
 

 https://biointerfaceresearch.com/  1 of 9 

 

Article 

Volume 13, Issue 4, 2023, 337 

https://doi.org/10.33263/BRIAC134.337 

 

Carbon Dioxide Adsorption by a Zinc-Doped Nanocage:  

DFT-Based Computational Assessment of Gas Pollution 

Detection and Removal 

Kun Harismah 1,*
 , Hasan Zandi  

2
 , Moaed E. Al-Gazally  

3,*  

1 Department of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Surakarta, Surakarta, 

Indonesia; kun.harismah@ums.ac.id (K.H.); 
2 Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran; h.zandi@qom.ac.ir (H.Z.); 
3 College of Medicine, University of Al-Ameed, Karbala, Iraq; moaedalgazally@yahoo.com (M.E.A.); 

* Correspondence: kun.harismah@ums.ac.id (K.H.); moaedalgazally@yahoo.com (M.E.A.); 

Scopus Author ID 56982926300 (K.H.); 57112488200 (M.E.A.) 

Received: 4.05.2022; Accepted: 7.06.2022; Published: 11.09.2022 

Abstract: The high level of carbon dioxide (CO2) greenhouse gas exhaustion to nature could make it a 

serious pollutant with negative impacts on human and environmental health safety. In this regard, the 

current work was performed to run computational assessments on employing zinc (Zn)-doped nanocage 

(C19Zn) for adsorbing the CO2 gaseous substance to approach the detection and removal goals. 

Accordingly, geometries of the model systems were optimized using density functional theory (DFT) 

calculations to obtain the minimized energy structures besides evaluating their energy features. The 

obtained features approved the formation of interacting bimolecular CO2@C19Zn complex of quantum 

theory of atoms in molecules (QTAIM) analysis, and the evaluated strength indicated the existence of 

a physical O…Zn interaction for the formation of such a complex system. Moreover, the evaluated 

electronic molecular orbital features indicated the possibility of detection function for the investigated 

system. The obtained results of this work revealed that the formation of the CO2@C19Zn complex model 

could be supposed to conduct two functions of detection and removal of CO2 by the investigated C19Zn 

nanocage for approaching the issues of dealing with greenhouse pollutants. 
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1. Introduction 

Carbon dioxide (CO2) gas has always been exhausted from both natural and industrial 

processes [1]. Human breathing, plant photosensitization, and industrial productions are all 

common resources of exhausting CO2 gas [2-4]. Although a normal level of CO2 is needed for 

the plants' photosensitization or other natural processes; however, higher levels of this gas 

could cause serious problems for human health and environmental safety systems [5]. Falling 

acidic rains, the occurrence of corrosion, and the appearance of global warming effects are only 

some of the negative points of the existence of high levels of CO2 [6]. In the category of 

greenhouse gases, CO2 has also been playing an important role, and its detection and removal 

are serious tasks to prevent gas poisoning effects [7-10]. Indeed, such issues have always 

affected the human health system, and they should be solved at appropriate levels [11-14]. 

Several efforts have been dedicated to innovating novel techniques for detecting and removing 

gaseous substances using different adsorbents [15-19]. In this regard, employing the 
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nanostructures has shown the benefits of these types of novel materials for adsorbing other 

atomic and molecular substances [20-22]. Indeed, the innovation of nanotechnology has 

provided new concepts of investigations in the materials-related science and engineering fields 

[23-26].  

Not only the pioneering tubular nanostructure but other types of nanostructures, 

including layered, conical, spherical cages, and some more types, have been developed in the 

category of nanostructures [27-32]. Accordingly, their characterizations have shown specific 

electronic features for each geometrically recognized nanostructures employed for various 

applications [33-35]. Moreover, earlier works indicated the impacts of atomic dopants for 

preparing nanostructures with more specified electronic features [36-38]. Such atomic doped 

regions of nanostructures could provide an active site for conducting more efficient interactions 

with other substances [39-41]. Metal atoms have the advantage of dopants by supplying more 

vacant electronic orbitals for adsorbing other substances through their lone pair of electron 

heads [42-44]. Accordingly, the hypothesis of CO2 adsorbing by zinc (Zn)-doped nanocage has 

been investigated in the current work for approaching the goals of detection and removal of 

this gaseous substance with the assistance of nanostructures. Indeed, the topic of gas adsorption 

is important because of various aspects of such processes to innovate novel materials for 

working in gas sensor fuctions or to learn details of such interacting systems [45-47]. In this 

case, the topic has become a non-stop topic for investigating new features of such expected 

functions [48-50]. Several works indicated such importance because every time exhausting 

pollutants to nature threaten human and environmental health, it is a must to provide more 

helpful insights about these unsolved health systems issues [51-54]. It is obvious that further 

investigations are required to learn details of nano-based systems and human health issues [55-

60]. 

