per-residue basis (B) per-residue basis into the contribution from vdW energy, the sum of electrostatic energy and polar solvation energy, and non-polar solvation energy for SARS-CoV-2 Mpro-Arjunglucoside –I complex

Figure S14. Decomposition of the binding free energy on (A) per-residue basis (B) per-residue basis into the contribution from vdW energy, the sum of electrostatic energy and polar solvation energy, and non-polar solvation energy for SARS-CoV-2 Mpro-Carnosol complex

Figure S15. Decomposition of the binding free energy on (A) per-residue basis (B) per-residue basis into the contribution from vdW energy, the sum of electrostatic energy and polar solvation energy, and non-polar solvation energy for SARS-CoV-2 Mpro-Rosmanol complex

Table S1. List of atom-atom interactions ((Non-bonded contacts) across the protein-ligand interface in SARS-
CoV2 Mpro-	AKA complex from PDBsum server

	SARS	-CoV2 Mp	ro	-	Non-bonded	АКА				
		Atom	Res	Res	contacts		Atom	Res		
Sl.no.	Atom no.	name	name	no.		Atom no.	name	name	Res no.	Distance
1	2609	CD	GLU	165		1	O26	AKA	1	3.61
2	2611	OE2	GLU	165		1	O26	AKA	1	3.21
3	2631	С	LEU	166		5	C31	AKA	1	3.73
4	2633	Ν	PRO	167		5	C31	AKA	1	3.76
5	2945	NE2	GLN	188		11	O22	AKA	1	3.11
6	2945	NE2	GLN	188		16	C20	AKA	1	3.79
7	2266	CG	ASN	141		22	037	AKA	1	3.65
8	2267	OD1	ASN	141		22	O37	AKA	1	3.15
9	2945	NE2	GLN	188		23	N38	AKA	1	3.74
10	2603	CB	GLU	165		27	C47	AKA	1	3.78
11	2603	СВ	GLU	165		29	N49	AKA	1	3.43
12	2609	CD	GLU	165		29	N49	AKA	1	3.78
13	2610	OE1	GLU	165		29	N49	AKA	1	3.37
14	2610	OE1	GLU	165		30	C51	AKA	1	3.77
15	2287	OG	SER	143		31	C54	AKA	1	3.58
16	2557	CE1	HIE	162		31	C54	AKA	1	3.64
17	2559	NE2	HIE	162		31	C54	AKA	1	3.58
18	2581	0	HIE	163		32	C57	AKA	1	3.85
19	2945	NE2	GLN	188		33	O40	AKA	1	3.77
20	787	SD	MET	48		37	C13	AKA	1	3.59

	SARS-CoV2 Mpro				Non-bonded	AKA				
		Atom	Res	Res	contacts		Atom	Res		
Sl.no.	Atom no.	name	name	no.		Atom no.	name	name	Res no.	Distance
21	788	CE	MET	48		38	C14	AKA	1	3.84
22	788	CE	MET	48		39	C28	AKA	1	3.52
23	439	CG2	THR	26		40	C26	AKA	1	3.79
24	2267	OD1	ASN	141		42	C23	AKA	1	3.24
25	2273	Ν	GLY	142		42	C23	AKA	1	3.87
26	2267	OD1	ASN	141		43	C15	AKA	1	3.6

 Table S2A. List of atom-atom interactions (Hydrogen bonds) across the protein-protein interface in SARS-Cov2 Mpro- ARJ complex from PDBsum server.

SARS-Cov2 Mpro					Hydrogen bonds	ARJ				
Sl.no.	Atom no.	Atom name	Res name	Res no.		Atom no.	Atom name	Res name	Res no.	Distance
1	795	OG	SER	47	<	9	08	ARJG	1	3.24
2	722	NE2	HIE	42	>	11	O10	ARJG	1	2.98
3	2629	0	HIE	165	<	11	O10	ARJG	1	3.16

 Table S2B. List of atom-atom interactions (Non-bonded contacts) across the protein-protein interface in SARS-Cov2

 Mpro- ARJ complex from PDBsum server.

	SA	RS-Cov2 M	lpro		Non			ARJ		
	Atom	Atom	Res		bonded	Atom	Atom	Res		
Sl.no	no.	name	name	Res no.	contacts	no.	name	name	Res no.	Distance
1	2272	CB	PHE	141		3	O2	ARJG	1	3.13
2	2275	CG	PHE	141		3	O2	ARJG	1	3.31
3	2284	CD2	PHE	141		3	O2	ARJG	1	3.8
4	2332	CB	SER	145		3	O2	ARJG	1	3.54
5	2632	CA	MET	166		6	05	ARJG	1	3.84
6	2645	С	MET	166		6	05	ARJG	1	3.59
7	2647	Ν	GLU	167		6	05	ARJG	1	3.08
8	2649	CA	GLU	167		6	05	ARJG	1	3.88
9	2651	CB	GLU	167		6	05	ARJG	1	3.46
10	2629	0	HIE	165		7	06	ARJG	1	3.42
11	2632	CA	MET	166		7	06	ARJG	1	3.69
12	792	CB	SER	47		9	08	ARJG	1	3.76
13	795	OG	SER	47		9	08	ARJG	1	3.24
14	836	SD	MET	50		9	08	ARJG	1	3.59
15	830	CB	MET	50		10	09	ARJG	1	3.69
16	836	SD	MET	50		10	09	ARJG	1	3.59
17	837	CE	MET	50		10	09	ARJG	1	3.54
18	2959	CA	ARG	189		10	09	ARJG	1	3.62
19	2979	С	ARG	189		10	09	ARJG	1	3.6
20	2981	Ν	GLN	190		10	09	ARJG	1	3.55
21	720	CE1	HIE	42		11	O10	ARJG	1	3.46
22	722	NE2	HIE	42		11	O10	ARJG	1	2.98
23	2629	0	HIE	165		11	O10	ARJG	1	3.16

	SA	RS-Cov2 M	Ipro		Non	ARJ					
	Atom	Atom	Res		bonded	Atom	Atom	Res			
Sl.no	no.	name	name	Res no.	contacts	no.	name	name	Res no.	Distance	
24	2634	CB	MET	166		11	O10	ARJG	1	3.58	
25	2947	CA	ASP	188		11	O10	ARJG	1	3.8	
26	2955	С	ASP	188		11	O10	ARJG	1	3.43	
27	2956	0	ASP	188		11	O10	ARJG	1	3.45	
28	2659	OE2	GLU	167		22	C10	ARJG	1	3.45	
29	2659	OE2	GLU	167		29	C17	ARJG	1	3.58	
30	2658	OE1	GLU	167		31	C19	ARJG	1	3.68	
31	2305	С	LEU	142		32	C20	ARJG	1	3.57	
32	2306	0	LEU	142		32	C20	ARJG	1	3.35	
33	2307	Ν	ASN	143		32	C20	ARJG	1	3.73	
34	2309	CA	ASN	143		32	C20	ARJG	1	3.76	
35	2628	С	HIE	165		34	C22	ARJG	1	3.58	
36	2629	0	HIE	165		34	C22	ARJG	1	3.47	
37	2630	Ν	MET	166		34	C22	ARJG	1	3.57	
38	2632	CA	MET	166		34	C22	ARJG	1	3.8	
39	2339	Ν	CYS	146		38	C26	ARJG	1	3.78	
40	2341	CA	CYS	146		38	C26	ARJG	1	3.49	
41	2343	CB	CYS	146		38	C26	ARJG	1	3.77	
42	2346	SG	CYS	146		38	C26	ARJG	1	3.78	
43	2612	0	HIE	164		38	C26	ARJG	1	3.85	
44	2630	Ν	MET	166		40	C28	ARJG	1	3.71	
45	2645	С	MET	166		40	C28	ARJG	1	3.9	
46	2646	0	MET	166		40	C28	ARJG	1	3.38	
47	2745	CD2	HIE	173		40	C28	ARJG	1	3.9	
48	2337	С	SER	145		41	C29	ARJG	1	3.74	
49	2338	0	SER	145		41	C29	ARJG	1	3.38	
50	2634	CB	MET	166		47	C35	ARJG	1	3.73	
51	2955	С	ASP	188		47	C35	ARJG	1	3.7	
52	2957	Ν	ARG	189		47	C35	ARJG	1	3.73	
53	2980	0	ARG	189		47	C35	ARJG	1	3.61	

 Table S3A. List of atom-atom interactions (Hydrogen bonds)across the protein-protein interface in SARS-Cov2

 Mpro- CAN complex from PDBsum server.

	SA	RS-Cov2 M	lpro					CAN		
CI ma	Atom	Atom	Res	Degmo	Hydrogen	Atom	Atom	Res	Degmo	Distorios
SI.NO.	no.	пате	пате	Kes no.	bonds	no.	name	пате	Kes no.	Distance
1	667	NE2	HIE	42	>	3	03	CAN	1	3.27

 Table S3B. List of atom-atom interactions (Non-bonded contacts) across the protein-protein interface in SARS-Cov2 Mpro- CAN complex from PDBsum server.

	SA	RS-Cov2 M	Ipro	-	Non-		-			
CI	Atom	Atom	Res	Denne	bonded	Atom	Atom	Res	Denne	D!
Sl.no.	no.	name	name	Res no.	contacts	no.	name	name	Res no.	Distance
1	2593	N	GLU	167		1	01	CAN	1	3.28
2	2607	0	GLU	167		1	01	CAN	1	3.5
3	2597	СВ	GLU	167		1	01	CAN	1	3.83
4	667	NE2	HIE	42		3	03	CAN	1	3.27
5	669	CD2	HIE	42		3	03	CAN	1	3.76
6	2580	СВ	MET	166		3	03	CAN	1	3.8
7	2926	0	ARG	189		3	03	CAN	1	3.78
8	663	CG	HIE	42		4	04	CAN	1	3.72
9	664	ND1	HIE	42		4	04	CAN	1	3.42
10	665	CE1	HIE	42		4	04	CAN	1	2.39
11	667	NE2	HIE	42		4	04	CAN	1	2.1
12	669	CD2	HIE	42		4	04	CAN	1	3.09
13	2563	СВ	HIE	165		4	04	CAN	1	3.67
14	2574	С	HIE	165		4	04	CAN	1	3.53
15	2575	0	HIE	165		4	O4	CAN	1	2.99
16	2578	CA	MET	166		5	C1	CAN	1	3.79
17	2591	С	MET	166		5	C1	CAN	1	3.88
18	2580	СВ	MET	166		5	C1	CAN	1	3.15
19	2587	CE	MET	166		5	C1	CAN	1	3.2
20	2593	N	GLU	167		5	C1	CAN	1	3.4
21	2606	С	GLU	167		5	C1	CAN	1	3.59
22	2607	0	GLU	167		5	C1	CAN	1	2.79
23	2580	CB	MET	166		6	C2	CAN	1	3.51
24	2587	CE	MET	166		7	C3	CAN	1	3.24
25	2606	С	GLU	167		7	C3	CAN	1	3.88
26	2607	0	GLU	167		7	C3	CAN	1	2.85
27	2972	СВ	GLN	193		7	C3	CAN	1	3.53
28	2980	NE2	GLN	193		7	C3	CAN	1	3.7
29	2578	CA	MET	166		8	C4	CAN	1	3.24
30	2591	С	MET	166		8	C4	CAN	1	2.85
31	2592	0	MET	166		8	C4	CAN	1	3.81
32	2580	СВ	MET	166		8	C4	CAN	1	3.25
33	2587	CE	MET	166		8	C4	CAN	1	3.85
34	2593	N	GLU	167		8	C4	CAN	1	2
35	2595	CA	GLU	167		8	C4	CAN	1	2.55
36	2606	С	GLU	167		8	C4	CAN	1	2.36
37	2607	0	GLU	167		8	C4	CAN	1	1.89
38	2597	СВ	GLU	167		8	C4	CAN	1	3.39
39	2608	N	LEU	168		8	C4	CAN	1	3.61
40	2926	0	ARG	189		9	C5	CAN	1	3.32

