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Abstract: Oral streptococci are the oral microbial flora that can cause biofilm formation. One of the
most common isolated oral streptococci is Streptococcus mutans, which has a significant role in oral
diseases, including periodontal. The most important factor of S. mutans pathogenesis includes biofilm
formation that leads to emptying tooth enamel and caries. Various genes including atpF, gtfB, gtfC,
gtfD, gtf, LuxS, comAB, comCDE, and comX regulate biofilm formation. Therefore, in this review, we
aimed to investigate factors that influence S. mutans pathogenicity in the mouth. The main factors are
related to the biofilm formation of this bacteria and metabolic products, which influence environmental
changes by carbohydrate metabolism and help this pathogen to make dominant growth compared to
other bacteria living in the oral cavity. Indeed, developing methods to inhibit biofilm formation and
guorum sensing using antimicrobial agents with anti-biofilm and antibacterial properties should be
considered based on our knowledge of the pathogenicity mechanisms of S.mutans.

Keywords: Streptococcus mutans; oral bacteria; biofilm; infection.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Oral streptococci are components of the oral microbial flora that can cause biofilm
formation [1, 2]. One of the most common isolated oral streptococci is S. mutans, which has
an integral role in the infection of oral diseases, including periodontal [3, 4]. Biofilm-forming
bacteria could cause periodontitis, an inflammatory disease resulting from infection in the
gingivae, the bone around the tooth, and underlying connective tissue [5, 6]. Therefore, it is a
common public health problem in children and adults [7, 8]. The causes of S. mutans
pathogenesis include biofilm formation, changes in various proteins, synthesis of extracellular
polysaccharides, and acid production, which lead to emptying tooth enamel and caries [9, 10].
So, this review will analyze factors that influence Streptococcus mutans pathogenicity in the
mouth; therefore, we can generate useful combat with this infection. The review was conducted
based on a search of scientific databases, including PubMed and Scopus, based on keywords
including S. mutans, pathogenicity, oral, mouth, biofilm, metabolism, and infection.
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2. Biofilm Formation

Biofilm is a unique microbial cell structure, enclosed by an extracellular matrix or
exopolysaccharide (EPS), proteins, and nucleic acids [8, 11, 12]. The biofilm can enclose
bacteria, supply food and nutrients for them, and causes resistance to antimicrobial substances,
host attack, stress, and force. In addition, the biofilm can tolerate acidic environments,
damaging tooth enamel and decay [12, 13]. Biofilm formation takes place in several stages: (i)
production of the acquired pellicle or conditioning film on the enamel surface (ii) cell-to-cell
interactions of late colonizers bacteria with each other (iii) subsequent attachment of the cell
to the surface of primal colonization [14, 15]. Biofilm production begins with the interactions
between the surface and planktonic bacteria in reply to suitable environmental stimuli [16-19].
In addition to responding to chemical and physical signals, various physiological functions are
controlled in bacterial cells through quorum sensing [17, 20-23]. The modulation of gene
expression is facilitated by the Quorum sensing signals in biofilm [24, 25].

The cariogenic functions of S. mutans biofilms are controlled by various genes, most
of which participate in multiple basic characteristics. Avilés-Reyes et al. [26] have shown that
S. mutans binds to tooth surfaces by sucrose-dependent adhesion. Within the non-attendance
of sucrose, particular substrate and the adherence of surface adhesins such as SpaP are
identified by the independent sucrose mechanism (Figure 1).
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Figure 1. Biofilm formation. Adherence of surface adhesins, such as SpaP, resume biofilm formation. In
another pathway, in the presence of sucrose, the glucosyltransferases (GTFs), produce water-insoluble or water-
soluble glucans. Fructosyltransferase (FTF) is able to catalyze the production of fructan from sucrose. Glucan-
binding proteins (GbpB) intercede bacterial interaction with extracellular glucans. Lactate dehydrogenase
(LDH) catalyzes the regeneration of pyruvate to lactic acid.
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In the presence of sucrose, the glucosyltransferases (GTFs), GTFB, GTFC, and GTFD
produce water-soluble or water-insoluble glucans [27,28]. Fructosyltransferase (FTF) catalyzes
the production of fructan from sucrose. Guan et al. [29] have shown that the fructan polymers
are primarily used to store extracellular nutrients that may be used during times of food poverty
by S.mutans. Glucan-binding proteins (Gbp), encoded by the gtf genes, could be enzymatic
proteins whose glucan-binding properties help maintain it cell-associated in the lack of a cell-
wall anchor [30]. The GbpB protein mediates the interaction of bacteria with extracellular
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glucans. The Gbp proteins play an important role in biofilm formation and sucrose-dependent
adhesion and help maintain a symbiotic and stable microbial population in the oral cavity [31].

