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Abstract: A boron nitride (BN) plate was investigated in this work for adsorbing the formaldehyde 

(Frm) substance by performing the density functional theory (DFT) calculations. The singular models 

of BN and Frm were optimized first, and their combinations were re-optimized next to obtain Frm@BN 

complexes; F1 and F2 were found. To manage the interaction processes, an iron (Fe) atom was inserted 

in the center of a small plate. The results showed the benefits of such atomic insertion for approaching 

the goal of this work. Details of interactions were analyzed, and the results show the existence of two 

interactions for each of obtained Frm@BN bimolecular models. The model with O…Fe, and H…N 

interactions (F1) was placed at a higher level of strength than the model with the existence of H…Fe 

and H…N interactions (F2). Accordingly, energy levels of characteristic frontier molecular orbitals and 

their related features affirmed the impacts of complex formations leading to the possibility of running 

diagnostic processes. Additionally, the role of the Fe-doped region was dominant in conducting the 

adsorption processes, and the results of both F1 and F2 complexes revealed such importance. 

Consequently, the stabilized models regarding the energies and interactions details affirmed this 

achievement for proposing the formations of Frm@BN complexes for environmental applications. 
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1. Introduction 

Soon after the nanostructures innovation, assessments of their features showed the 

benefits of employing novel structures for conducting adsorption [1-5]. Accordingly, various 

functions and applications have been expected for the nanostructures from biological systems 

up to industrial fields [6-10]. Besides the pioneering carbon nanotubes (CNTs), several other 

nanostructures have been innovated with characteristic features of wide surface area for 

adsorbing other substances [11-15]. Moreover, non-carbon-based nanostructures are even 

better than pure carbon nanostructures for participating in efficient adsorption processes [16-

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC134.346
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8231-8164
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-6371-1171


https://doi.org/10.33263/BRIAC134.346  

 https://biointerfaceresearch.com/ 2 of 10 

 

20]. Combinations of boron and nitrogen atoms led to the innovation of boron nitride (BN) 

nanostructures with heteroatomic surfaces compared with the homoatomic composition of 

carbon nanostructures [21]. Additionally, different values of electronegativity of boron and 

nitrogen atoms provided almost an ionic surface for the BN nanostructures [22]. Several shapes 

of these BN-related nanostructures have been known this time, including planar, tubular, 

conical, spherical, linear, and other geometrical shapes [23-25]. Interestingly, the BN 

nanostructures are always supposed to be semiconductors in contrast with carbon 

nanostructures' metallic and semiconductor features [26-28]. Accordingly, investigating sensor 

features of BN nanostructures has been found important for specifying their applications in 

diagnostic situations [29]. Considerable efforts have been dedicated to recognizing 

nanostructures' benefits for diagnosing pollutants, conducting drug delivery platforms, and 

other related adsorption processes [30-35].In this regard, the BN nanostructures have been seen 

as useful for adsorbing other substances, such as gaseous molecules or pharmaceutical 

substances [36-38]. Within the current computational work, a representative BN plate was 

investigated for formaldehyde (Frm) adsorption (Figure 1) to learn about details of the 

adsorption process besides learning the benefits of this application for environmental issues. It 

is worth mentioning that investigating health-related topics are always at the highest levels of 

importance because of the need to marinate the living systems' stability and safety [39-43]. 

 

 
Figure 1. Optimized Frm and BN models and their HOMO-LUMO patterns and DOS diagrams. 

Formaldehyde (CH2O) is one of the essential chemical compounds of several industries; 

in which it can be stored in liquid form, but it is naturally a low-boiling-point gas [44]. 

Although it should be equipped for industrial processes, its exhaustion to the environment 

could cause dangers to the health of living systems [45-47]. In this case, formaldehyde has also 

been known as a pollutant with recognition and elimination importance for saving the living 

systems [48]. Accordingly, considerable attempts have been dedicated to innovative adsorbents 

for such small gaseous molecules regarding environmental issues [49-51]. Indeed, exploring 

determination tools is very important in various fields especially for health issues [52-54]. 

Earlier works reported the benefits of employing nanostructures for conducting the adsorption 
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of formaldehyde in different conditions [55]. To approach the goal of innovation of new 

adsorption system, computational tools have been very useful to generate the required 

information at the smallest scale of interacting substances [56-60]. Based on such 

achievements, this work was performed by employing computational tools for investigating a 

BN plate for the adsorption of formaldehyde [61]. To provide an active site of interactions, an 

iron (Fe) was instated in the central position of the plate to make a Fe-doped region for targeted 

interaction with the formaldehyde substance. Indeed, the atomic dopants could manage targeted 

interactions for the surfaces towards other substances [62-66]. The investigating molecular 

models of this work were optimized, and their characterizing features were evaluated to assess 

the formaldehyde adsorption by the BN plate (Tables 1 and 2 and Figures 1 and 2).  