	SARS-Cov2 Mpro				Non-					
Sl.no.	Atom no.	Atom name	Res name	Res no.	bonded contacts	Atom	Atom name	Res name	Res no.	Distance
41	2929	CA	GLN	190		9	C5	CAN	1	37
42	2980	NE2	GLN	193		9	C5	CAN	1	3.81
43	2587	CE	MET	166		10	C6	CAN	1	3.27
44	2957	0	THR	191		10	C6	CAN	1	3.39
45	2972	СВ	GLN	193		10	C6	CAN	1	2.85
46	2975	CG	GLN	193		10	C6	CAN	1	2.87
47	2978	CD	GLN	193		10	C6	CAN	1	2.81
48	2980	NE2	GLN	193		10	C6	CAN	1	2.28
49	2578	CA	MET	166		11	C7	CAN	1	2.85
50	2591	С	MET	166		11	C7	CAN	1	2.79
51	2580	СВ	MET	166		11	C7	CAN	1	3.37
52	2593	N	GLU	167		11	C7	CAN	1	1.94
53	2595	CA	GLU	167		11	C7	CAN	1	2.92
54	2606	С	GLU	167		11	C7	CAN	1	3.38
55	2607	0	GLU	167		11	C7	CAN	1	3.11
56	2597	СВ	GLU	167		11	C7	CAN	1	3.19
57	2578	CA	MET	166		12	C8	CAN	1	2.93
58	2591	С	MET	166		12	C8	CAN	1	3.85
59	2580	СВ	MET	166		12	C8	CAN	1	2.52
60	2593	N	GLU	167		12	C8	CAN	1	3.77
61	2926	0	ARG	189		13	C9	CAN	1	2.77
62	2957	0	THR	191		13	C9	CAN	1	3.68
63	2975	CG	GLN	193		13	C9	CAN	1	3.76
64	2978	CD	GLN	193		13	C9	CAN	1	3.32
65	2980	NE2	GLN	193		13	C9	CAN	1	2.26
66	2574	С	HIE	165		14	C10	CAN	1	3.78
67	2575	0	HIE	165		14	C10	CAN	1	3.45
68	2576	N	MET	166		14	C10	CAN	1	3.33
69	2578	CA	MET	166		14	C10	CAN	1	2.05
70	2591	С	MET	166		14	C10	CAN	1	2.82
71	2580	СВ	MET	166		14	C10	CAN	1	2.44
72	2593	Ν	GLU	167		14	C10	CAN	1	2.68
73	2607	0	GLU	167		16	C12	CAN	1	2.89
74	2587	CE	MET	166		17	C13	CAN	1	2.6
75	2606	С	GLU	167		17	C13	CAN	1	3.37
76	2607	0	GLU	167		17	C13	CAN	1	2.64
77	2608	N	LEU	168		17	C13	CAN	1	3.86
78	2610	CA	LEU	168		17	C13	CAN	1	3.72
79	2615	CG	LEU	168		17	C13	CAN	1	3.11
80	2621	CD2	LEU	168		17	C13	CAN	1	2.55
81	2972	СВ	GLN	193		17	C13	CAN	1	3.15

	SARS-Cov2 Mpro				Non-					
Sl.no.	Atom no.	Atom name	Res name	Res no.	bonded contacts	Atom no.	Atom name	Res name	Res no.	Distance
82	667	NE2	HIE	42		18	C14	CAN	1	3.8
83	2575	0	HIE	165		18	C14	CAN	1	3.7
84	2578	CA	MET	166		18	C14	CAN	1	3.51
85	2580	СВ	MET	166		18	C14	CAN	1	2.92
86	2574	С	HIE	165		19	C15	CAN	1	2.67
87	2575	0	HIE	165		19	C15	CAN	1	2.16
88	2576	Ν	MET	166		19	C15	CAN	1	2.56
89	2578	CA	MET	166		19	C15	CAN	1	1.89
90	2591	С	MET	166		19	C15	CAN	1	2.96
91	2580	СВ	MET	166		19	C15	CAN	1	2.78
92	2593	Ν	GLU	167		19	C15	CAN	1	3.23
93	2561	CA	HIE	165		20	C16	CAN	1	3.39
94	2574	С	HIE	165		20	C16	CAN	1	2.17
95	2575	0	HIE	165		20	C16	CAN	1	1.3
96	2576	Ν	MET	166		20	C16	CAN	1	2.74
97	2578	CA	MET	166		20	C16	CAN	1	2.67
98	2580	СВ	MET	166		20	C16	CAN	1	3.14
99	665	CE1	HIE	42		21	C17	CAN	1	3.76
100	667	NE2	HIE	42		21	C17	CAN	1	3.32
101	2574	С	HIE	165		21	C17	CAN	1	3.13
102	2575	0	HIE	165		21	C17	CAN	1	2.51
103	2576	Ν	MET	166		21	C17	CAN	1	3.62
104	2578	CA	MET	166		21	C17	CAN	1	3.33
105	2580	СВ	MET	166		21	C17	CAN	1	3.11
106	2287	CA	CYS	146		22	C18	CAN	1	3.73
107	2289	СВ	CYS	146		22	C18	CAN	1	3.27
108	2292	SG	CYS	146		22	C18	CAN	1	2.86
109	2559	Ν	HIE	165		22	C18	CAN	1	3.73
110	2561	CA	HIE	165		22	C18	CAN	1	2.53
111	2563	СВ	HIE	165		22	C18	CAN	1	3.5
112	2574	С	HIE	165		22	C18	CAN	1	1.69
113	2575	0	HIE	165		22	C18	CAN	1	0.55
114	2576	N	MET	166		22	C18	CAN	1	2.83
115	2578	CA	MET	166		22	C18	CAN	1	3.46
116	2287	CA	CYS	146		23	C19	CAN	1	3.8
117	2292	SG	CYS	146		23	C19	CAN	1	3.56
118	2550	ND1	HIE	164		23	C19	CAN	1	3.11
119	2551	CE1	HIE	164		23	C19	CAN	1	3.5
120	2557	С	HIE	164		23	C19	CAN	1	3.31
121	2558	0	HIE	164		23	C19	CAN	1	3.64
122	2559	Ν	HIE	165		23	C19	CAN	1	2.32

	SA	RS-Cov2 M	lpro		Non-	Non- CAN				
Sl.no.	Atom no.	Atom name	Res name	Res no.	bonded contacts	Atom no.	Atom name	Res name	Res no.	Distance
123	2561	CA	HIE	165		23	C19	CAN	1	1.44
124	2563	CB	HIE	165		23	C19	CAN	1	2.82
125	2574	С	HIE	165		23	C19	CAN	1	0.8
126	2575	0	HIE	165		23	C19	CAN	1	1.3
127	2576	Ν	MET	166		23	C19	CAN	1	1.93
128	2578	CA	MET	166		23	C19	CAN	1	3.14
129	2285	Ν	CYS	146		24	C20	CAN	1	3.46
130	2287	CA	CYS	146		24	C20	CAN	1	2.91
131	2289	СВ	CYS	146		24	C20	CAN	1	2.31
132	2292	SG	CYS	146		24	C20	CAN	1	2.8
133	2561	CA	HIE	165		24	C20	CAN	1	3.74
134	2574	С	HIE	165		24	C20	CAN	1	2.96
135	2575	0	HIE	165		24	C20	CAN	1	1.92
136	2576	Ν	MET	166		24	C20	CAN	1	3.89

 Table S4A. List of atom-atom interactions (Hydrogen bonds) across the protein-protein interface in SARS-Cov2

 Mpro- ROS complex from PDBsum server.

	SA	RS-Cov2 M	lpro			ROS					
a.	Atom	Atom	Res		Hydrogen	Atom	Atom	Res		-	
Sl.no.	no.	name	name	Res no.	bonds	no.	name	name	Res no.	Distance	
1	2234	0	PHE	141	<	1	01	ROS	1	3.3	
2	2554	NE2	HIE	164	>	3	03	ROS	1	3.2	
3	2608	0	GLU	167	<	5	O5	ROS	1	3.28	

 Table S4B. List of atom-atom interactions (Non-bonded contacts) across the protein-protein interface in SARS-Cov2

 Mpro- ROS complex from PDBsum server.

	SA	RS-Cov2 M	lpro		Non-			ROS		
	Atom	Atom	Res		bonded contacts	Atom	Atom	Res		_
Sl.no.	no.	name	name	Res no.		no.	name	name	Res no.	Distance
1	2234	0	PHE	141		1	01	ROS	1	3.3
2	2598	CB	GLU	167		1	01	ROS	1	3.81
3	2605	OE1	GLU	167		1	01	ROS	1	3.9
4	2552	CE1	HIE	164		3	03	ROS	1	3.82
5	2554	NE2	HIE	164		3	03	ROS	1	3.2
6	2579	CA	MET	166		3	03	ROS	1	3.38
7	2592	С	MET	166		3	03	ROS	1	3.15
8	2593	0	MET	166		3	03	ROS	1	3.75
9	2594	Ν	GLU	167		3	03	ROS	1	3.14
10	2598	СВ	GLU	167		3	03	ROS	1	3.55
11	2579	CA	MET	166		4	O4	ROS	1	3.88
12	2581	CB	MET	166		4	O4	ROS	1	3.52
13	2594	Ν	GLU	167		4	O4	ROS	1	3.47
14	2944	0	GLN	190		4	O4	ROS	1	3.51
15	2608	0	GLU	167		5	05	ROS	1	3.28
16	2944	0	GLN	190		5	05	ROS	1	3.75