The pyruvate production of lactic acid is catalyzed by Lactate dehydrogenase (LDH),
encoded by the Idh gene [32]. Biofilm and acid tolerance are firstly associated with the activity
of membrane-bound F-ATPase (H+ translocating ATPase), encoded by the atpF gene. The F-
ATPase maintains cytoplasmic pH homeostasis by making the internal pH more alkaline than
the ambient pH and moving proton out of cells changes [29].

3. Sucrose-Dependent Mechanism

3.1. Glucosyl transferases (Gtfs).

The most important mechanism behind dental plaque formation is glucans' production
by glucosyltransferases (GTFs) [31, 33-35]. The Gtfs possess sucrose-dependent activity that
causes glycosidic bond breakage and releases fructose and glucose [35]. The glucose portion
is then attached to a developing polymer of glucan [36]. Glucosyltransferases (GTFs) mediate
glucan synthesis from sucrose. Therefore, the glucans allow bacteria to attach to the tooth
surface and each other, shaping microcolonies and enhancing biofilm formation [31, 34, 37,
38].

S. mutans synthesizes 3 types of Gtfs (GtfB, GtfC, GtfD), whose agreeable activity is
regarded to be fundamental for its cellular adherence to the tooth surface [39, 40]. The GTFB,
GTFC, and GTFD enzymes are encode by gtfB, gtfC, and gtfD genes, respectively [39, 41, 42].
The water-insoluble glucan, which is wealthy in a 1,3- glucosidic linkages, is usually
synthesized by GTFB and GTFC. While the water-soluble glucans, which are rich inan a 1,6
glucosidic linkages, are synthesized by GTFD [39, 43-45]. A comparative structure presents
that 75% of amino acid arrangements of the GTFB are profoundly homologous to GTFC, and
50% of the sequence of GTFD has an identity to GTFB and GTFC [40].

All Gtfs possess three particular spaces: the C-terminal glucan-binding (GB) space, the
exceedingly preserved catalytic space, and the N-terminal variable junction space [35, 46]. It
has appeared that GTFC plays a critical role in the generation of adhesive glucans that make a
strong adherence of S. mutans to the surfaces [47-49]. Fujiwara et al. [50] demonstrated that
the nucleotide deletions of the gtfB and gtfC genes reduce the biofilm formation with negligible
aggregation of S. mutans and polysaccharides in vitro. Therefore, inhibition of Gtfs in solution
and after adsorption to the tooth surface could be a successful method to prevent tooth decay
and other biofilm-related diseases.

3.2. Glucans binding of proteins (Gbps).

Another sucrose-dependent component is Gbps, which is involved in the binding of
S.mutans to glucans [34, 51]. S.mutans synthesizes at least 4 glucan-binding proteins (Gbps),
including GbpA [52], GbpB [53], GbpC [54], and GbpD [55], which presumably promote the
adhesion of the organisms and biofilm formation. The functions of Gbps are associated with
altered biofilm production [56], cell wall solidness, peptidoglycan hydrolase action [57],
dextran-dependent accumulation [54], and lipase action [55].

