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Abstract: The silk cocoon of Bombyx mori, fiber, and thin films were considered in our study. The 

pure silk thin films were prepared by extracting silk from Bombyx mori cocoons. These samples were 

treated with microwave irradiation at different intervals, and X-ray diffraction data of these samples 

were obtained. XRD data of these samples were used as an essential input to compute crystallite size 

along with different Bragg reflections. Employing different statistical tools, the shape of the ordered 

region for different samples was obtained, and these shapes were analyzed and concluded that the 

obtained shapes are not ellipsoidal as assumed by earlier researchers and these are multi-shaped and 

strongly depend on the direction of Bragg reflections. The functional data analysis was also carried out 

to determine the correlation between physical and microstructural parameters. 
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1. Introduction 

Of all the fibrous materials, silk is a unique material because of its strength and luster. 

Many researchers around the world have been using silk as a suture material for centuries [1-

7]. Studies on silk fibers have recently acquired attention as a biomaterial because of many 

attractive properties such as biocompatibility and excellent elasto-mechanical properties [8-

12]. The Bombyx mori silk is basically made up of a protein of silk fibroin that is again coated 

with sericin protein. The adhesive protein sericin acquires the overall weight of cocoon 

silkworm for 25-30% [13]. The silk fibroin is made up of light and heavy chains; these are 

linked by a disulfide bond [14-17]. The crystalline-ordered regions of silk fibers are made up 
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of glycine-X repeats, where X indicates the amino acids such as alanine, serine, and valine 

[18]. Among these amino acids, the polar side chain is the region for forming amorphous 

regions. It is one of the co-polymers, composed of rich hydrophobic β-sheet-forming blocks 

that are connected by small hydrophilic spacers. The β-sheet arrangements within the fibroin 

structure give high elasto-mechanical strength and toughness to the fiber. It is fascinating to 

note that the irradiation process on fiber materials has significantly modified physical and 

microstructural properties that enhance fiber materials' physical properties [19]. The effect of 

radiation on materials has resulted in many interesting outcomes, which have attracted research 

interests from all disciplines. In light of this, an endeavor has been made to study the impact of 

microwave irradiation on the physicomechanical possessions of silk fibroin films; the 

developed silk fibroin films were illuminated for various dosage intervals and have analyzed 

samples utilizing X-ray diffraction techniques. In order to investigate the progressions in 

physical properties of these polymers, characterizations were carried out by X-ray diffraction 

studies. The crystallite shapes in 3-dimensions define the ordered regions in a material. 

Practically, crystallites typically have unpredictable and multi shapes, yet on normal, they may 

frequently be viewed as having a regular external form [20]. To analyse the effect of these 

ordered region on the physical and microstructural analogies, an attempt has been made to plot 

the probably ordered region in 3-dimensions for all the considered silk fibers. A new and novel 

method has been proposed [21-23], which can be extended to any material of interest. The 

functional data analysis technique (FDA) has been utilized to examine the estimations and 

dependence of a few micro-structural and macro-structural parameters of silk fiber films with 

some physical variables [24]. 

2. Materials and Methods 

2.1. Sample preparation. 

The raw and fresh silk cocoons were procured from the silk research institute, Central 

Sericultural Research and Training Institute (CSTRI), Mysuru, Karnataka, India. In order to 

obtain the fibroin core, these fibers were cleaned exhaustively and degummed in Na₂CO₃. The 

residual salt has been removed by washing it again. This fibroid core is dissolved in 9.3M LiBr 

solution as per the protocol of Rockwood et al. [25]. For three days, this solution was kept for 

dialysis, cast on the plate, and then silk films were prepared.2.2. Microwave irradiation. 

To carry out the irradiation of studied silk films for different intervals, the domestic 

microwave has been utilized. The output power of this oven can be varied up to 700W by 

selecting the knob provided for this purpose. In our study, the power was kept to the medium 

position, i.e., 60%, 420W. The microwave irradiation was carried out for four different 

intervals, such as 10min, 20min, 30min, and 40min, respectively. 

2.2. X-ray Diffraction studies. 

Among all the available fibrous proteins, silk fibroin could seem to be the most 

reasonable for the determination of structure by the methods of X-ray diffraction technique. 