	SA	RS-Cov2 M	[pro		Non-	ROS					
Sino	Atom	Atom	Res	Res no	bonded contacts	Atom	Atom	Res	Pas no	Distance	
17	2224			141		IIO.			KCS IIU.	2 16	
17	2234	N		141		12	C4	DOS	1	2 95	
10	2594	IN CD	GLU	107		12	C7	RUS	1	2.60	
19	2598	CB	GLU	10/		12	C/	RUS	1	3.08	
20	2604	CD	GLU	167		14	<u>C9</u>	ROS	1	3.83	
21	2605	OEI	GLU	167		14	C9	ROS	1	3.88	
22	2606	OE2	GLU	167		14	C9	ROS	1	3.74	
23	2594	N	GLU	167		15	C10	ROS	1	3.69	
24	2598	CB	GLU	167		15	C10	ROS	1	3.56	
25	2598	CB	GLU	167		16	C11	ROS	1	3.7	
26	2234	0	PHE	141		17	C12	ROS	1	3.74	
27	2252	С	LEU	142		17	C12	ROS	1	3.89	
28	2253	0	LEU	142		17	C12	ROS	1	3.12	
29	2282	OG	SER	145		17	C12	ROS	1	3.21	
30	2594	Ν	GLU	167		19	C14	ROS	1	3.58	
31	2608	0	GLU	167		19	C14	ROS	1	3.84	
32	2598	CB	GLU	167		20	C15	ROS	1	3.85	
33	2604	CD	GLU	167		20	C15	ROS	1	3.88	
34	2606	OE2	GLU	167		20	C15	ROS	1	3.41	
35	2608	0	GLU	167		22	C17	ROS	1	3.49	
36	2608	0	GLU	167		24	C19	ROS	1	3.6	
37	2626	С	LEU	168		24	C19	ROS	1	3.77	
38	2963	СВ	ALA	192		25	C20	ROS	1	3.78	

Table S5. Hydrogen bonding contacts between SARS-CoV-2 Mpro and AKA during the course of 50 ns MD simulation

	simulation								
Acceptor	DonorH	Donor	Frames	Frac	AvgDist	AvgAng			
CYS_144@HG	AKA_10H36	AKA_1@N36	445	0.0890	2.7074	154.1059			
MET_164@HA	AKA_1@HO40	AKA_1@040	133	0.0266	2.7883	150.6348			
MET_480HG3	AKA_1@H133	AKA_1@C13	121	0.0242	2.9259	147.4516			
GLU 1650H	AKA 10H423	AKA 10C42	102	0.0204	2.8931	148.3543			
SER_1430HG	AKA_1@H543	AKA_1@C54	92	0.0184	2.9217	148.6688			
GLN 1880HE21	AKA 10H2O	AKA 10C20	91	0.0182	2.8470	154.5173			
HIE 162@HE2	AKA 10H543	AKA 10C54	85	0.0170	2.8682	144.0108			
MET 480HG3	AKA 10H132	AKA 10C13	83	0.0166	2.9333	145.5845			
MET 1640HA	AKA 10H422	AKA 10C42	78	0.0156	2.9295	143.5477			
MET 164@HB2	AKA 10HO40	AKA 10040	71	0.0142	2.8466	147.8645			
MET 164@HB3	AKA 10HO40	AKA 10040	69	0.0138	2.8420	148.7274			
CYS 1440HG	AKA 10H57	AKA 10C57	55	0.0110	2.8848	150.4686			
SER 1430HG	AKA 10H512	AKA 10C51	51	0.0102	2.9042	141.9291			
MET 1640HA	AKA 10H423	AKA 10C42	49	0.0098	2.9206	139.9120			
GLY 1420H	AKA 10H26	AKA 10C26	39	0.0078	2.8940	152.3115			
GLU_165@OE2	AKA_10H49	AKA_1@N49	39	0.0078	2.9236	147.4092			
GLN_1880HE21	AKA 10H302	AKA 10C30	39	0.0078	2.8069	147.5447			
HIE_171@HE2	AKA_1@H513	AKA_1@C51	36	0.0072	2.9235	159.0629			
GLU 1650HB2	AKA 10H49	AKA 10N49	35	0.0070	2.6979	143.5345			
GLU 1650H	АКА 10НО40	AKA 10040	30	0.0060	2.8164	152.2591			
GLN 1880HE21	AKA 10HO40	AKA 10040	29	0.0058	2.6336	150.3850			
LEU_280HB3	AKA_10H23	AKA_1@C23	28	0.0056	2.9511	145.3795			
GLU_1650H	AKA_1@H422	AKA_1@C42	28	0.0056	2.8748	143.2061			
ASN_1410HB2	AKA_10H16	AKA_1@C16	26	0.0052	2.9343	142.3358			
HIE 162@HE2	AKA 10H513	AKA 10C51	25	0.0050	2.8062	144.7324			
ASN 1410HA	AKA 10H45	AKA 10C45	24	0.0048	2.9383	142.8056			
LEU_280HD23	AKA_10H23	AKA_1@C23	23	0.0046	2.9319	140.4834			
GLN 1880HE22	AKA 10H20	AKA 10C20	23	0.0046	2.8656	150.5083			
MET_164@HA	AKA_10H57	AKA_1@C57	21	0.0042	2.9307	141.0176			
HIE 162@HE2	AKA 10H542	AKA 10C54	20	0.0040	2.8347	144.4822			
PRO 1670HA	AKA 10H323	AKA 10C32	20	0.0040	2.9511	142.4544			
GLN_188@HE22	AKA_1@HO40	AKA_1@040	20	0.0040	2.8150	152.4242			
ASN_1410HA	AKA_1@H543	AKA_1@C54	18	0.0036	2.9383	141.2797			

				1	U	
CVS 1440HC	ארא 10015	AKA 10015	1.8	0 0036	2 7967	1// 527/
C15_1446IIG	AICA_IGIIIJ	AIG_10015	10	0.0050	2.1501	144.52/4
PRO 1670HA	AKA 10H321	AKA 10C32	18	0.0036	2.9570	145.3398
PRO 1670HA	AKA 10H312	AKA 10C31	17	0.0034	2,9369	141.3913
CTN 10000021	AVA 10020	AKA 10020	17	0 0024	2 0022	151 0047
GTN_100GHESI	ANA_IGH29	ANA_IQC29	1 /	0.0034	2.9033	131.024/
MET 480HG3	AKA 1@H28	AKA 1@C28	16	0.0032	2.9194	144.6405
GLY 1420HA2	AKA 10H26	AKA 10C26	16	0 0032	2 9230	143 9647
	1001_100200	1001_10020	10	0.0052	2.9250	140.10047
PRO_1670HA	AKA_10H322	AKA_10C32	16	0.0032	2.9260	143.1036
GLU 1650HB2	AKA 10H513	AKA 10C51	15	0.0030	2,9410	140,2304
CTU 1650UD2	AKA 10110	AKA 10N40	1 /	0 0029	2 9456	140 1402
GTO_IO26HP2	AKA_10H49	AKA_IQN49	14	0.0028	2.0430	140.1403
HIE 420HB3	AKA 10H15	AKA 10C15	12	0.0024	2.9506	141.1502
PRO 1670HA	AKA 10H311	AKA 10C31	12	0 0024	2 9596	142 6630
1 600000	10011	10051	11	0.0021	2.9090	142.0001
HIE_I020HE2	AKA_IGH512	AKA_I@C51	11	0.0022	2.8047	143.0221
HIE 1620HE2	AKA 1@H49	AKA 1@N49	11	0.0022	2.7282	148.3561
GLN 1880HG3	AKA 10H040	AKA 10040	10	0 0020	2 8142	143 5628
	11111_101040	1101_10040	10	0.0020	2.0112	143.5020
HIE_42@HB2	AKA_I@H23	AKA_I@C23	9	0.0018	2.9299	144.6990
MET 480HE2	AKA 10H133	AKA 10C13	9	0.0018	2.9203	143.2736
DUE 1300UD3	727 100512	AKA 10051	0	0 0019	2 9371	137 6030
FUE_1396UB3	ANA_IGHJIZ	ARA_10051	9	0.0018	2.9574	137.0030
ASN 1410HD21	AKA 10H223	AKA 10C22	9	0.0018	2.8956	148.7954
HTE 1620HE1	AKA 10H542	AKA 10C54	9	0.0018	2,9424	140.7393
CTN 1000UE21	AKA 100000	AKA 10000	0	0 0019	2 0700	144 4007
GTN 1886HESI	AKA_IGHZZZ	AKA_I@CZZ	9	0.0018	2.8/98	144.4997
MET 480HE1	AKA 10H133	AKA 1@C13	8	0.0016	2.9150	138.6394
МЕТ 1640НА	AKA 10H542	AKA 10054	8	0 0016	2 9417	140 2736
OT NL 100000001	ATTA 100010	AVA 10001	0	0 0010	0 0057	140 0000
GLN_1880HE21	AKA_I@H343	AKA_10C34	8	0.0016	2.9056	146.69/5
LEU 280HD21	AKA 10H23	AKA 10C23	7	0.0014	2.9234	139.2521
	747 10423	AKA 10023	7	0 0014	2 0376	1/1 6250
LEO_20GHD22	AKA_IGHZ5	ANA_10025	1	0.0014	2.9570	141.0230
LEU 28@HD23	AKA 1@H15	AKA 10C15	7	0.0014	2.9369	144.7682
PHE 1390HB3	AKA 10H49	AKA 10N49	7	0.0014	2.8158	143.3579
A GNL 1 41 611D 2	ATZA 10117	AKA 10017	7	0.0014	2.0725	141 0122
ASN_1410HBZ	AKA_I@HI/	AKA_I@CI/	/	0.0014	2.9/35	141.0133
ASN 1410HD21	AKA 1@H302	AKA 1@C30	7	0.0014	2.8699	150.2013
UTE 1710UE2	7KY 10H10	7K7 10N/0	7	0 0014	2 8803	1/8 9560
	AI(A_10114)	AICA_1GN45	1	0.0014	2.0005	140.5500
LEU_28@HB3	AKA_10H25	AKA_10C25	6	0.0012	2.9632	141.5695
MET 480HE1	AKA 10H132	AKA 10C13	6	0.0012	2.9190	140.5805
DHE 1300HB2	AKA 104513	AKA 10051	6	0 0012	2 9272	139 771/
	AICA_10IIJ1J	AIG 10001	0	0.0012	2.9272	133.7714
HIE_I020HEI	AKA_I@H5I3	AKA_10C51	6	0.0012	2.9459	141.881/
PRO 1670HG3	AKA 10H321	AKA 1@C32	6	0.0012	2.9580	140.1403
DDO 1670HA	7K7 10H313	AKA 10C31	6	0 0012	2 9720	1// 8805
	AICA_10II515	AIG 16051	0	0.0012	2.9720	144.0000
GLN 1880HE21	AKA 10H38	AKA 10N38	6	0.0012	2.8718	143.3934
LEU 280HD21	AKA 10H15	AKA 10C15	5	0.0010	2.9715	143.0574
MEII 49011C3	AKA 10115	AKA 10015	5	0 0010	2 0506	120 0072
MEI_400HG5	ANA_IGHIJ	AKA_IQCIJ	5	0.0010	2.9390	130.00/2
MET 480HE2	AKA 10H132	AKA 10C13	5	0.0010	2.9290	143.2715
ASN 1410HD22	AKA 10H16	AKA 10C16	5	0.0010	2,9228	159.0690
	101122	AKA 10000	5	0 0010	2 0212	140 2100
CIS_I440HBZ	AKA_I@H23	AKA_10C23	5	0.0010	2.9312	142.3192
THR 270H	AKA 10H25	AKA 10C25	4	0.0008	2.8721	145.8010
HTE 420HB3	AKA 10H132	AKA 10C13	4	0 0008	2 9422	143 3516
<u></u>	1001_100102	10010	-	0.0000	2.9122	110.0010
HIE_4Z@HDZ	AKA_I@HI3Z	AKA_I@CI3	4	0.0008	2.8/35	143.5491
MET 480HG3	AKA 10H342	AKA 1@C34	4	0.0008	2.8955	139.2332
MET 1864E3	AKA 10H132	AKA 10013	1	0 0008	2 9215	1/8 731/
1 400HL3	1101_101152	1001_10010	-1	0.0000	2.92.10	144 4001
GLY_1420HA2	AKA_I@H23	AKA_10C23	4	0.0008	2.9193	144.4991
CYS 1440HB2	AKA 1@H15	AKA 1@C15	4	0.0008	2.9643	145.8708
TEIL 280HC	AKA 10H25	AKA 10025	3	0 0006	2 9/07	130 / 88/
	AICA_10125	AI(A_10025	5	0.0000	2.9407	100-
MET_480HE3	AKA_10H15	AKA_1@C15	3	0.0006	2.9562	141.2947
LEU 1400HA	AKA 10H512	AKA 10C51	3	0.0006	2.9354	146.7222
AGN 14160021	787 100222	AKA 10022	3	0 0006	2 9965	165 0303
ASN_1410HD21	AICA_101222	AILA_IGC22	5	0.0000	2.0005	103.5505
GLU_1650HB3	AKA_10H312	AKA_1@C31	3	0.0006	2.9147	142.2889
GLU 1650HG2	AKA 10H312	AKA 10C31	3	0.0006	2.9643	141.8007
DDO 1670UA		7KY 10000	3	0 0006	2 0620	1/0 1005
PRO_16/GHA	AKA_IGH332	AKA_10C33	3	0.0006	2.9039	148.1285
GLN 1880HG2	AKA 10HO40	AKA 10040	3	0.0006	2.9357	142.1318
GLN 1880NE2	AKA 10HO40	AKA 10040	З	0.0006	2,9906	142.5123
GIN_1000UE01	100201	10022	2	0.0000	0.0700	152.0000
GTN_1886HES1	AKA_I@H331	AKA_10C33	3	0.0006	2.8/60	153.2808
THR 260HG21	AKA 1@H23	AKA 1@C23	2	0.0004	2.9406	136.1919
тнв 260нс22	AKA 10H26	AKA 10026	2	0 0004	2 8999	139 3346
	AVA 10000	AVA 10000	2	0.0004	2.0000	120 0007
THK_Z6@HGZ3	AKA_10H26	AKA_10C26	2	0.0004	2.98/2	T3A.008/
THR 260HG23	AKA 10H23	AKA 10C23	2	0.0004	2.9411	153.3890
LEU 280HB3	AKA 10H26	AKA 10026	2	0 0004	2 9625	142 7899
		AZA 10000	-	0.0007	2.2020	120 0700
тео ⁷ 28@HD51	AKA_10H28	AKA_10C28	2	0.0004	∠.9481	T38.8/86
HIE 420HB2	AKA 10H132	AKA 10C13	2	0.0004	2.9514	138.5320
HTE 420HB2	AKA 10015	AKA 10015	2	0 0004	2 9652	143 3/15
		1101_1@CTO	~	0.0004	2.2022	141 5000
ME'I'_480HB2	AKA_10H342	AKA_10C34	2	0.0004	2.9202	141.5330
MET 480HE1	AKA 1@H15	AKA 10C15	2	0.0004	2.9404	142.3951
DHE 1300HD3	AKA 100510	AKA 10051	2	0 0004	2 0053	137 1600
TTTT TO 2600 -	ANA TGUJIS	ANA_100J1	2	0.0004	2.3033	101.4020
гн≝_⊥З90́НВ2	AKA_10H49	AKA_10N49	2	0.0004	2.8657	151.7647
LEU 1400HA	AKA 1@H49	AKA 10N49	2	0.0004	2.6743	145.4708
74180-00	7K7 100313	7K7 10031	- 2	0 0004	2 9161	140 4500
ADIN_IHIUDZZ	AILA_IURIJ4J	ANA_10034	2	0.0004	2.3404	140.4000
GLY_1420H	AKA_10H23	AKA_10C23	2	0.0004	2.9016	156.3507
CYS 1440HG	AKA 10H422	AKA 10C42	2	0.0004	2.8550	144.8617