GbpA was firstly identified by Russell et al. [58]. It contains 563 amino acids and 59kD
molecular weight [59]. The carboxyl-terminal of GbpA and GbpD is identical to the glucan
binding domains of the GTF enzyme. In addition, GbpA require a-1,6 linkages for adhesion
[31]. This protein facilitates cellular linkage to the surface and has appeared to involve in the
https://biointerfaceresearch.com/ 30f 19
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cariogenicity of S. mutans both in vivo and in vitro [60]. GbpA, GbpC, and maybe GBPs
involve in the optimal aggregation and design of plaque biofilm [30]. A deformity of GbpA
causes changes in biofilm architecture, including spreading of the microclone over the
substratum and height reduction, as well as changes in localized PH compared to non-defective
parent strain [61]. The shelter bacteria could expose to acid and make them susceptible to gene
introduction because of a change in the architectures of the biofilm [59].

GbpB was the second Gbp identified by the affinity column experiments by smith et al.
[59]. The GbpB was immunologically different in size and purification properties from other
Gbps produced by Streptococcus sobrinus and S. mutans [51, 53, 62]. It has also been shown
to be similar to a peptidoglycan hydrolase from group B streptococci, showing that GbpB plays
a role in the production of peptidoglycan [62]. Therefore, GbpB probably is an enzyme that
glucan-binding property helps maintain its cell-associated in the lack of a cell-wall anchor [30].
On the other hand, the glucan binding of GbpB may be an artifact; its primary ligand probably
resides inside the cell wall [30]. Mattos-Graner et al. [62] demonstrated that DNA
polymorphism and consequently amino acid changes were confined to the central region of the
gtfB gene in the clinical isolates of S.mutans, suggesting functional conservation within the
carboxyl and amino terminus of the GtfB protein.

Most of the sequence changes are identified in the central region of the gbpB in the
restriction fragment length polymorphism (RFLP) examination of 44 amplitypes of S. mutans.
Therefore, it indicates the maintenance of functional sequences in the C-terminal and N-
terminal domains. Mattos-Graner et al. [62] demonstrated that gbpB depletion distinctly
changed the early stages involved in cell division and other physiological processes of sucrose-
dependent biofilm formation, which are required for the transition from planktonic growth to
biofilm [4, 34].

GbpC was reported by Sato et al. [30]. GbpC can be a cell surface-associated protein
and has been shown to develop dextrin-dependent aggregation (DDAG) in vitro under stressful
conditions [55, 59, 62, 63]. The GbpC contains a cell-wall attachment and membrane anchor
site according to cell surface expression [30, 64]. The GbpC protein (and possibly GbpB)
serves as a main receptor for glucan and binds to the bacterial cell wall [65]. In addition, GbpC
is similar to the antigen I/11 (Ag I/11) family of proteins [66, 67]. In addition, the loss of GbpC
decreases the biomass and accumulation of bacteria in the biofilm formation, which indicates
GbpC is the major glucan receptor [59, 68].

GbpD was isolated and detected using a complete and detailed sequence analysis of S.
mutans strain UA 159 [55]. GbpD has lipase action [55]. The Gbp proteins such as GbpA and
GbpD possibly have evolved from Gtfs and retained the binding domain to glucan, but with a
more prominent adaptation to advance higher tendencies for glucan [69]. Shah and Russell [55]
demonstrated three "alanine’ repeats in the middle of the GbpD sequence, and GbpD binds to
dextran with a KD of 2-3 nM. The alanine replication site is necessary for binding, confirmed
by the construction of truncated GbpD derivatives [55]. GbpD contains an oxyanion hole and
a GXSXG active location lipase box. In the presence of calcium, the GbpD releases free fatty
acids (FFAs) from a range of triglycerides, which indicates lipase function [55]. Like GbpA,
the GbpD helps the cohesiveness of adhesion and aggregates to tooth surfaces [70]. However,
the loss of GbpA is comparable to a biofilm falling and spreading on the substrate, while the
loss of GbpD weakens the biofilm cohesion, which leads to a decrease in height and loss of
biofilm [59].
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4. Sucrose-Independent Adhesion

