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Abstract: Pure and cobalt substituted tin oxide thin films are successfully formed on a glass substrate 

using the simple spray pyrolysis technique. XRD patterns reveal the polycrystalline nature of the 

samples with tetragonal rutile structure. The shift in X-ray diffraction peak to a higher 2θ value and its 

subsequent contraction of the SnO2 rutile lattice along the c-axis manifests the infusion of the guest 

cobalt ions. Crystallite size and microstrain values are found to vary with cobalt substitution. SEM 

analysis shows the uniform dispersion of the nanoparticles in the prepared thin films. The optical band 

gap values are found to narrow down with cobalt substitution from 4.04 eV–3.93 eV. 

Photoluminescence study hints at the presence of intermediate states within the forbidden energy band 

gap of SnO2. Photocatalytic dye degradation of Methylene blue (MB) highlights the role of cobalt with 

a high photocatalytic activity of 86 % compared to other investigated thin films. 

Keywords: spray; deposition technique; dye degradation; X-ray diffraction; semiconducting material; 

band gap. 
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1. Introduction 

Recently, water pollutants have posed a severe threat to human society in many forms. 

The precious elixir 'water' is accidentally polluted or manufactured for an industrial cause. 

Industrial effluents contain hazardous chemicals, which are released at an alarming rate with 

the skyrocketing hike in production. These chemicals/ effluents are released from oil refineries, 

livestock dips, sewage disposal, tanneries, and textile industries. Many of these pollutants have 

carcinogenic properties and hence mark an immediate and permanent threat to human society, 

livestock, the aquatic ecosystem, and the entire environment where we live. Photocatalysis, as 

the name suggests the catalysis uses photons of certain energy obtained either natural or 

artificial to degrade the harmful chemicals in the dye mixture, thus facilitating a promising 

solution for one major cause of water pollutants [1-4]. Fujishima and Honda utilized this 

interesting technique for dye-degradation in 1972, and the underlying process is the reaction 

between photochemistry and the solid material [5,6]. Confiscation of toxic organic and 
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inorganic pollutants, especially from water, with the aid of semiconductor photocatalysts, has 

been a topic of research since then, as they offer a platform for green technology [7-12]. 

Among various metal oxides, SnO2, with the vast tuning of band gap 3.2 – 4.2 eV, n-

type conductivity, and substitutional compatibility, find itself as a potential candidate for gas 

sensors, transparent conducting electrodes, solar cells, lithium-ion batteries applications, 

etc.[13-45]. SnO2 thin films are suggested to play a crucial role in photocatalysis due to their 

multi-functional characteristics. However, for any fruitful SnO2-based photocatalytic activity 

limited by quick electron-hole pair recombination, it is necessary to create an additional 

scattering mechanism via impurity doping especially transition metal ions.  

Cobalt ions, on the other hand, are found to impede grain growth and hence play a 

crucial role in tuning the optical properties of SnO2 [46-48]. Different shapes and structures of 

SnO2 NPs have been attempted; round-shaped structures offer improved crystallinity and 

photocatalytic activity [49-54]. However, while using powders for the real-time dye 

degradation process, issues related to the catalyst may settle down and accumulate in our 

aquatic ecosystem. A few possible solutions to this issue may be recovering the catalyst via 

magnetic activity or even not letting them settle using a thin film photocatalyst. In the present 

work, Co-substituted SnO2 thin films using spray pyrolysis are attempted. The spray pyrolysis 

method is advantageous by means of its simple and rapid synthesis and easy control of particle 

size and composition. The chosen Co-substituted SnO2 thin film preparation process is ideal 

for photocatalysis as it magnifies the separation of photo-generated electron and hole pair. The 

Co ions in Co-substituted SnO2 thin films can facilitate an electron efficiently from the 

conduction band of SnO2 to an oxygen molecule in solution, rendering it a novel material for 

photocatalytic reaction.  

2. Experimental details 

2.1. Film preparation. 

Pure and Co substituted (2-8%) SnO2 thin film samples are prepared using cobalt 

acetate, stannous chloride, and hydrogen chloride as precursors. Thin films of SnO2 and Co 

substituted SnO2 coated on glass substrates following the reaction sequence as mentioned in 

Ref. [15].  

2.2. Characterization. 

The phase identification was carried out using PAN analytical X'Pert PRO-PW3040 

diffractometer with Cu Kα x-ray radiation (λ = 1.5406 Å). The optical property viz, absorbance/ 

reflectance, and photoluminescence are studied using Jasco--570, UV–Vis–NIR 

Spectrophotometer, Japan, and Spectroflurophotometer (Shimadzu RF-5301), respectively. 

Surface morphology is analyzed using Carl Zeiss, EVO 8 instrument.   