2. Materials and Methods 

As shown in Figure 1, the original models of this work were molecules of formaldehyde 

(Frm) (CH2O) and Fe-doped BN plate (B7N7H10Fe), in which their combinations were 

investigated to obtain the interacting bimolecular models of Frm@BN complexes (Figure 2). 

Indeed, the Fe-doped region was an active site of interactions for the BN plate to participate in 

interactions with the Frm substance. All possibilities of bimolecular model formations were 

examined by initiating interactions with various configurational positions of Frm and BN 

towards each other, resulting in two Frm@BN complexes; F1 and F2. The optimization 

calculations of bimolecular models were performed without any restriction to obtain the 

geometrically minimized models. Additionally, the analyses of the quantum theory of atoms in 

molecules (QTAIM) were performed to recognize details of interactions and strengths for 

forming Frm@BN complexes. Besides interaction details of bimolecular models (Table 1), 

other details, including various types of energies, were listed in Table 2. Moreover, graphical 

representations of optimized models, frontier molecular orbitals distribution patterns, and 

diagrams of the density of states (DOS) were exhibited in Figures 1 and 2. All calculations of 

this work were done by the wB97XD/6-31+G* level of density functional theory (DFT) as 

implemented in the Gaussian program [67]. 

3. Results and Discussion 

This computational work was done to investigate a BN plate for the Frm adsorption 

regarding environmental issues. To this aim, a representative model of Fe-doped BN plate was 

used to adsorb the Frm molecule through optimization processes of DFT calculations. 

Optimized forms of the singular Frm and BN models and the bimolecular Frm@BN models 

are shown in Figures 1 and 2. As could be seen by the models, stabilized structures were found, 

and their features were evaluated (Tables 1 and 2). Examining the results of singular models 

could show that the models were in the good mode of electron transferring contributions 

because of their different energy values of characteristic frontier molecular orbitals; HOMO 

and LUMO levels. It should be noted that the highest occupied molecular orbital (HOMO) and 

the lowest unoccupied molecular orbital (LUMO) stand for the most achievable levels of 

electron transferring in the molecular models. Accordingly, the idea of formations of such 

Frm@BN bimolecular complexes could be supported by such different levels of HOMO and 

LUMO and their possibility of participating in electron transfer processes. To this aim, the 

already optimized singular models of Frm and BN were combined with each other through 

performing re-optimization calculations to yield the stabilized Frm@BN bimolecular models. 
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As the Fe-doped region of the BN plate was indeed an active site of interactions, the Frm 

substance was relaxed mainly towards this atomic site in both obtained F1 and F2 complexes 

(Figure 2). Next, details of interactions and strengths were examined by performing the 

QTAIM analyses of bimolecular models. The results were summarized in Table 1 to show the 

types and distances of interactions, total electron density (Rho), Laplacian of electron density 

(Del2-Rho), and energy of electron density (H) for describing the interacting bimolecular 

complexes [68-70]. 

Table 1. QTAIM features of Frm@BN models.1 

Frm@BN Model Interaction Distance (Å) Rho (au) Del2-Rho (au) H (au) 
F1 O…Fe 

H…N 
1.97 

2.83 

0.0678 

0.0061 

0.5069 

0.0221 

-0.0658 

-0.0011 

F2 H…Fe 

H…N 
1.83 

2.82 

0.0443 

0.0067 

0.1154 

0.0224 

-0.0137 

-0.0098 
1The models are shown in Figures 1 and 2.  

 
Figure 2. Optimized Frm@BN models and their HOMO-LUMO patterns and DOS diagrams. 

For each of the two configurations of Frm@BN bimolecular models, two interactions 

were found; O…Fe and H…N for F1 and H…Fe and H…N for F2. It was found that the Fe-

doped region managed the two-leg interactions of Frm with involvement in interactions in both 

of F1 and F2 models. The obtained QTAIM features indicated reasonable electronic conditions 

for the occurrence of interactions between two molecule models. The O…Fe type of interaction 

was found to be at the highest strength compared to other interactions; the H…Fe and H…N 

types were placed at the next orders. All the obtained values of Rho, Del2-Rho, and H of Table 

1 affirmed occurrences of two meaningful interactions for both of F1 and F2 models. In this 

regard, the idea of the formation of Frm@BN complexes was confirmed.  