				-	-	
GLU 1650HB2	AKA 10H542	AKA 10C54	2	0.0004	2.8957	136.9232
GLU 16500E1	AKA 10H49	AKA 10N49	2	0.0004	2.9401	152.5071
PRO 1670HG3	AKA 10H323	AKA 10C32	2	0.0004	2.9655	143.2397
PRO 1670HG3	AKA 10H322	AKA 10C32	2	0.0004	2.9603	135.7135
GLN 18800E1	AKA 10HO40	AKA 10040	2	0.0004	2.8977	149.8754
GLN 1880HE21	AKA 10H223	AKA 10C22	2	0.0004	2.8963	145.3123
THR 260HG21	AKA 10H26	AKA 10C26	1	0.0002	2.9768	143.9186
THR 260HG22	AKA 10H23	AKA 10C23	1	0.0002	2,9931	136.8754
THR 260HG22	AKA 10H25	AKA 10C25	1	0.0002	2,9950	136.1832
THR 270H	AKA 10H26	AKA 10C26	1	0.0002	2,9361	135.1606
HTE 420HB3	AKA 10H23	AKA 10C23	1	0.0002	2.9187	135.0847
HTE 420HB3	AKA 10H28	AKA 10C28	1	0.0002	2.9981	140.4374
MET 480HB3	AKA 10H133	AKA 10C13	1	0.0002	2.9491	139,9618
MET 480HG2	AKA 10H132	AKA 10C13	- 1	0 0002	2 9361	150 6235
MET 480HE2	AKA 10H28	AKA 10C28	1	0 0002	2 8652	144 5446
MET 480HE2	AKA 10H15	AKA 10C15	1	0 0002	2 9789	156 1584
MET 480HE3	ZKZ 10H133	AKA 10013	1	0 0002	2 8988	146 9910
PHE 13900	ZKZ 10H40	AKA 10N49	1	0.0002	2 9879	136 3334
ASN 1410H	AKA 10H17	AKA 10017	1	0.0002	2 9517	138 7430
ASN 1410HA	AKA 10H512	AKA 10051	1	0.0002	2 9557	162 9039
ASN 1/10HD21	7HU1_10H16	AKA 10016	1	0.0002	2 8486	146 4685
ASN_1410HD21	XKX 10H223	AKA 10022	1	0.0002	2 7809	169 8947
CIV 1/20HA2	AKA 10H25	AKA 10025	1	0.0002	2 9706	135 1673
	AKA_100542	AKA_10023	1	0.0002	2.5700	135 0014
UTE 1620NE2	AKA_IGHJ42	AKA_10CJ4	1	0.0002	2.7900	142 5925
MEE 1640UD	ANA_IGH49	AKA_IGN49	1	0.0002	2.0039	127 0710
MET_1640HD3	ANA_IGHJIJ	AKA_10C51	1	0.0002	2.9043	1/1 9609
MET_1040HBS	AKA_IGHJ/	AKA_10CJ/	1	0.0002	2.9771	120 6261
MEI_I040HEZ	AKA_IGHU40	AKA_10040	1	0.0002	2.9203	142 6415
GLU_IOJUCE	ACA_10H49	AKA_IQN49	1	0.0002	2.9097	126 0001
GLU_1650HB3	AKA_I@H313	AKA_10C31	1	0.0002	2.9204	150.8891
GLU_1650CD	AKA_10H49	AKA_10N49	1	0.0002	2.9699	152.3993
PRO_1670HD3	AKA_10H3Z1	AKA_10C32	1	0.0002	2.9049	141.2130
PRO_1670HD3	AKA_10H313	AKA_10C31	1	0.0002	2.9984	140.2657
PRO_1670HD3	AKA_I@H3II	AKA_10C31	1	0.0002	2.9383	139.1181
PRO_1670HG3	AKA_10H312	AKA_10C31	1	0.0002	2.8/90	150.0450
PRO_1670HA	AKA_10H333	AKA_10033	1	0.0002	2.9860	130.9236
PRO_16/@HA	AKA_I@H33I	AKA_10C33	1	0.0002	2.9922	138.3995
HIE_17I@HD2	AKA_10H513	AKA_10C51	1	0.0002	2.9246	143.4495
GLN_1880HB2	AKA_10HO40	AKA_10040	1	0.0002	2.9930	144.8024
GLN_1880HG3	AKA_10H343	AKA_1@C34	1	0.0002	2.9349	135.1555
GLN_1880HE21	AKA_10H342	AKA_1@C34	1	0.0002	2.9160	136.6418
GLN_1880HE22	AKA_10H132	AKA_1@C13	1	0.0002	2.9362	142.7907
GLN_1880HE22	AKA_1@H38	AKA_1@N38	1	0.0002	2.5080	143.3314
GLN_1880HE22	AKA_1@H303	AKA_1@C30	1	0.0002	2.9861	143.5289
GLN_1880HE22	AKA_1@H302	AKA_1@C30	1	0.0002	2.9852	141.3197
GLN_1880HE22	AKA_1@H331	AKA_10C33	1	0.0002	2.9604	136.3564

Table S6. Hydrogen bonding contacts between SARS-CoV-2 Mpro and ARJ during the course of 50 ns MD simulation

			simulation.			
Acceptor	DonorH	Donor	Frames	Frac	AvgDist	AvgAng
ASP_1880HA	ARJ_1@HO7	ARJ_1@010	571	0.1142	2.6643	150.7860
PHE 1410HB3	ARJ 10HO2	ARJ 1002	461	0.0922	2.7630	148.7595
ASP 1880HB2	ARJ 10HO7	ARJ 10010	347	0.0694	2.8161	152.4070
HIE 420HE2	ARJ 10HO7	ARJ 10010	271	0.0542	2.7380	151.2685
PHE 1410HB2	ARJ 10HO2	ARJ 1002	259	0.0518	2.7962	148.2960
GLN 1900HG2	ARJ 10HO6	ARJ 1009	249	0.0498	2.7900	151.7154
MET 1660HB3	ARJ 10HO7	ARJ 10010	238	0.0476	2.6909	148.4856
GLU 1670H	ARJ 10HC43	ARJ 10C30	228	0.0456	2.8754	147.1513
MET 1660HA	ARJ 10HC28	ARJ 10C22	225	0.0450	2.9482	142.5734
HIE 1730HE2	ARJ 10HC19	ARJ 10C17	195	0.0390	2.8986	153.7576
ASN 1430HA	ARJ 10HC25	ARJ 10C20	127	0.0254	2.9369	141.5536
SER 1450HB2	ARJ 10HO2	ARJ 1002	127	0.0254	2.7266	142.1694
GLN 1900HG2	ARJ 10HO5	ARJ 1008	122	0.0244	2.8106	152.6836
ASN 1430HB2	ARJ 10HO3	ARJ 1003	97	0.0194	2.7799	146.5442
GLN_1900HG3	ARJ_1@HO6	ARJ_1009	94	0.0188	2.7862	146.1134
LEU_1420HD23	ARJ_1@HO1	ARJ_1001	82	0.0164	2.8221	153.6248
HIE_164@HB3	ARJ_1@HC37	ARJ_1@C28	81	0.0162	2.9530	141.3305
HIE 1640HB3	ARJ 1@HC42	ARJ 10C29	77	0.0154	2.9572	140.7743
CYS_1460HA	ARJ 10HC36	ARJ_1@C26	65	0.0130	2.9170	140.9137
MET_50@HB3	ARJ_1@HO6	ARJ_1009	62	0.0124	2.7969	146.9796
HIE_164@HB3	ARJ_1@HC39	ARJ_1@C28	56	0.0112	2.9452	141.5622
CYS_1460HG	ARJ_1@HC29	ARJ_10C22	50	0.0100	2.8192	146.0053
HIE_164@HB3	ARJ_10HC41	ARJ_10C29	48	0.0096	2.9518	141.3807