2.3. Photocatalytic test. 

The photocatalytic behavior of the pure and (2% to 8%) cobalt-substituted SnO2 thin 

films is evaluated by the removal of Methylene blue dye (C16H18ClN3S) under a UV light 

source. A Xe (Xenon) lamp is used as the light source, and the distance between the UV source 

and the photo-reaction vessel is kept at 10 cm. The suspensions are magnetically stirred in the 

dark for 30 min prior to irradiation. Then, the photoreaction vessel is exposed to UV irradiation 
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under standard ambient conditions. The selected dye concentration is used in conjunction with 

thin films (Area= 2.5*7.5 cm2) in the photocatalytic dye degradation experiment. At regular 

time intervals (0, 15, 30, 45, 60, 75, 90, and 105 minutes), 3 mL of the suspension is pipetted 

out for further evaluation using a UV-Vis absorption spectrometer. The photo-removal 

efficiency percentage is calculated from the equation given below: 

% Photo-removal efficiency= (C0 – C)/C0 × 100 

 

where, C0 is the initial concentration of dye and C is the concentration of dye after photo-

irradiation for the selected time interval. 

3. Results and Discussion 

3.1. Structural properties. 

The phase formation of the investigated Co: SnO2 thin films were performed using a 

powder X-ray diffractometer, and the resulting 2θ vs. intensity profiles are shown in Figure 1.  

 

Figure 1. XRD patterns of undoped and Co-doped SnO2 thin films. 

Table 1. Lattice parameters, crystallite size, strain, and band gap energy values of Co substituted SnO2 thin 

films samples. 

Sample Lattice parameter (Å) c/a Crystallite Size 

(D) 

(nm) 

Strain (ε) 

x 10-3 

Band gap 

(eV) 
(a) (c) 

K0 4.7262 3.1839 0.6736 33 5.761 4.04 

K1 4.7512 3.1744 0.6681 34 5.662 4.03 

K2 4.7587 3.1708 0.6663 38 4.838 3.97 

K3 4.7517 3.1586 0.6647 33 5.896 3.95 

K4 4.7089 3.1396 0.6667 56 3.065 3.93 

 

The XRD patterns show that the thin film samples exhibit tetragonal Rutile SnO2 

structure space group 136: P42/mnm, JCPDS 01-071-0652, along with some minor secondary 

phases upon increasing the Co concentrations. In addition, peaks correspond to Sn3O4 for 4%, 

6%, and 8% of Co-substituted SnO2 samples. The X-ray diffraction peaks shift reveals cobalt 

ions' incorporation into the SnO2 lattice (Figure 2) [55]. The lattice parameters, crystallite size, 

and strain are calculated from the diffraction patterns, and the values are summarized in Table 

1.  
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Figure 2.Variation in (1 1 0) peak position of SnO2 thin films upon incorporating cobalt ions. 

Interestingly, an expansion along the a-axis and contraction along the c-axis is observed 

with the doping of cobalt ions. The tetragonal distortion (c/a) decreases with increasing Co 

concentration. Further, there is a positive shift of (1 1 0) plane upon cobalt substitution, as 

shown in Figure 2. It may be attributed to the ionic radius size effect between Sn4+ and Co2+ 

ions. Further, crystallite size and crystallinity are also found to increase with Co substitution. 

The lattice of SnO2 is found to relax upon infusion of cobalt ions which is realized by the 

reduction in microstrain values [56]. The full width at half maxima (β) and lattice strain (ε) are 

related to each other as ε = βcosθ/4 [57]. According to the Scherrer equation, the crystallite size 

(D) and β were inversely related. Thus, strain is found to decrease with increasing crystallite 

size—the pristine SnO2 exhibits maximum lattice with the least crystallite size value among 

the investigated thin film samples.  

3.2. Optical properties. 

There is a discrepancy in the band gap values for the investigated SnO2 sample. It is 

given in below three graphs 3, 4, and 5. 

Figure 3 shows the band gap of selected literature sources [13,15-40,58]. In the present 

work, pristine SnO2 thin films exhibit the maximum value optical band gap (Eg) as 4.04 eV, 

which agrees with the literature values [59]. The varying band gap values from 3.2 to 4.2 eV 

for the pure SnO2 sample are given in Figure 3. 

Eg of SnO2 compounds are found to vary with calcination temperature, as shown in 

Figure 4. Band gap values of the SnO2 compounds increase with the increase in the calcination 

temperature, which can be attributed to crystallite size, crystallinity, and defect associated with 

oxygen vacancies [58]. Similarly, According to the increase in the calcination temperature, the 

band gap decreased sharply due to the sinterization or segregation of SnO2 particles [60]. 
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Figure 3. Band gap values of pure SnO2 samples from selected literature. Black solid sphere refers to band gap 

values calculated with exponent factor (n) value of ½. Red solid square refers to band gap values calculated with 

exponent factor (n) value of 2. Green solid stars refer to the same literature source with different band gap 

values for different calcination temperatures. Numbers given on the x-axis denote the respective literature 

reference number. 