Further analyses of the models were done with the assistance of the evaluated energy 

features of the models, as summarized in Table 2. First, the value of EAds; representing the 
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adsorption energy, showed meaningful strengths for formations of both F1 and F2 complexes. 

Additionally, the strength of F1 was found higher than F2, remembering the role of O…Fe 

interaction in forming this complex model. The exact values of obtained EAds were -30.66 

kcal/mol and -10.12 kcal/mol for F1 and F2, respectively. 

Table 2. Energy features of Frm, BN, and Frm@BN models.1 

Model EAds (kcal/mol) HOMO (eV) LUMO (eV) EGap (eV) EFermi (eV) CH (eV) CS (eV-1) 
Frm n/a -9.82 0.50 10.33 -4.66 5.16 0.19 

BN n/a -8.60 -3.29 5.31 -5.95 2.66 0.38 

F1 -30.66 -8.18 -2.26 5.92 -5.22 2.96 0.34 

F2 -10.12 -8.67 -3.04 5.62 -5.85 2.81 0.36 
1The models are shown in Figures 1 and 2. 

Other obtained energy features were for HOMO and LUMO levels standing for the 

levels of electron transferring in forming bimolecular models. As shown by the evaluated 

HOMO-LUMO distribution patterns and DOS diagrams (Figures 1 and 2), the energy values 

of HOMO-LUMO levels of singular models were different. The observation helped to 

approach the idea of the occurrence of interactions in two singular models. Moreover, the 

LUMO level of the singular BN plate was mainly localized at the Fe-doped region to show the 

role of such modification for better adsorbing other substances. Accordingly, formations of 

bimolecular models led to the relaxation of two configurations of Frm and BN towards each 

other, in which the O-leg of Frm was placed towards the Fe-doped region in F1 (O…Fe), and 

the H-leg of Frm was placed towards the Fe-doped region in F2 (H…Fe). In both F1 and F2 

models, one additional H…N interaction was also observed. In such cases, the obtained results 

of HOMO-LUMO showed impacts on complex formations, showing different results between 

singular and biomolecular forms and even between two bimolecular forms. As illustrated by 

the DOS diagrams, the models were in different conditions of electronic molecular orbitals 

levels not only for the exact HOMO and LUMO levels but for other levels before HOMO and 

after LUMO resulting in the possibility of detection of such complex formations. The results 

indicated variations of electronic molecular orbitals for all two models of bimolecular 

complexes compared to each other and the singular models. In this regard, the singular Frm 

had a long distance between HOMO and LUMO levels, as indicated by the energy gap values 

(EGap). Accordingly, the Fermi energy (EFermi) was placed in a different region compared to 

other models. After the formations of complexes, the models were found to be closer to the 

levels of the singular BN plate than the singular Frm model affirming the dominant role of BN 

plate in conducting the adsorption process. In this regard, the models were found to be in 

diagnostic levels compared to each other. The obtained features of chemical hardness and 

softness (CH and CS) also indicated different features for the models based on the obtained 

values of CH and CS among the investigating singular and bimolecular models. Consequently, 

the models were considered to cover the role of adsorption and provide a possibility of 

detecting the adsorbed substance. Indeed, the removal and diagnostic purposes could be 

proposed by employing a small BN plate towards the Frm substance. 

4. Conclusions 

A BN plate was investigated in this work for adsorbing the Frm substance by 

performing DFT calculations. To manage the adsorption process, one Fe atom was inserted in 

the center of the plate to make a Fe-doped BN plate for interacting with the Frm substance. 

Accordingly, two models of Frm@BN bimolecular complexes were found to be stable to 
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approach the goal of this work. The configurations of interactions of Frm substance towards 

the Fe-doped region were found to be through two orientations from O-leg and H-leg of Frm, 

resulting O…Fe and H…N interactions in F1 and H…Fe and H…N interactions in F2. Next, 

the obtained results of QTAIM analyses indicated the meaningful strengths of interactions for 

F1 and F2 models leading to higher stability for F1 in comparison with F2. The electronic 

molecular orbitals levels also affirmed the impacts of complex formations. The results were 

useful for approaching a diagnostic purpose of Frm substance with the assistance of a Fe-doped 

BN plate. Indeed, most of this work was to investigate a small-size model for adsorbing an 

environmental pollutant substance. The results indicated that the models were suitable for being 

achievable. The obtained interaction details and strengths also indicated the dominant role of 

BN in adsorbing the Frm substance regarding environmental issues. 
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