The X-ray crystallography study is the paramount source for discerning structural details [26, 

27]. The Rigaku Denki Miniflex II Desktop Diffractometer has been utilized to carry out the 

XRD studies of silk fibers and silk films. The source of XRD was Cu-Kα with wavelength 

1.5405 Å. The readings were noted down from 6 to 60 degrees with 0.02-degree intervals at 
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the speed of 5 degrees per minute at room temperature. Figure 1 indicates X-ray patterns for 

verities of silk and silk films.  

 
Figure 1. XRD recorded for the samples of polymer composite. 

3. Results and Discussion 

3.1. Determination of crystallite shapes for varieties of silk fiber and thin films. 

The structure is an essential parameter for defining any material's microstructural and 

physical properties [28]. It is broadly acknowledged that structural parameters such as X-ray 

crystallinity, crystallite size, lattice strain, etc., are predominantly related to both chemical and 

physical properties of silk fibers such as elastic moduli, tensile strength, elongation, moisture 

content, etc. The XRD data of different silk films were used as a basic essential input for further 

analysis and some mathematical tools. The XRD data such as 2θ and intensity were used along 

with the Gaussian deconvolution method in peakfit® [29] software to simulate the obtained 

profile and separate the overlapping peaks. It is one of the sophisticated software that can be 

used for data manipulation purposes. The obtained Bragg reflections were additionally utilized 

in a numerical tool called checkcell® [23] to compute cell parameters and miller indices. Using 

the obtained reflections, FWHM, and 2θ values, the crystallite size for all the observed 

reflections was computed using the Debye Scherrer equation [30].   

𝐷𝑠 =  
0.9 ×  𝜆

𝛽 × 𝑐𝑜𝑠(𝜃)
 

Here, Crystallite size is represented as 𝐷𝑠, the wavelength is 𝜆 (1.54Å), 𝛽 𝑖𝑠 𝐹𝑊𝐻𝑀, 

and theta is the Bragg angle.  

A program has been written in FORTRAN to obtain the spherical coordinates for the 

set of (hkl) and crystallite size values. We have three variables θ, ϕ, and Crystallite size (Ds) 

for all the reflections; these variables were plotted as a surface plot in Gnuplot available on 

Linux-based pc. The obtained crystallite size and lattice strain are shown in Table 1. 

The figure origin addresses the point at which the X-ray beam hits the polymer film. 

From this origin, we have drawn a couple of Bragg reflection directions to show that crystallite 

shapes are not ellipsoids, which was accepted by some researchers in the advancement of 

mathematical models to comprehend the X-ray diffraction patterns from polymer samples [31].  
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Table 1. The computed crystallite size and strain for different samples. 

Sample 

(SF Films) 
Cocoon Fiber 

Film (Non-

irradiated) 

Irradiated 

for 10 

minutes 

Irradiated 

for 20 

minutes 

Irradiated 

for 30 

minutes 

Irradiated 

for 40 

minutes 

Crystallite Size 

in (Å) 
33.20 34.46 40.8 44.8 49.7 63.5 95.8 

% Lattice strain 2.3 3.6 4.7 5.7 6.3 6.9 7.5 

 
Figure 2. Shape of the ordered region obtained for (1) cocoon; (2) fiber; (3) film. 

 

Figure 3. Shape of the ordered region obtained for microwave irradiated for (4) 10 mins; (5) 20 mins. 

Figure 4. Shape of the ordered region obtained for microwave irradiated for (6) 30 mins; (7) 40 mins. 
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Figure 5. Shape of lattice strain obtained for (8) cocoon, (9) fiber, (10) film. 

 
Figure 6. Shape of lattice strain (11) 10 mins microwave irradiation; (12) 20 mins microwave irradiation. 

 
Figure 7. Shape of lattice strain (13) 30 mins microwave irradiation; (14) 40 mins microwave irradiation. 
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3.2. Functional data analysis. 