 
Figure 4. Variation of the band gap of SnO2 compounds with calcination temperature from selected literature. 

Numbers in the parenthesis refer to the respective literature. 

 
Figure 5. Band gap values of Co substituted SnO2 compounds from selected literature. Numbers in the 

parenthesis refer to the respective literature. 
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The band gap values of Co substituted SnO2 compounds given in Figure 5, is found to 

decrease with increasing the doping concentration, which may be attributed to several reasons, 

among them prominent ones, band bending occurs around the edges, charge transfer between 

cobalt and tin ions and the alloying effect [61-63]. From the literature, the band gap of the SnO2 

compounds depends on the preparation techniques, calcination temperature, size, morphology, 

and doping. 

3.2.1. Diffused Reflectance Spectra. 

The optical properties of the prepared Co:SnO2 thin films have been studied by 

calculating the band gap. The optical band gap is estimated by using a modified Kubelka-Munk 

(K-M) formula, as given below [64]: 

 

F(R)=α/S=(1-R)2/2R 

 

where F(R), α, S, and R are the K-M function, absorption coefficient, scattering factor, and 

sample reflectance, respectively.  

 
Figure 6. Modified Kubelka-Munk plot of pure SnO2 thin films. The inset shows the reflectance spectrum of 

SnO2 thin films. 

 
Figure 7. Reflectance spectra of 2%, 4%, 6% and 8% cobalt substituted SnO2 thin films. 
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Figure 8. Modified Kubelka-Munk plot for 2%, 4%, 6%, and 8% cobalt substituted SnO2 thin films. 

Parameter S is a constant which is not related to wavelength. Hence F(R) is directly 

proportional to the absorption coefficient. Then, the optical band gap was calculated using 

Tauc's equation: F(R)·hυ=A (hυ-Eg)n Where A is a constant and the other parameters have their 

conventional meanings. The highest band gap value obtained for pure SnO2 film and high 

reflectance is observed in the visible region as given in Figure 6 and the inset of Figure 6, 

respectively.  

Figure 7 depicts the diffuse reflectance spectra of the prepared cobalt-substituted SnO2 

thin films. The prepared thin films are found to have maximum reflectance in the visible region 

of the spectrum. The modified Kubelka-Mulk plot of SnO2 thin films is presented in Figure 8. 

The band gap energy can be determined by extrapolating the linear part to the energy axis. The 

calculated band gap values for undoped and Co substituted SnO2 films were similar to the 

previous reports discussed earlier in Sec. 3.2. Significant decrease in bandgap from 4.04 eV to 

3.93 eV with an increase in dopant concentration (Figure 8) is observed, which may be due to 

the shrinkage of the optical band gap.  

3.2.2. Photoluminescence (PL) Spectra. 

The PL spectra of the Co:SnO2 thin films are shown in Figure 9. There is a broad 

emission spectrum centered around 460 nm with 420, 470, and 570 nm peaks. The 420, 470, 

and 570 nm peaks.   
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Figure 9. Photoluminescence spectra of undoped, 2 at%, 4 at%, 6 at%, and 8 at% Cobalt substituted SnO2 thin 

films. 

The emission band centered at 420 nm might have arisen from the intrinsic states 

localized on SnO6 octahedra [65]. Similarly, the other two emissions, viz., the band centered at 

470 nm, may be attributed to oxygen vacancy with doubly ionized oxygen vacancies and the 

band at 570 nm to the singly ionized oxygen vacancy. The intensity profiles suggest that the 

2% Co-substituted SnO2 thin films were found to have the lowest intensity. Such reduced 

intensity is a signature of slow down in the electron-hole pair recombination rate, which 

facilitates better photocatalytic performance [63]. 

3.3. Morphological properties. 

The microstructures of the pristine and 2% Co-substituted SnO2 thin films are shown 

in Figure 10. It illustrates that both SnO2 and Co substituted films demonstrate spherical 

structure. It is evident that upon doping, a soft layer is covering the particles with improved 

particle size. It may be attributed to the role of cobalt on the nucleation and grain growth of 

SnO2 thin films and improved crystallinity. These results are well accordance with the XRD 

results. 

 
Figure 10. SEM micrographs of (a) undoped and (b) 2% Co-substituted SnO2 thin films. 
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peak intensity of MB (664 nm) diminished adequately with the irradiation time through the 

dye-degradation process. The vanishing of the characteristic absorption peak of MB is traced, 

and it is represented in the Inset of Figure 10 (a). The undoped SnO2 thin films exhibit 82.7% 

efficiency in 105 minutes. The trend of degradation efficiency, as given in Figure 10 (b), 

follows a nearly linear behavior within the time interval of measurement. The plot of ln(C/Co) 

versus time enables one to calculate the rate constant, k (min-1). 