The first step in the pathogenic process is attachment to host tissues, usually performed
through proteins on the bacterial surface. The attachment is mediated by sucrose-dependent
and sucrose-independent adhesion mechanisms in S.mutans [71]. The sucrose-independent
adhesion mechanism is thought to be most significantly affected by antigen I/1l (known as
SpaP, Pac, P1), a 185KDa surface protein in S.mutans [72]. The sucrose-independent
mechanism is not related to the pathogenicity of S. mutans. This mechanism shows an
interaction between salivary agglutinin and the constituent particles of S.mutans [73-75]. Six
particular locales are detected in genetic sequences encoding Ag I/ll. The alanine-rich locale
and proline-rich locale are the most important locales. The valine Locale is found between the
A and P locale and in most of the various sequences in individual strains [76]. The proline
wealthy and wealthy alanine spaces are thought to be capable of interacting with salivary
components and antigen I/l [75, 77-79].

It is a domain immune antigen that is able to stimulate the antibody response and T cell
proliferation [72, 80]. Salivary agglutinin, called gh340, is present in human saliva and
regulates the accumulation of S. mutans through the P protein [73, 81]. The biofilm formation
of the Ag I/1l deficient mutants is reduced by 65% compared to the wild type. As well as a
diminishment in its ability to advance the aggregation and attack of the dentin of the collagen-
dependent [70, 82]. The Ag I/l virulence has been regarded as a hopeful target antigen for
anticaries vaccines and investigated in a gnotobiotic rat model [83-86].

5. Quorum Sensing

Producing biofilm is resumed by interactions between the oral surface and planktonic
bacteria in reaction to the environmental signal [17, 87-89]. S. mutans metabolize
carbohydrates for adhesion and biofilm formation on tooth surfaces [70, 90]. Numerous factors
are associated with biofilm formation, such as coaggregation adhesion and nutrient flow, which
can affect gene expression and growth rate [91]. Quorum sensing is an important mechanism
associated with adapting bacteria to their environment [92].

Quorum sensing interacts by producing, releasing, identifying, and responding to
molecules such as partial hormones called self-inducers to coordinate their behavior in a cell
density-dependent state [93]. Quorum-sensing signal molecules are little organic molecules,
especially N-acyl-homoserine lactones (AHLS) in gram-negative bacteria [20, 94]. In contrast,
it is oligopeptides called autoinducing peptides (AIPPs) in gram-positive bacteria. The LuxS
gene is carried by S. mutans and other oral bacteria [95-97], which synthesizes the autoinducer-
2 (Al-2) (LuxS) (autoinducer-2 system). The Al-2 is one of bacteria's foremost broadly
interspecies signaling molecules [97-99]. Different virulence factors are controlled by quorum
sensing in S.mutans, which includes a two-component signal transduction system (TCSTS).

The TCSTS consists of a membrane-bound histidine kinase (HK) sensor protein and a
cognate cytoplasmic responding controller (RR) protein (Figure 2). The HK protein identifies
a particular impulse and the RR protein empowers cells to respond to diverse stresses/ changes
through the regulation of gene expression [100-102]. This signaling system's full function
includes the comCDE, comAB, and com X genes [103-105]. The producing and responding to
the competence-stimulating peptide (CSP) are encoded by the comCDE gene found in the same
locus [19, 70, 106]. The comC encodes the precursor csp. Whereas the comD gene encodes HK
of TCSRS and the comE gene encodes its cognate response controller (RR) [29, 97, 105]. The
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comX gene encodes an altered sigma factor that transcribes a number of genes needed to absorb
and receive foreign DNA [104]. A critical CSP concentration reacts with the HK adjacent cells
and activates the comE through autophosphorylation.

Phosphorylated comE, in succession, triggers its target gene. The signaling cascade for
genetic merit is probably activated by the comCDE, comAB, and comX gene. The Com system
regulates the biofilm formation and biofilm architecture of the S. mutans [105]. The quorum
sensing system acts well when cells are actively growing in biofilm, indicating that this cell-
to-cell signaling system may play an important role in forming S. mutans biofilms [107].
Napimoga et al. [108] Recent studies have described the relationship between biofilm
formation and the mutations at several com loci. They demonstrated that the inactivation of any
genes encoding the components of the quorum sensing system, specific comC, produces an
eccentric biofilm.