In the current research work, density functional theory (DFT) calculations were 

performed to optimize the model systems, besides evaluating their required information for 

examining the specified hypothesis. All results were used for conducting the computational 

assessments of CO2 adsorption by the Zn-doped nanocage. To this aim, a representative model 

of nanocage (Figure 1) was investigated for adsorbing the CO2 molecular substance, in which 

the original carbon-composed nanocage was doped by one Zn atom to provide a Zn-doped 

active site for participating in interactions with the external CO2 molecule. The singular and 

bimolecular models were analyzed to see the benefits of employing such a model system for 

detecting and removing CO2 gaseous substances for dealing with the greenhouse gas pollutants 

in the environment. The investigated models and the evaluated features of this work are 

exhibited in Figures 1 and 2 and Table 1. 

2. Materials and Methods 

The singular models of CO2 and C19Zn nanocage were optimized to prepare the required 

parental materials for the investigation of this work. For building the molecular model cage, 

one carbon atom of the carbon-20 model was substituted by one Zn atom to bring the C19Zn 

model. Next, the bimolecular formation of the CO2@C19Zn complex was investigated by 

performing re-optimization calculations on already optimized singular models. By examining 

all possible configurations of interacting molecular systems, a final model of such CO2@C19Zn 

complex was obtained (Figure 1). In this regard, the evaluated features of electrostatic potential 

(ESP) surfaces approved the existence of such molecular interactions, in which the Zn-doped 

region of singular nanocage was in blue color resembling a positive atomic site for interacting 
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with the O head of CO2 in yellow color resembling the negative atomic site. Accordingly, the 

evaluated ESP of the bimolecular model approved the existence of such an interacting complex 

by representing a continuous ESP surface distribution. To analyze the interacting system, the 

features of the quantum theory of atoms in molecules (QTAIM) were evaluated to show the 

existence and strength of involving interaction (Table 1) [61]. 

Moreover, values of the adsorption energy (EAds) and energy levels of the highest 

occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) were evaluated 

for the models. The values of energy gap (EGap) and Fermi energy (EFermi) were also evaluated 

accordingly. To show variations of electronic molecular orbitals features, diagrams of the 

density of states (DOS) were illustrated for the models (Figure 2). All computations of this 

work were performed at the wB97XD/6-31+G(d,p) level of DFT calculations using the 

Gaussian program [62]. To approach the goal of this work to do computational assessment of 

CO2 adsorption by a Zn-doped nanocage, the results were provided by DFT calculations as 

benefits of employing the computational tools for solving problems in science and engineering 

[63-67]. 
 

 
Figure 1. Representation of the models of this work and their ESP surfaces. 

 

Table 1. The evaluated features of the models.1 
Model Int. Dis. Rho Del2-Rho H EAds HOMO LUMO EGap EFermi 

CO2@C19Zn O…Zn 2.16 0.044 0.23 -0.036 -9.62 -7.88 -1.32 6.56 -4.60 

CO2 n/a n/a n/a n/a n/a n/a -12.69 1.35 14.04 -5.67 

C19Zn n/a n/a n/a n/a n/a n/a -8.18 -1.73 6.45 -4.96 
1The units: Dis. (Å); Rho, Del2-Rho, and H (au); EAds (kcal/mol); HOMO, LUMO, EGap, and EFermi (eV). 

3. Results and Discussion 

In this work, computational assessments at the level of DFT calculations were 

performed to analyze the process of CO2 adsorption by a Zn-doped nanocage (Figure 1). To 

approach this goal, geometries of the singular models were optimized to prepare the parental 

models of this work. Next, geometries of combined CO2 and C19Zn molecules were re-

optimized to reach the bimolecular model of the CO2@C19Zn complex. Indeed, all possible 

geometries were examined to reach a final possible configuration for forming the CO2@C19Zn 

complex. The complex model was analyzed by evaluating various features for this purpose. As 

indicated by the evaluated results of Table 1, the interacting complex model occurred by 
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involving one O…Zn interaction (Int.) with the distance (Dis.) of 2.16 Å. The QTAIM features, 

including the density of all electrons (Rho), Laplacian of electron density (Del2-Rho), and 

energy density (H), were evaluated to recognize the nature of O…Zn interaction [47-49]. To 

this point, the obtained values of 0.044, 0.23, and -0.036 for Rho, Del2-Rho, and H, indicated 

reasonable strength of the interaction as categorized in the physical interactions. Based on this 

achievement, the formation of the CO2@C19Zn complex could be achievable, and the involved 

physical interaction could make it usable for reversible adsorption processes. Accordingly, the 

evaluated strength of the complex was notable by calculating the value of -9.62 kcal/mol for 

EAds for the adsorption process of CO2 at the surface of the C19Zn nanocage. As a consequence, 

the obtained details of interacting features approved the hypothesis of CO2 adsorption by the 

C19Zn cage to yield the formation of the bimolecular CO2@C19Zn complex. Formations of 

interacting complexes could help learn about the materials' features for involvement in the 

adsorption processes. Recognizing the atomic features and those atoms with contributions to 

interactions could help develop new materials for the specified purposes. As mentioned earlier 

about the role of the atomic doped region for activating the surface for participating in 

interactions, such a role was seen for the investigated nanocage by the role of the Zn-doped 

region for conducting the interaction process. To describe this observation more, the 

availability of plenty of vacant atomic orbitals of the Zn atom could help this atom to adsorb 

the lone pairs of electrons of the O head of CO2. 