Figure 12 and 13 illustrate the degradation efficiency of cobalt-substituted SnO2 thin 

films, and the efficiency and rate constant values hence estimated, are given in Table 2. The 

rate constant (k) and adj-R2 values are estimated using the plots of ln(C/Co) versus time (Figure 

12). The effect of Co doping can be further elucidated clearly with the help of the dye-

degradation efficiency plot shown in Figure 13. The proposed dye degradation mechanism of 

spray deposited Co-substituted SnO2 thin films is illustrated in Figure 14. 

 
Figure 11.(a) Absorbance spectra of MB dye in the presence of pure SnO2 thin films. Inset show Plot of (C/Co) 

against time for pure SnO2 thin films;(b) Plot of ln (Co/C) against time for pure SnO2 thin films. 

 
Figure 12. The plot of (C/Co) against time for fabricated Co-substituted SnO2 thin films. 
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Interestingly, the degradation efficiency depends on Co concentration and irradiation 

time, unlike the undoped SnO2, which is reflected in the adj-R2 values (Table 2). The deviation 

of adj-R2 values in the present case indicates that cobalt doping enables a time-dependent 

degradation process. Thus, such degradation trends can suitably be harvested with the proper 

choice of concentration and irradiation time. However, Co:SnO2 (2 at%) shows better 

photocatalytic activity among the investigated thin film samples.  

 
Figure 13. Plot of ln (Co/C) against time for fabricated Co-substituted SnO2 thin films. 

Table 2. Degradation efficiency, regression coefficient (adj-R2), and rate constant (k) of the fabricated 

photocatalysts. 

S.No. Sample Efficiency (%) Adj-R2 k (min-1) 

1 K0 82.51 0.9508 0.01215 

2 K1 86.19 0.8055 0.01753 

3 K2 70.93 0.9692 0.01188 

4 K3 80.55 0.9135 0.01391 

5 K4 73.06 0.9510 0.01267 

Table 3. Various reported photocatalytic activity of substituted SnO2 photocatalysts. 

S.No. Photocatalyst Light source k (min-1) Efficiency % 
Degradation 

time (min) 
Ref.  

1 SnO2:Co 
UV- 150 W xenon 

lamp 
0.01753 86 105 

This 

work 

2 SnO2 Philips TUV 8W 0.0073 96.8 280 
[66] 

3 ZnO Philips TUV 8W 0.005 95 330 

4 PCz* 
Lutron UV light 

meter UV-340A 

0.00207 46.31 300 

[67] 5 PCT1$ 0.00348 61.18 300 

6 PCT6# 0.00282 95.67 300 

7 Ag/BWO UV-A flexible 0.0044 81 420 [68] 
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S.No. Photocatalyst Light source k (min-1) Efficiency % 
Degradation 

time (min) 
Ref.  

LED strip (385 nm 

emission, 78 LEDs, 

0.24 W/LED, total 

electric 

power~ 19 W, 

13730 lux, and 

SMD 5050) 

8 

0.2 art% Lu 

doped TiO2 thin 

films 

11 W UV C lamp 0.009918 84 180 [69] 

9 Iron Oxide NPs 
high power LED 

visible light 
 72 90 [70] 

10 MnTiO3 NPs 

Five neck pyrex 

flask type reactor 

under sunlight 

irradiation 

0.00525 70 240 

[71] 

11 
MnTiO3/TiO2 

NPs 

Five neck pyrex 

flask type reactor 

under sunlight 

irradiation 

0.00596 75 240 

 

 
Figure 14. The proposed schematic of the M-B dye degradation mechanism by Co:SnO2 thin films. 
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concentrations have secondary phases of Sn3O4 which induce in the decrease of oxygen 
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4. Conclusions 

Pure and Co-substituted SnO2 nanoparticles deposited on the films are synthesized by 

spray pyrolysis. XRD studies reveal that the prepared thin films exhibit polycrystalline nature 

with a tetragonal rutile structure of SnO2. The secondary phase corresponding to Sn3O4 is 

formed for higher cobalt concentrations, viz., 4%, 6%, and 8%. The crystallite size, as well as 

crystallinity, increases with cobalt concentration. Incorporating Co into the SnO2 lattice results 

in red shifting of reflectance spectra and reduction in the optical band gap. The lowering of PL 

intensity hints at the delayed electron-hole pair recombination time. SEM images highlight that 

both pristine and Co-substituted SnO2 films exhibit spherical structures. The photocatalytic 

activity towards Methylene dye is performed, and it is found that 2% Co–SnO2 thin films show 

a better response. The improved photocatalytic performance of Co:SnO2 thin films may be 

attributed to forming better and relaxed crystals and reducing recombination time. Studying the 

time-dependent degradation performance with varying cobalt concentrations is of further 

interest.  
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