				-		
HIE 164@HB3	ARJ 1@HC38	ARJ 10C28	48	0.0096	2.9423	141.0822
MET 1660HB2	AR.T 10HO7	AR.T 10010	47	0 0094	2 7845	149 7205
	1110 10107	1110 10010	-17	0.0004	2.7045	140.7200
LEU_142@HD21	ARJ_I@HOI	ARJ_1001	46	0.0092	2.8303	151.5881
LEU 1420HD22	ARJ 10HO1	ARJ 1001	46	0.0092	2.8380	153.5332
CTN 100000001	AD T 1 0110E	ND T 1000	4 5	0 0000	2 7 4 1 4	140 0001
GTW_1906HF71	ARD_IGHOJ	ARJ_1000	40	0.0090	2./414	140.0021
MET 500HE2	ARJ 1@HC49	ARJ 10C35	37	0.0074	2.9196	143.4547
HTE A20NE2	ART 10HO7	AP.T 10010	36	0 0072	2 9407	150 1117
	1110-101107	1110-10010	50	0.0072	2.5407	100.441/
HIE 16500	ARJ 1@HO7	ARJ 10010	35	0.0070	2.9222	152.8361
MET 1660HB3	ABJ 10HC48	AB.T 10C35	32	0 0064	2 9302	144 1147
1m1_10000mB0	100_10000	100_10001	0.0	0.0001	2.9502	140.0000
PHE_1410HB2	ARJ_I@HC2/	ARJ_I@CZI	29	0.0058	2.9520	140.2926
MET 500HE3	ARJ 10HO7	ARJ 10010	27	0.0054	2.7905	148.1959
UTE 16/0UD3	ADT 100C40	ADT 10020	26	0 0052	2 0513	1/2 0151
LIE_I046UP2	ARJ_IGHC40	ARD_IGC29	20	0.0052	2.9515	142.0131
ASP 18800	ARJ 1@HO7	ARJ 10010	25	0.0050	2.8931	146.7014
MET 500HE1	ART 10HO7	AP.T 10010	24	0 0048	2 8122	150 8875
	1110 10107	1110 10010	21	0.0040	2.0122	150.0075
MET 500HE2	ARJ 10HO7	ARJ 10010	24	0.0048	2.8438	151.5137
MET 500HE3	ARJ 10HC49	ARJ 10C35	2.3	0.0046	2,9195	140,9035
ADC 1000UA	ADT 1000C	ND T 1000		0 0044	2 07(2	145 0501
ARG_1890HA	ARJ_IGHO6	ARJ_1009	22	0.0044	2.8/03	145.8581
SER 470HB3	ARJ 1@HO5	ARJ 1008	20	0.0040	2.8279	145.6020
MET 5004E3	ART 10HO6	AP.T 1009	20	0 0040	2 7761	115 6189
	AI(0_10100	AI(0_100)	20	0.0040	2.7701	145.0405
MET_500HEI	ARJ_I@HO6	ARJ_1009	19	0.0038	2.8038	145.5653
MET 500HE1	ART 10HC49	ARJ 10C35	19	0.0038	2.9411	146.2674
	100_10019	100_1000	1.0	0.0000	2,3111	10.4407
MET_500HEZ	ARJ_I@HO6	ARJ_1009	19	0.0038	2./818	150.443/
GLN 1900HA	ARJ 1@HO6	ARJ 1009	18	0.0036	2.6847	139.8129
MET 500002	ADT 10006	ADT 1000	17	0 0034	2 9623	1/0 130/
MEI_JUGHBZ	AK0_10H00	AK0_1009	1/	0.0034	2.0025	140.1304
CYS 1460HB2	ARJ 1@HC36	ARJ 10C26	15	0.0030	2.9550	139.0634
MET 1660HB2	AB.T 10HC48	AB.T 10035	15	0 0030	2 9536	146 9037
	1110 101040	1110_10033	15	0.0050	2.9990	140.0007
HIE_420HEI	ARJ_I@HO7	ARJ_10010	14	0.0028	2.9370	152.6865
CYS 1460HG	ARJ 10HC35	ARJ 10C26	14	0.0028	2.8360	141.7552
	ADT 10UC41	ADT 10020	1 /	0 0020	2 0504	1/1 1000
HIE_1040HBZ	ARJ_I@HC41	ARJ_I@C29	14	0.0028	2.9504	141.1899
PHE 141@CB	ARJ 1@HO2	ARJ 1002	13	0.0026	2.9773	148.4441
CTN 1000NE2	ADT 10005	ADT 1009	1.2	0 0024	2 9119	151 2503
GTW_100GNE2	ARO_10005	AK0_1000	12	0.0024	2.9440	101.2000
MET 500HE1	ARJ 10HC47	ARJ 10C34	11	0.0022	2.9226	140.6461
LEU 1420HD23	ABJ 10HC18	ABJ 10C16	10	0.0020	2.9470	145.2834
	100_10010	100210	10	0.0020	2.9170	142 0040
MEL_I000HB2	ARJ_I@HC46	ARJ_I@C33	10	0.0020	2.9451	143.9946
ASN 1430HD22	ARJ 1@HO3	ARJ 1003	9	0.0018	2.8410	147.3636
UTE 1640UD2	ADT 10UC/2	ABT 10020	9	0 0019	2 0750	143 0021
HIE_I04@HBZ	ARJ_IGHC42	ARD_IGC29	9	0.0010	2.9739	143.0021
HIE 173@HD2	ARJ 1@HC38	ARJ 10C28	9	0.0018	2.9387	140.3241
SER 470HC	AR.T 10HO5	AR.T 1008	8	0 0016	2 8241	142 7650
	ARO_10105	AI(0_1000	0	0.0010	2.0241	142.7000
MET 500HE2	ARJ 10HC47	ARJ 10C34	8	0.0016	2.9359	142.1225
MET 500HE3	ABJ 10HC47	ABJ 10C34	8	0.0016	2.9442	147.2580
ave_146002	10021017	10001	0	0.0010	2 0 2 6 0	126 6020
CYS_1460HA	ARJ_I@HC35	ARJ_I@CZ6	8	0.0016	2.9369	136.6239
GLN 190@OE1	ARJ 1@HO6	ARJ 1009	8	0.0016	2.9304	154.6183
CIN 10000E1	ADT 10005	AD T 1000	0	0 0016	0 0767	150 5065
GTW_1906OF1	ARJ_IGHOS	ARJ_1000	0	0.0010	2.0/0/	109.0900
LEU 142@HD23	ARJ 1@HO3	ARJ 1003	7	0.0014	2.8831	151.6738
MET 1660HE1	ABJ 10HO7	AB.T 10010	7	0 0014	2 7483	146 0204
	100_10007	100_10010	, ,	0.0011	2.7100	140 5741
MET_1000HE3	ARJ_I@HO/	ARJ_10010	/	0.0014	2.82/3	149.5/41
HIE 173@HD2	ARJ 10HC37	ARJ 10C28	7	0.0014	2.9336	140.6752
CTN 10000022	ADT 10005	ADT 1009	7	0 0014	2 5960	151 0001
GIN_1000HE22	AILO_10105	AI(0_1000	/	0.0014	2.3000	131.3301
LEU_142@HD21	ARJ_I@HC9	ARJ_I@CII	6	0.0012	2.9659	139.2224
LEU 1420HD22	ABJ 10HC18	ABJ 10C16	6	0.0012	2.9543	145.2881
140000000000000000000000000000000000000	100_10010	100_10010	ć	0.0012	2.9919	140 4070
LEU_1420HD23	ARJ_I@HC9	ARJ_I@CII	6	0.0012	2.9429	140.48/6
HIE 164@HB2	ARJ 1@HC40	ARJ 10C29	6	0.0012	2.9290	141.9053
GLN 1900HG3	AR.T 10HO5	AR.T 1008	6	0 0012	2 9351	147 7900
utp	AD T 1000	ADT 10010	-	0.0010	2.2001	146 0465
нте_420HD2	AKJ_I@HO/	AKJ_I@OIU	5	0.0010	2./843	140.246/
MET 50@HB2	ARJ 10HO5	ARJ 1008	5	0.0010	2.8086	138.7386
TEIT 1/20HD12	ART 10HO3	AP.T 1003	5	0 0010	2 8322	150 5287
	AI(0_10105	AI(0_1005	5	0.0010	2.0522	100.0207
LEU 1420HD22	ARJ 10HO3	ARJ 1003	5	0.0010	2.8518	143.9985
ASN 1430H	ARJ 10HO3	AR.T 1003	5	0.0010	2.6854	138.2609
	ADT 100041	10000	-	0 0010	0 0707	147 0570
SER_1450HBZ	ARJ_I@HC41	ARJ_I@CZ9	5	0.0010	2.9/8/	14/.85/3
GLU 167@HB2	ARJ 1@HC19	ARJ 10C17	5	0.0010	2.9622	138.7334
ASP 1880C	AR.T 10007	AB.T 10010	5	0 0010	2 9196	150 4623
100000	······	10010	5	0.0010	2.9495	151 0501
AKG_1890H	ARJ_10HO7	ARJ_10010	5	0.0010	2.8487	151.2504
SER 470HB2	ARJ 10HO5	ARJ 1008	4	0.0008	2.6687	146.4748
PHE 14104D2	ABT 100027	AB.T 10021	Л	0 0008	2 9615	150 7528
	ATTO T GUCZ /	TTOCCT	4	0.0000	2.7013	100.1020
LEU_142@HG	ARJ_1@HO1	ARJ_1001	4	0.0008	2.6922	143.8127
LEU 1420нD21	ART 10HO3	ART 1003	4	0.0008	2.7970	148.3502
	TTTO_TGINOJ	1110-1600		0.0000	2.1210	141 0114
мел_теебну	ARJ_10HC43	AKJ_10C30	4	0.0008	2.8688	141.2114
MET 1660HE3	ARJ 10HC48	ARJ 10C35	4	0.0008	2.9385	143.2884
	AD.T 1000/5	AD.T 10000	Л	0 0000	2 7065	116 0765
	ANO_IGHC4J	ATO_18032	-	0.0000	2.1200	T-0.0100
HIE_420HE2	ARJ_1@HC48	ARJ_10C35	3	0.0006	2.8802	141.1964
MET 500HE3	ARJ 10HO5	ARJ 1008	3	0.0006	2.8604	149.4380
	ADT 100000	ADT 10005	° °	0 0000	2 0 0 0 5	1 4 2 7 4 1 0
MET_JUCHES	AKJ_10HC48	AKU_10035	3	0.0006	2.9205	143./412
LEU 142@HD21	ARJ 1@HC18	ARJ 10C16	3	0.0006	2.9542	143.1910
ASN 1430HR2	ART 10HC2	ART 1005	٦	0 0006	2 9326	143 1548
	ADT 1000000	ADT 10000	5	0.0000	2.2220	1 4 0 0 0 4 1
SEK_1430HB2	AKJ_I@HC42	ARJ_10C29	3	0.0006	2.9/38	143.6541