In comparison with the original carbon atom surface, the existence of such an atom 

could help the surface to be a host for adsorbing the external substance. Accordingly, a direct 

O...Zn interaction was observed for the interacting CO2@C19Zn complex to yield a relaxed 

configuration of CO2 at the surface of the nanocage. Based on the ESP features, the rest of the 

nanocage were in the green color resembling a neutral surface, whereas the blue color showed 

the doped region resembling a charged point at the surface of the nanocage. Additionally, the 

middle part of the O=C=O molecule was also in the blue color, but the O head was in the yellow 

to semi-red color, showing the possibility of the formation of interactions between the O head 

of CO2 and the Zn-doped region of nanocage. The next results approved such expectations, 

especially by the obtained features of QTAIM analysis. By learning about the role of 

investigated nanocages for adsorbing CO2 to approach the removal function, it should be 

known how to recognize the formation of such a complex model for conducting the detection 

function. To approach this goal, monitoring the electronic molecular orbital features of the 

models prior to/after complex formation could help to conduct such detection function, as 

shown by the illustrated DOS diagrams in Figure 2. 

 
Figure 2. The illustrated DOS diagrams of the models.  
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In this regard, the values of HOMO and LUMO, resembling energy levels of the 

electron transferring process, were evaluated. HOMO could imply the level of electron-

donating, and LUMO could imply the level of electron-accepting. Accordingly, details of the 

electron transferring processes inside a molecular system or between two molecular systems 

could be found. It is worth mentioning that the targeted HOMO and LUMO levels are those 

frontier molecular orbitals, in which several other occupied and unoccupied molecular orbitals 

are before HOMO and after LUMO, respectively. As shown in Figure 2, the illustrated DOS 

diagrams exhibited variations of such electronic molecular orbitals. The value of HOMO was 

found to be -12.69 and -8.18 eV for each of the singular models of CO2 and C19Zn nanocage, 

and the value of LUMO was found to be 1.35 and -.173 eV for the mentioned models. In this 

case, different values of each level could help the models participate in electron transfer 

processes. Inside the molecular systems, energy distances of HOMO and LUMO levels were 

identified by the value of EGap, showing 14.04 and 6.45 eV for each of the singular CO2 and 

C19Zn models. The value of EFermi identified average values of HOMO and LUMO; -5.67 

and -4.96 eV for the singular CO2 and C19Zn models. These results indicated that the models 

could be detectable by each other by their different values of electronic molecular orbitals 

features. 

Accordingly, the obtained parallel results for the interacting CO2@C19Zn complex 

model affirmed such achievement for approaching the detection function. Levels of HOMO 

and LUMO were changed in the complex model compared to the singular models, and 

measuring their features could be helpful for detecting the formation of the bimolecular 

complex. The illustrated diagrams of DOS for the singular C19Zn model and the bimolecular 

CO2@C19Zn complex affirmed such achievement of the possibility of approaching the 

detection function of investigated C19Zn nanocage for the external CO2 gas. As mentioned by 

the values of HOMO and LUMO for each of the singular models, the evaluated EGap of CO2 

was wider than that of the C19Zn nanocage. The observed EGap of the complex was wider than 

that of singular nanocage and narrower than that of singular CO2, revealing the impacts of the 

occurrence of interactions on the electronic molecular orbital levels. 

Moreover, the level of EFermi was also changed in the complex model, affirming the 

mentioned impacts of interactions. In this regard, approaching the detection function could be 

achievable for the investigated systems to show the adsorption of CO2 at the surface of the 

C19Zn nanocage. Consequently, the current computational assessments indicated that the 

investigated C19Zn cage was suitable for working in two functions detection and removal of 

CO2 gas by forming an interacting CO2@C19Zn complex. Comparing the current results with 

another parallel work showed the benefit of employing this model for adsorbing the CO2 

substance [45]. Accordingly, the model could be proposed for further investigations regarding 

the importance of dealing with the CO2 greenhouse gas to maintain human and environmental 

health safety.  

4. Conclusions 

This work's computational assessments were performed based on DFT calculations to 

recognize the features of CO2 adsorption by a Zn-doped nanocage. To this aim, geometries of 

the singular CO2 and C19Zn models and their interacting bimolecular CO2@C19Zn complex 

were optimized to obtain minimized energy systems. Next, their interacting features and energy 

details were obtained. One O…Zn interaction was found for the formation of the complex 

model, and the QTAIM analysis indicated it as a physical interaction. Such obtained interaction 
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features helped the model form a reversible system, making the reuse of nanocage possible. 

Moreover, the features of electronic molecular orbitals indicated variations of such energy 

levels after complex formation. Accordingly, evaluating such features helped to make detection 

of adsorbed CO2 ad the surface of the nanocage. It was shown that the Zn-doped atom had a 

significant role in conducting participation of nanocage in imitation with the CO2 substance 

resulting in the interacting CO2@C19Zn nanocage. In this regard, two functions of detection 

and removal of CO2 with the assistance of C19Zn nanocage were found to make suitable the 

investigated model for further investigations on dealing with the greenhouse gases pollutants. 
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