The correlation functional analysis of the data is described here since there is no lucidity 

in the behavior of a few physicomechanical parameters for various dosage intervals. Let the 

value of 𝜃 observed at the jth dosage value on the ith trial be illustrated: 

θij = 𝜃𝑖(𝑡𝑗) + 𝜖𝑖𝑗 = 𝜇 (𝑡𝑖𝑗) + ∑  ξik 

∞

𝑘=1

 Φk (tij ) +∈ij 

≈  𝜇 (𝑡𝑖𝑗) + ∑  ξik 

𝑀

𝑘=1

 Φk (tij ) +∈ij  

where ∈𝑖𝑗 are random experimental fallacy. The mean function has been obtained by solving 

the optimization problem: 

μ̂(t): = argmin f∈𝐹 ∑ ∑(θij – f(tij)))2 + λ ∫  (f ′′(t))2dt
ℝ≥0

,

ni

j=1

n

i=1

 

where F is the class of square intergrable function.  

The freely available FPCA package has been utilized to compute the above relations. 

Here the objective is to capture correlations between parameters as a component of dosages. 

The functions defined in the above conditions are of the orthonormal premise, and 

eigenfunctions of the covariance operator that can be assessed effectively utilizing the FPCA 

package. We utilize the eigenfunctions straightforwardly to plot and envision relationships. 

Here we recreate the correlation surface for crystallite size and strain. From these eigenvalues, 

we obtain the mean value of the physical parameters, and they are given in Figure 8 and Figure 

9. These values are used to compute the material's performance index exposed for different 

dosages. 

 
Figure 8. (a) Surface correlation of crystallite size; (b) mean crystallite size; (c) variation of the principal 

component. 
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Figure 9. (a) Surface correlation of crystallite strain; (b) mean crystallite strain; (c) variation of the principal 

component. 

PMS is a multivoltine Bombyx mori fiber, and for all practical purposes, it was 

considered amorphous. It is obvious from the study outcomes that there is a formation of strong 

polypeptide chains due to microwave irradiation. This method persuaded cross-linking among 

the amide groups. This solid reordering of the silk chain secludes the particles of interstitial 

lithium [32, 33] in the lattice, which was available as a debasement even after dialysis. 

Microwave illumination gives rise to the clear recognition of such remanent lithium particles. 

Also, it is evident that there is an improvement in the crystalline regions of silk films when 

exposed to microwave radiation. This suggests an increase in the cross-linking of polypeptides 

in the beta-pleated structure and hence in the strength of the films. This is readily seen in the 

raw X-ray recordings, wherein the pristine silk fibroin film showed a broad but less intense 

diffraction profile. With irradiation, these films showed a sharper profile with less FWHM 

value.  

The computation of crystallite shape in a cocoon, fiber, and film of PMS silk and they 

are all having different shapes. The origin of the shape given in the figures signifies the point 

at which the X-ray strikes the sample [34]. From this point along any Bragg direction, the 

crystallite shape and size for all the three forms and their figures have been reported for the 

first time here. Crystallite shapes computed for the studied varieties of samples are represented 

in Figures 2 to 7. Put together from the obtained reflections and their corresponding (hkl) 

values, and these crystallite shapes differ from one another. From the figures, the observed 

Bragg reflections for silk cocoon, fiber, and film, it is clear that along [001], [001], and [010], 

respectively, depict the maximum crystallite surface gradient [35, 36]. This is due to the 

rearranging of the β pleated structure in all forms of silk [37].  
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4. Conclusions 

Re-crystallization to form silk film is associated with a very small amount of remanent 

lithium ions in the polymer network occupying interstitial sites. The effect of microwave 

irradiation on films of silk fibroin improves the arrangement of the polypeptide chain. 

Subsequently, it supports the recovery of silk fibroin formation as a stable thin film. 

Additionally, such recovery of silk fibroin prompts the confinement of remaining lithium 

particles, formerly interstitial. Thus, microwave irradiation facilitates silk fibroin protein to 

reclaim its structure and physical properties; it is to be noted that the energy is not sufficient to 

change the preliminary structure of the polypeptide alignments in the unit cell. The statistically 

analyzed results also show this variation trend and support the analysis. From the obtained 

shapes, it is seen that there are notable differences among the considered systems. Accordingly, 

such variations in the crystallite shapes can be ascribed to clarifying the sub-atomic interactions 

and structure formations. Functional data analysis has given a vigorous technique for extracting 

the correlation between physical properties and silk, fiber, and silk thin-film assortments by 

portraying the dependence of actual properties on the microstructural parameters. 
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