6. Acidogenicity

S. mutans is able to produce acid in the oral cavity [109]. This organism can synthesize
lactate, acetate, and ethanol through the glycolytic pathway [103]. The exact distribution of
fermentation products will depend on development conditions, with lactate being the major
item when glucose is plenteous [110]—Ilactate dehydrogenase (LDH) enzyme convert
propionate to lactate [110].

Foreign DNA

;-*'”“"

AA

CSP
A

B

Figure 2. Quorum sensing. The HK protein identifies a particular impulse and the RR protein empowers cells to
respond to diverse stresses/ changes through the regulation of gene expression. The comC encodes the precursor
csp. Whereas the comD gene encodes HK and the comE gene encodes RR. The comX gene encodes an altered
sigma factors that transcribes a number of genes that are needed to absorb and receive foreign DNA. A critical
CSP concentration reacts with the HK adjacent cells and activates the comE through autophosphorylation.
Phosphorylated comE, in succession, triggers its target gene. HK: histidine kinase, RR: responding controller,
CSP: competence-stimulating peptide.
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The strains lacking LDH display reduce caries, and the absence of LDH is lethal.
However, S. mutans produce ethanol, acetate, and formate, when the amount of carbohydrates
is limited [111-113]. Since acid is synthesized in large quantities by S. mutans, it seems to be
an important factor in the incidence of caries [114]. In addition to sucrose, sugars in foods such
as galactose and glucose can cause caries [114]. However, these sugars cause fewer caries than
sucrose, regenerate to acidic metabolites, and are regenerated to extracellular polysaccharides
[114]. Starches are less cariogenic than sugar because they can't easily spread into plague. They
are also less hydrolyzable [115]. In most cases, the acid production rate of S. mutans, when
tested at a pH range of 5.0 to 7.0, is higher than other oral streptococci [116]. The plaque pH
is decreased by consuming fermentable carbohydrates from the decaying flora compared to
healthy plaque flora. Therefore, the recovery to neutral pH takes a long time. The production
of dental caries and the demineralization of enamel are supported by constant plague pH values
below 5.4 [117-119].

7. Acid-tolerance

Another ability of S. mutans is to tolerate and survive the high amount of acid [120]. S.
mutans retains glycolytic properties at pH levels that are development inhibitors (as low as pH
4.4) [121]. An F1F0-ATPase proton pump encoded by the atpD gene generally intervenes in
the acid tolerance of S. mutans but also includes adjustment with an accompanying change in
the expression of proteins and genes [97, 121, 122]. The FIFOATPase system flushes H+ out
of bacteria to maintain acid tolerance and overcome acid stress [90, 120, 123]. In addition,
another function of F1FO-ATPase is ATP synthase [90]. The interior of bacteria cells keeps
neutral pH, but a proton gradient is formed on the boundary of the cell membrane when the pH
is more in the exterior of the cell. A motive force of the proton is caused by the proton gradient
when H+ tries to enter from the cell's exterior. FLFO-ATPase uses the motive force of the proton
to synthesize the ATP required for bacteria [123]. Furthermore, the agmatine deiminase system
(AgDS) produces ATP, CO2, and ammonia and is able to maintain acid tolerance and overcome
acid stress.

8. Diet

Diet plays a significant part in the development of cariogenic etiopathogenesis.
However, sugar consumption and decreasing sugar consumption in the diet have been focused
on controlling caries [124]. The cariogenicity of meals is controlled by the content of
carbohydrates as well as by the frequency with which they are consumed [125]. The main
carbohydrate sources are sugars, which can combine multiple sugars in the bacterial cytoplasm.
Bacteria use the sugars and serve for the production of ATP via glycolysis and synthesis of
bacterial components such as nucleic acids, lipoteichoic acid, other needed polysaccharides,
and peptidoglycan [126-129]. Fermentable carbohydrate is firstly sucrose, but all
carbohydrates are generally assumed cariogenic [130].