SER_1450HB3	ARJ_10HO2	ARJ_1002	3	0.0006	2.8757	141.0352
MET_1660HE2	ARJ_1@HO7	ARJ_10010	3	0.0006	2.8754	145.2699
MET 1660HE3	ARJ 10HC46	ARJ 10C33	3	0.0006	2.9228	140.2570
HIE 1730HD2	ARJ 10HC39	ARJ 10C28	3	0.0006	2.9652	140.7052
VAL 18700	ARJ 10HO7	ARJ 10010	3	0.0006	2.9152	147.2164
SER 4700G	ABJ 10HO5	AR 1 1008	2	0.0004	2,9246	140.8956
SER 470HG	AB.T 10HO4	AR.T 1007	2	0 0004	2 8088	160 1580
AGN 14300022	ADT 10002	ART 1005	2	0.0004	2 9900	140 6794
ASN_1450HDZZ	ARU_IGHCZ	ARU_IUCJ	2	0.0004	2.0000	140.0704
SER_1450HBZ	ARJ_10HC40	ARJ_10C29	2	0.0004	2.9447	145./952
HIE_164@HD2	ARJ_I@HC40	ARJ_10C29	2	0.0004	2.9639	137.2822
MET_1660H	ARJ_I@HC38	ARJ_10C28	2	0.0004	2.8/80	138.1757
MET_166@HB3	ARJ_10HC49	ARJ_10C35	2	0.0004	2.9425	146.4705
MET_166@HE2	ARJ_1@HC48	ARJ_10C35	2	0.0004	2.9146	139.8792
GLU 167@HB2	ARJ 10HC6	ARJ 10C9	2	0.0004	2.9707	147.3262
ASP 1880HA	ARJ 10HC49	ARJ 10C35	2	0.0004	2.9752	141.7915
ASP 1880HA	ARJ 10HC48	ARJ 10C35	2	0.0004	2.9493	137.0455
ASP 1880HB3	ARJ 10HO7	ARJ 10010	2	0.0004	2.8789	146.1509
GLN 1900HE21	ABJ 10HO6	AR 1 1009	2	0.0004	2.8714	149.0830
HTE 420CE1	AR.T 10HO7	AB.T 10010	1	0 0002	2 9846	154 0775
HIE /20HE2	ART 10HC/9	AP.T 10C35	1	0.0002	2 9952	1/18 0172
	ARO_IGHC4J	ARU_10033	1	0.0002	2.0570	141 7001
HIE_420CD2	ARJ_10HO/	ARJ_10010	1	0.0002	2.9578	141.7081
HIE_4Z@HDZ	ARJ_10HC44	ARJ_10C31	1	0.0002	2.8834	159./561
SER_470HA	ARJ_10HO5	ARJ_1008	T	0.0002	2.8788	139.9278
SER_470CB	ARJ_10HO5	ARJ_1@08	1	0.0002	2.9850	146.8183
MET_500HG3	ARJ_10HO6	ARJ_1009	1	0.0002	2.9607	149.5440
MET 500HE1	ARJ 1@HO5	ARJ 1008	1	0.0002	2.6461	169.5427
PHE 1410HB2	ARJ 10HC7	ARJ 10C10	1	0.0002	2.9628	139.7573
PHE 1410HB2	ARJ 10HC24	ARJ 10C20	1	0.0002	2.9942	152.8911
LEU 1420HA	ARJ 10HC24	ARJ 10C20	1	0.0002	2.9916	142.3468
LEU 1420HA	ARJ 10HC9	ARJ 10C11	1	0.0002	2,9917	140,4049
LEU 1420HD11	AB.T 10HO3	AR.T 1003	1	0 0002	2 8753	162 1344
ASN 1430HA	AB.T 10HC26	AB.T 10C20	1	0 0002	2 9079	137 7918
AGN 14300022	ABT 10HC12	ADT 10C12	1	0.0002	2 9376	149 4496
AGN_1430HD22	ARU_IGHCIZ	ARU_10C12	1	0.0002	2.0370	120.4490
ASN_1450HDZZ	ARU_IGHCZJ	ARU_10C20	1	0.0002	2.02/9	140 0000
GLI_I440H	ARJ_IGHC25	ARJ_10C20	1	0.0002	2.7755	140.8893
CYS_146@HA	ARJ_I@HC42	ARJ_10C29	1	0.0002	2.89/4	138.4134
CYS_1460HB2	ARJ_10HC16	ARJ_10C15	1	0.0002	2.9726	145.3496
CYS_146@HB2	ARJ_1@HC29	ARJ_10C22	1	0.0002	2.9700	135.6811
HIE_164@HB3	ARJ_1@HC35	ARJ_10C26	1	0.0002	2.9536	138.5861
HIE 164@HD2	ARJ 10HC42	ARJ 10C29	1	0.0002	2.9581	137.4710
HIE 164@HD2	ARJ 10HC38	ARJ 10C28	1	0.0002	2.9396	146.5595
HIE 164@HD2	ARJ 10HC39	ARJ 10C28	1	0.0002	2.9744	139.8307
MET 1660HB3	ARJ 10HC46	ARJ 10C33	1	0.0002	2,9254	141.1673
ARG 1890HA	ARJ 10H07	ARJ 10010	1	0.0002	2.8220	168.2299
ARG 18900	AR.T 10HO6	ART 1009	1	0 0002	2 9947	137 5953
CIN 1000HB2	ART 10HOG	ART 1000	1	0.0002	2 7595	1/1 52/3
CIN 10000C2	ADT 1000	ALO_1009	1	0.0002	2.1393	130 1000
GTN 1000MBC	AKJ_10HC45	AKU_10032	1	0.0002	2.9008	130.1902
GTN_1306NES	AKJ_I@HO6	ARJ_1009	1	0.0002	2.91/4	1/1.8054

Table S7. Hydrogen bonding contacts between SARS-CoV-2 Mpro and CAN during the course of 50 ns MD simulation

			simulation.			
Acceptor	DonorH	Donor	Frames	Frac	AvgDist	AvgAng
LEU 16800	CAR 10H20	CAR 1004	1740	0.3480	2.7463	157.4539
MET 16600	CAR 10H19	CAR 1003	1420	0.2840	2.7375	158.8522
MET 15000	CAR 10H20	CAR 1004	1166	0.2332	2.7386	156.8742
TYR 5500	CAR 10H19	CAR 1003	1049	0.2098	2.7435	154.8205
GLU 16700G1	CAR 10H19	CAR 1003	461	0.0922	2.7967	156.7311
GLY 14400	CAR 10H20	CAR 1004	177	0.0354	2.8133	146.4497
CYS 1460HG1	CAR 10H4	CAR 10C5	67	0.0134	2.8788	145.5668
HIE 420HE1	CAR 10H5	CAR 10C5	55	0.0110	2.9434	139.5184
HIE 1660HE22	CAR 10H2	CAR 10C4	55	0.0110	2.8396	145.3341
PRO 1690HA2	CAR 10H18	CAR 10C18	52	0.0104	2.9541	142.3784
THR 3050HG1	CAR 10H19	CAR 1003	46	0.0092	2.9234	146.0978
ARG 2990HD2	CAR 10H9	CAR 10C9	37	0.0074	2.9540	142.8369
MET 70HB2	CAR 10H3	CAR 10C4	34	0.0068	2.9436	140.6256
GLN 3000HE22	CAR 10H15	CAR 10C13	22	0.0044	2.8826	146.6258
THR 3050HA	CAR 10H19	CAR 1003	16	0.0032	2.8504	142.0147
ASP 2960HB3	CAR 10H15	CAR 10C13	13	0.0026	2.9672	141.2950
THR 3050HG1	CAR 10H24	CAR 10C20	12	0.0024	2.8739	144.3733
ARG 2990HB3	CAR 10H10	CAR 10C9	11	0.0022	2.9476	140.5738
THR 3050HG21	CAR 10H4	CAR 10C5	11	0.0022	2.9517	139.0613
PHE 90HE1	CAR 10H6	CAR 10C6	9	0.0018	2.9661	140.3801
GLN 30000	CAR 10H20	CAR 1004	9	0.0018	2.7691	153.2183

THR 305@HG22	CAR 10H4	CAR 10C5	8	0.0016	2.9435	137.4596
MET 70HE1	CAR 10H2	CAR 10C4	7	0.0014	2.9515	138.8624
THR 3050HG23	CAR 10H4	CAR 10C5	7	0.0014	2.9334	137.4500
SER 30200G	CAR 10H20	CAR 1004	6	0.0012	2.8482	141.9877
SER 3020HG	CAR 10H20	CAR 1004	6	0.0012	2.8939	144.2739
GLY 3030HA2	CAR 10H23	CAR 10C19	6	0.0012	2.9372	138.0174
PHE 90HE1	CAR 10H9	CAR 10C9	5	0.0010	2.9414	140.6324
THR 3050HG21	CAR 10H24	CAR 10C20	5	0.0010	2.9552	138.8266
MET 70HB3	CAR 10H3	CAR 10C4	4	0.0008	2.9826	142.9427
ALA 80HA	CAR 10H12	CAR 10C12	4	0.0008	2.9482	143.1403
ASP 2960HA	CAR 10H7	CAR 10C6	4	0.0008	2.9510	146.5074
THR 3050HG21	CAR 10H26	CAR 10C20	4	0.0008	2.9477	141.3922
PHE 90HD1	CAR 10H11	CAR 10C12	3	0.0006	2.9399	139.6092
GLN 3000HA	CAR 10H21	CAR 10C19	3	0.0006	2.9542	139.8735
GLN 3000HA	CAR 10H23	CAR 10C19	3	0.0006	2.9816	145.7792
GLN 3000HB3	CAR 10H21	CAR 10C19	3	0.0006	2.9546	137.7544
GLN 3000HE22	CAR 10H1	CAR 10C1	3	0.0006	2.8503	138.3940
SER 30200G	CAR 10H19	CAR 1003	3	0.0006	2.8134	141.3172
SER 3020HG	CAR 10H19	CAR 1003	3	0.0006	2.9695	151.2527
MET 70HB2	CAR 10H2	CAR 10C4	2	0.0004	2.9628	140.4048
MET 70HB2	CAR 10H16	CAR 10C13	2	0.0004	2.9638	145.3214
MET 70HG3	CAR 10H8	CAR 10C7	2	0.0004	2.9893	138.1837
ARG 2990HB2	CAR 10H10	CAR 10C9	2	0.0004	2.9649	139.2520
GLN 3000HB3	CAR 10H23	CAR 10C19	2	0.0004	2.9886	152.8275
GLN 3000HG2	CAR 10H23	CAR 10C19	2	0.0004	2.9764	138.0603
GLN 3000HG2	CAR 10H1	CAR 10C1	2	0.0004	2.9743	146.6264
GLY 3030HA2	CAR 10H20	CAR 1004	2	0.0004	2.7769	145.4755
VAL 3040HA	CAR 10H24	CAR 10C20	2	0.0004	2.9104	137.6161
THR 3050HG22	CAR 10H24	CAR 10C20	2	0.0004	2.9688	137.3645
THR 3050HG1	CAR 10H26	CAR 10C20	2	0.0004	2.8944	138.1361
MET 70HE1	CAR 10H8	CAR 10C7	1	0.0002	2.9954	140.2150
MET 70HE2	CAR 10H2	CAR 10C4	1	0.0002	2.7989	139.4722
ALA 80HA	CAR 10H11	CAR 10C12	1	0.0002	2.9834	141.6557
PHE 90HD1	CAR 10H5	CAR 10C5	1	0.0002	2.9612	175.0720
GLN 1280HE21	CAR 10H14	CAR 10C13	1	0.0002	2.9814	154.4201
ASP 2960HB3	CAR 10H7	CAR 10C6	1	0.0002	2.9936	137.7998
ARG 2990HB3	CAR 10H9	CAR 10C9	1	0.0002	2.9274	135.7877
ARG 2990HE	CAR 10H7	CAR 10C6	1	0.0002	2.9138	135.4991
GLN 3000HA	CAR 10H19	CAR 1003	1	0.0002	2.9414	157.6470
GLN 3000HA	CAR 10H20	CAR 1004	1	0.0002	2.7519	143.9902
GLN 3000HB3	CAR 10H22	CAR 10C19	1	0.0002	2.9449	151.6648
GLN 3000HG3	CAR 10H1	CAR 10C1	1	0.0002	2.9637	148.8512
GLN 3000HE21	CAR 10H15	CAR 10C13	1	0.0002	2.9584	149.6626
GLN 300@HE22	CAR 10H21	CAR 10C19	1	0.0002	2.9714	142.9502
GLY 3030HA2	CAR 10H21	CAR 10C19	1	0.0002	2.8167	140.2891
VAL 3040H	CAR 10H20	CAR 1004	1	0.0002	2.9891	140.6704
THR 3050HA	CAR 10H20	CAR 1004	1	0.0002	2.8764	142.5832
THR 3050HA	CAR 10H4	CAR 10C5	1	0.0002	2.9841	175.2622
THR 305@HG22	CAR 10H19	CAR 1003	1	0.0002	2.7647	136.8138
THR 305@HG23	CAR 10H25	CAR 10C20	1	0.0002	2.9848	155.2325
THR 305@HG23	CAR 10H26	CAR 10C20	1	0.0002	2.9867	136.5426
THR_305@HG1	CAR_1@H25	CAR_10C20	1	0.0002	2.9560	164.9056

Table S8. Hydrogen bonding contacts between SARS-CoV-2 Mpro and ROS during the course of 50 ns MD simulation

			simulation.			
Acceptor	DonorH	Donor	Frames	Frac	AvgDist	AvgAng
GLU 16700	ROS 10HO5	ROS 1005	1869	0.3738	2.7711	156.4175
MET 1660HA	ROS 10H52	ROS 10C5	393	0.0786	2.9489	149.6561
GLN 1900HE21	ROS 10H82	ROS 10C8	77	0.0154	2.8696	144.8245
GLN 19000	ROS 10HO4	ROS 1004	43	0.0086	2.8511	150.9686
GLN 19000	ROS 10HO5	ROS 1005	28	0.0056	2.7946	157.9689
HIE 1640HE1	ROS 10H123	ROS 10C12	24	0.0048	2.9474	141.2026
SER 1450HG	ROS 1@H122	ROS 10C12	22	0.0044	2.8813	139.3750
CYS 1460HB3	ROS 10H83	ROS 10C8	21	0.0042	2.9454	140.5712
CYS 1460HB2	ROS 10H83	ROS 10C8	16	0.0032	2.9434	140.1424
GLY 1440H	ROS 10H133	ROS 10C13	10	0.0020	2.8338	143.6150
PRO 1690HA	ROS 10H193	ROS 10C19	9	0.0018	2.9432	138.1336
ASN 1430HA	ROS 10H133	ROS 10C13	8	0.0016	2.9472	141.5629
SER 1450HG	ROS 10H121	ROS 10C12	8	0.0016	2.9374	139.1474
GLU 1670HG2	ROS 10H192	ROS 10C19	8	0.0016	2.9646	142.2156
CYS 1460HG	ROS 10H82	ROS 10C8	7	0.0014	2.9211	144.0154
ASN 1430HA	ROS 10H132	ROS 10C13	6	0.0012	2.9089	141.0412
ASN 1430HA	ROS 10H131	ROS 10C13	6	0.0012	2.9523	143.7351

ALA 1920HB1	ROS 10H203	ROS 10C20	6	0.0012	2.9472	140.2997
ALA 1920HB2	ROS 10H203	ROS 10C20	6	0.0012	2.9680	138.6066
SER 1450H	ROS 10H122	ROS 10C12	5	0.0010	2.9249	145.0947
CYS 1460H	ROS 10H122	ROS 10C12	5	0.0010	2.9272	140.0894
GLN 1900HE21	ROS 10H52	ROS 10C5	5	0.0010	2.8156	138.3265
CYS 1460HB2	ROS 10H62	ROS 10C6	4	0.0008	2.9628	135.2346
GLU 1670HG2	ROS 10H193	ROS 10C19	4	0.0008	2.9608	141.3301
PRO 1690HG3	ROS 10H192	ROS 10C19	4	0.0008	2.9734	136.7890
GLU 1670HG2	ROS 10H191	ROS 10C19	3	0.0006	2.9190	139.9954
CYS 1460HG	ROS 10H83	ROS 10C8	2	0.0004	2.8905	144.1501
CYS 1460HG	ROS 10H62	ROS 10C6	2	0.0004	2.9403	142.5780
HIE 1640HE1	ROS 10H83	ROS 10C8	2	0.0004	2.9832	158.4981
GLU 1670HB3	ROS 10H193	ROS 10C19	2	0.0004	2.9070	137.4495
PRO 1690HD3	ROS 10H193	ROS 10C19	2	0.0004	2.9636	137.0005
PRO 1690HG3	ROS 10H191	ROS 10C19	2	0.0004	2.9963	138.3463
PRO 1690HA	ROS 10H192	ROS 10C19	2	0.0004	2.9390	137.1062
ALA 1920HA	ROS 10H192	ROS 10C19	2	0.0004	2.9692	151.0106
ALA 1920HB1	ROS 10H202	ROS 10C20	2	0.0004	2.9304	144.9613
ALA 1920HB2	ROS 10H202	ROS 10C20	2	0.0004	2.8988	142.6836
ALA 1920HB3	ROS 10H203	ROS 10C20	2	0.0004	2.9794	142.7595
LEU 1420HA	ROS 10H4	ROS 10C4	1	0.0002	2.9768	164.5189
ASN 1430HA	ROS 10H122	ROS 10C12	1	0.0002	2.9495	142.9529
CYS 1460HB2	ROS 10H122	ROS 10C12	1	0.0002	2.9903	135.0644
GLU 1670HB3	ROS 10H191	ROS 10C19	1	0.0002	2.9344	138.5099
PRO 1690HG3	ROS 10H193	ROS 10C19	1	0.0002	2.8810	139.5311
PRO 1690HB3	ROS 10H191	ROS 10C19	1	0.0002	2.9974	143.5203
ALA 1920HA	ROS 10H191	ROS 10C19	1	0.0002	2.9882	137.0641
ALA 1920HA	ROS 10H193	ROS 10C19	1	0.0002	2.9407	151.3128
ALA 1920HA	ROS 10H201	ROS 10C20	1	0.0002	2.9733	147.9794
ALA 1920HA	ROS 10HO5	ROS 1005	1	0.0002	2.9995	138.3159
ALA 1920HA	ROS 10H203	ROS 10C20	1	0.0002	2.9593	140.6071
ALA 1920HB1	ROS 10H201	ROS 10C20	1	0.0002	2.9944	141.7106
ALA 1920HB1	ROS 10HO5	ROS 1005	1	0.0002	2.7851	141.1014
ALA 1920HB2	ROS 10H201	ROS 10C20	1	0.0002	2.9540	145.2316
ALA 1920HB3	ROS 10H202	ROS 10C20	1	0.0002	2.9755	136.4202
_	—	_				

Table S9. The various components of the Binding Free Energy (kcal mol⁻¹) evaluated by the Molecular Mechanics-Generalized Borne Surface Area (MM-GBSA) method between the SARS-CoV-2 main protease(Mpro) - alpha ketoamide(AKA) complex.

	Mpr	o-AKA	Mpro		AKA			
	Average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)
VDW	-2403.67	21.29	-2363.27	21.30	-1.83	1.58	-38.57	1.84
ELE	-21647.22	41.98	-21576.06	42.28	-58.59	1.50	-12.56	3.88
GB	-2610.86	18.74	-2601.34	18.87	-19.29	0.98	9.77	3.70
GBSUR	103.86	1.02	105.04	1.03	3.36	0.01	-4.54	0.01
GAS	-24050.90	37.31	-23939.33	37.89	-60.43	2.34	-51.13	4.09
GBSOL	-2506.99	18.87	-2516.29	19.01	-15.92	0.98	25.22	3.65
GBTOT	-26557.89	34.87	-26445.63	34.92	-76.35	2.48	-35.90	2.02
TSTRA	17.01	0.00	16.99	0.00	13.42	0.00	-13.40	0.00
TSTRO	17.72	0.01	17.70	0.01	11.43	0.01	-11.41	0.01
TSVIB	3314.02	3.69	3258.52	4.41	53.45	0.25	2.05	2.56
TSTOT	3348.75	3.70	3293.22	4.42	78.30	0.26	-22.76	2.57
ΔG_{bind}							-13.14	

Electrostatic energy (ELE); van der Waals contribution (VDW); total gas-phase energy (GAS); nonpolar contribution to the solvation free energy (GBSUR); the electrostatic contribution to the solvation free energy (GB); sum of nonpolar and polar contributions to solvation (GBSOL); final estimated binding free energy (GBTOT); translational energy (TSTRA); rotational energy (TSROT); vibrational energy (TSVIB), total entropic contribution (TSTOT); binding free energy (ΔG_{bind}).

Table S10. The various components of the Binding Free Energy (kcal mol ⁻¹) evaluated by Molecular Mechanics-
Poisson-Boltzmann Surface Area (MM-PBSA) method between SARS-CoV-2 main protease(Mpro) – alpha
ketoamide(AKA) complex.

	Mpr	ro-AKA	N	Apro		AKA	▲	
	Average	Std. Dev. (±)	Average	Std. Dev. (±)	Average	Std. Dev. (±)	Average	Std. Dev. (±)
VDW	-2403.67	21.29	-2363.27	21.30	-1.83	1.58	-38.57	1.84
ELE	-21647.22	41.98	-21576.06	42.28	-58.59	1.50	-12.56	3.88
PB	-2650.11	17.74	-2664.57	18.14	-21.09	0.84	35.55	3.09
NPOLAR	2328.40	4.98	2376.58	4.90	37.43	0.19	-85.43	0.63
DISPER	-1307.40	5.76	-1314.42	5.68	-35.99	0.17	43.01	0.65
GAS	-24050.90	37.31	-23939.33	37.89	-60.43	2.34	-51.13	4.09
PBSOL	-1629.11	18.19	-1662.51	18.76	-19.65	0.84	53.06	3.29
PBTOL	-25680.01	37.08	-25570.76	37.48	-80.08	2.24	-28.07	3.41
TSTRA	17.01	0.00	16.99	0.00	13.42	0.00	-13.40	0.00
TSTRO	17.72	0.01	17.70	0.01	11.43	0.01	-11.41	0.01
TSVIB	3314.02	3.69	3258.52	4.41	53.45	0.25	2.05	2.56
TSTOL	3348.75	3.70	3293.22	4.42	78.30	0.26	-22.76	2.57

 ΔG_{bind}

-5.31

Electrostatic energy (ELE); van der Waals contribution (VDW); total gas phase energy (GAS); nonpolar contribution to the solvation free energy (GBSUR); the electrostatic contribution to the solvation free energy (GB); sum of nonpolar and polar contributions to solvation (GBSOL); final estimated binding free energy (GBTOT); translational energy (TSTRA); rotational energy (TSROT); vibrational energy (TSVIB), total entropic contribution (TSTOT); binding free energy (ΔG_{bind}).

Table S11. The various components of the Binding Free Energy (kcal mol⁻¹) evaluated by the Molecular Mechanics-Generalized Borne Surface Area (MM-GBSA) method between SARS-CoV-2 main protease(Mpro)lev

ariung	lucoside-	I(ARJ) compl	
arjung	lucosiuc .	1(1113) comp	1

	Mpr	Mpro-ARJ Mpro ARJ			A				
	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)	
VDW	-2354.72	20.03	-2318.97	19.68	-1.78	1.51	-33.96	1.84	
ELE	-21639.86	36.00	-21531.04	36.41	-94.56	2.30	-14.25	5.63	
GB	-2619.47	25.94	-2592.13	26.27	-23.86	2.33	-3.48	3.89	
GBSUR	107.75	0.92	108.00	0.93	3.46	0.01	-3.71	0.13	
GAS	-23994.59	39.83	-23850.02	39.84	-96.35	3.00	-48.21	4.76	
GBSOL	-2511.71	25.50	-2514.12	25.79	-20.40	2.33	22.81	3.91	
GBTOT	-26506.30	36.48	-26349.14	36.81	-116.75	2.59	-40.39	1.65	
TSTRA	17.01	0.00	16.99	0.00	13.51	0.00	-13.50	0.00	
TSTRO	17.73	0.00	17.71	0.00	11.75	0.00	-`11.73	0.00	
TSVIB	3328.01	5.23	3272.04	5.44	51.38	0.04	4.58	2.75	
TSTOT	3362.75	5.23	3306.75	5.44	76.65	0.04	-20.65	2.75	
ΔG_{bind}								-19.74	

 ΔG_{bind}

Table S12. The various components of the Binding Free Energy (kcal mol⁻¹) evaluated by the Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) method between SARS-CoV-2 main protease(Mpro)-

arjunglucoside-I (ARJ) complex.

	Mp	ro-ARJ	N	Иpro	-	ARJ	Delta	
	Average	Std. Dev. (±)	Average	Std. Dev. (±)	Average	Std. Dev. (±)	Average	Std. Dev. (±)
VDW	-2354.72	20.03	-2318.97	19.68	-1.78	1.51	-33.96	1.84
ELE	-21639.86	36.00	-21531.04	36.41	-94.56	2.30	-14.25	5.63
PB	-2649.89	19.86	-2658.20	20.54	-26.25	2.54	34.56	3.95
NPOLAR	2356.32	6.28	2410.29	6.22	37.98	0.18	-91.95	0.62
DISPER	-1345.89	5.34	-1349.73	5.54	-36.98	0.19	40.82	0.60
GAS	-23994.59	39.83	-23850.02	39.84	-96.35	3.00	-48.21	4.76
PBSOL	-1639.46	19.85	-1667.64	20.77	-25.25	2.53	53.43	4.11
PBTOL	-25634.05	36.40	-25481.67	35.97	-121.60	2.79	-29.78	3.09
TSTRA	17.01	0.00	16.99	0.00	13.51	0.00	-13.50	0.00
TSTRO	17.73	0.00	17.71	0.00	11.75	0.00	-`11.73	0.00
TSVIB	3328.01	5.23	3272.04	5.44	51.38	0.04	4.58	2.75
TSTOL	3362.75	5.23	3306.75	5.44	76.65	0.04	-20.65	2.75
ΔG_{bind}								-9.13

Table S13. The various components of the Binding Free Energy (kcal mol ⁻¹) evaluated by the Molecular Mechanics
Generalized Borne Surface Area (MM-GBSA) method between the SARS-CoV-2 main protease(Mpro) -
Correspond(CAN) complex

	Carsonol(CAN) complex.								
	Mpro-CAN		-	Mpro		CAN			
	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)	
VDW	-2371.15	19.04	-2325.41	18.49	-1.60	1.59	-44.13	1.43	
ELE	-21486.26	47.68	-21408.65	47.56	-59.01	1.65	-18.60	2.13	
GB	-2790.09	28.48	-2803.01	27.87	-19.54	1.22	32.46	1.67	
GBSUR	-110.37	0.78	-111.65	0.78	3.37	0.02	-4.65	0.16	
GAS	-23857.42	46.58	-23734.06	46.09	-60.61	2.30	-62.47	2.42	
GBSOL	-2679.72	28.46	-2691.36	27.89	-16.17	1.23	27.81	1.68	
GBTOT	-26537.14	38.86	-26425.43	38.16	-76.78	2.38	-34.93	1.78	
TSTRA	17.01	0.00	16.99	0.00	12.89	0.00	-12.88	0.00	
TSTRO	17.71	0.01	17.71	0.00	10.32	0.00	-10.32	0.01	
TSVIB	3294.63	7.24	3268.39	5.11	21.15	0.01	5.08	4.31	
TSTOT	3329.35	7.24	3303.11	5.11	44.37	0.01	-18.12	4.32	
ΔG_{bind}								-16.81	

Table S14. The various components of the Binding Free Energy (kcal mol⁻¹) evaluated by Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) method between SARS-CoV-2 main protease(Mpro) carsonol(CAN complex).

	M	CAN	Mana		CAN		L 🔺	
	Mpro-CAN		Mpro		CAN		A	
	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)
VDW	-2371.15	19.04	-2325.41	18.49	-1.60	1.59	-44.13	1.43
ELE	-21486.26	47.68	-21408.65	47.56	-59.01	1.65	-18.60	2.13
PB	-2838.37	27.09	-2849.99	27.07	-21.30	0.89	32.92	2.02
NPOLAR	2362.69	3.81	2393.40	4.03	37.32	0.15	-68.03	0.73
DISPER	-1351.53	3.41	-1365.30	3.54	-35.96	0.15	49.74	0.45
GAS	-23857.42	46.58	-23734.06	46.09	-60.61	2.30	-62.74	2.42
PBSOL	-1827.20	27.43	-1861.89	27.53	-19.95	0.92	54.63	2.37
PBTOL	-25684.63	36.70	-25575.96	36.43	-80.56	2.30	-28.10	2.78
TSTRA	17.01	0.00	16.99	0.00	12.89	0.00	-12.88	0.00
TSTRO	17.71	0.01	17.71	0.00	10.32	0.00	-10.32	0.01
TSVIB	3294.63	7.24	3268.39	5.11	21.15	0.01	5.08	4.31
TSTOL	3329.35	7.24	3303.11	5.11	44.37	0.01	-18.12	4.32
ΔGbind								-9.98

Table S15. The various components of the Binding Free Energy (kcal mol⁻¹) evaluated by the Molecular Mechanics-Generalized Borne Surface Area (MM-GBSA) method between the SARS-CoV-2 main protease(Mpro)-Rosmanol(ROS) complex

Rosmanol(Ros) complex.								
	Mp	ro-ROS	Ν	Mpro		ROS		
	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)
VDW	-2349.32	20.11	-2316.12	19.82	-1.42	1.80	-31.77	1.89
ELE	-21530.17	38.52	-21413.80	39.24	-95.14	2.13	-21.22	2.97
GB	-2709.64	21.53	-2698.31	21.89	-23.17	1.90	11.84	2.83
GBSUR	111.81	0.98	111.40	0.97	3.46	0.01	-3.04	0.01
GAS	-23879.49	40.27	-23729.93	41.31	-96.57	3.04	-52.99	3.44
GBSOL	-2597.82	21.21	-2606.91	21.57	-19.70	1.90	28.79	2.80
GBTOT	-26477.32	32.22	-26326.84	32.53	-116.27	2.70	-34.19	2.33
TSTRA	17.01	0.00	16.99	0.00	12.93	0.00	-12.92	0.00
TSTRO	17.72	0.00	17.71	0.00	10.39	0.00	-10.38	0.00
TSVIB	3282.50	5.29	3257.09	4.31	22.23	0.08	3.16	6.74
TSTOT	3317.22	5.29	3291.80	4.31	45.56	0.08	-20.14	6.74
ΔG_{bind}						-14.05		

 ΔG_{bind}

Table S16. The various components of the Binding Free Energy (kcal mol ⁻¹) evaluated by the Molecular Mechanic	cs-
Poisson-Boltzmann Surface Area (MM-PBSA) method between the SARS-CoV-2 main protease(Mpro)-	

Rosmanol(ROS) complex.								
	Mpro-ROS		Mpro		ROS		▲	
	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)	average	std. dev. (±)
VDW	-2349.32	20.11	-2316.12	19.82	-1.42	1.80	-31.78	1.89
ELE	-21530.17	38.52	-21413.80	39.24	-95.14	2.13	-21.23	2.97
PB	-2736.89	26.34	-2748.61	26.33	-25.20	1.88	36.92	3.12
NPOLAR	2368.27	7.08	2405.68	7.20	37.97	0.15	-75.38	0.63
DISPER	-1364.39	6.31	-1365.04	6.48	-36.80	0.19	37.45	0.80
GAS	-23879.49	40.27	-23729.93	41.31	-96.57	3.04	-52.99	3.44
PBSOL	-1733.01	26.82	-1763.97	26.61	-24.03	1.82	54.98	3.21
PBTOL	-25612.51	40.47	-25434.90	40.59	-120.60	2.75	-26.01	2.56
TSTRA	17.01	0.00	16.99	0.00	12.93	0.00	-12.92	0.00
TSTRO	17.72	0.00	17.71	0.00	10.39	0.00	-10.38	0.00
TSVIB	3282.50	5.29	3257.09	4.31	22.23	0.08	3.16	6.74
TSTOL	3317.22	5.29	3291.80	4.31	45.56	0.08	-20.14	6.74
ΔG_{bind}								-5.87

https://biointerfaceresearch.com/