Of the sugars in the diet, sucrose plays the most important role in cariogenic potential.
In addition to fermentation by oral bacteria, sucrose increases the ability to colonize and grow
oral bacteria such as S. mutans. In addition, sucrose serves as a substrate for producing EPS in
dental biofilms. Sucrose is involved in mass formation, stability of the biofilm matrix, and
physical integrity [131]. However, foods that involve extensive mastication, such as starchy
foods and fresh fruits, cause a low cariogenic potential because of the stimulation of saliva
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production [114]. The oral bacteria can decompose sugars of the food and synthesize them,
glucans which have importance in interactions between cariogenic organisms and tooth enamel
[31].

Various sugars could be consumed by S. mutans. In addition, sugars and amino sugars
are used and diffused in bacterial components' glycolysis and biosynthesis pathways [132].
Disruption of this regulation causes a change in the virulence of S. mutans. In sugar
metabolism, catabolite control protein A (CcpA) modulates the expression of numerous
virulence factors in Staphylococcus aureus and S. mutans. Therefore, sugar metabolism is
involved in bacteria's physiology and virulence [133].

Nutrition and diet play an important role in childhood decay [134]. Human milk
provides nutrition and immunity in infants, and there is a dietary shift from a liquid diet and
solely milk to a modified adult diet in the first few years after birth. In addition, breastfeeding
and limiting night bottle feeding reduces the risk of breastfeeding caries [135]. Therefore, it is
required early safety measures like properly brushing teeth, utilizing fluoride, and eating
nutritional foods [127]

Cariogenic strength is increased during sleep because the acid activity derived from the
metabolism of sugars is increased, and saliva excretion is decreased [136]. The noteworthy
impact of fruit juice and sparkling drinks on dental caries advancement in teenagers and
children has also been reported [137]. Therefore, diet drinks and energy drinks contain citric
and phosphoric acids that destroy tooth enamel [138]. Tooth decay is related to the absorption
of sugar in the diet [139]. Increased urbanization has caused the replacement of refined sugars
with natural sugars, which has worsened the situation [139]. Many studies have shown a linear
relationship between sugar intake and tooth decay in global populations [140, 141].

9. Saliva

Saliva has a significant role in oral health, Which includes regulating, maintaining, and
strengthening hard and soft oral tissues [142]. The salivary glands produce saliva, including
sublingual parotid, submandibular, and numerous small salivary glands [143]. Saliva secretion
is a process with two stages, at the first step, the acinar cells secrete an aqueous plasma-like
fluid, and in the next step, they are caused modification during transmission by the watertight
ductal cell system at the next step. The autonomic nervous system regulates saliva secretion
through signal transmission systems which bind receptor stimulation to ion transport
mechanisms and protein secretion. The type and intensity of stimulation regulate the
synthesized volume of saliva. The highest volume occurs with cholinergic stimulation. There
are also several functions defined for saliva [143].

One of the important uses of saliva is to protect oral tissue from the harmful effects of
microorganisms. Saliva contains a variety of proteins with antimicrobial properties. Salivary
compounds, peroxidase, and lysozyme are part of the primary defense system [144]. These
enzymes have bactericidal and bacteriostatic functions against different microorganisms and
are present in all body secretions, such as tears and saliva [145]. The peroxidase enzyme is a
glycoprotein containing porphyrin that produces the antimicrobial peroxidase system by its
cofactor. Lysozyme also breaks down beta glycoside bonds in peptides and glycans, destroying
the bacterial cell wall [144].

The interaction between P1-binding S. mutans and salivary agglutinin mediates
sucrose-independent adherence and facilitates bacterial accumulation on tooth surfaces [74].
The antigen binds directly to the salivary follicle and mediates bacterial adhesion even without
https://biointerfaceresearch.com/ 8 of 19
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sucrose. Therefore, salivary agglutinin (also known as gp340) elevates or makes bacterial
clearance from the oral cavity easier, depending on its solubility or adsorption [86, 146]. The
bacterium S. mutans uses saliva for transmission. Balakrishnan et al. [147] have shown a 70
percent chance of transmitting S. mutans from mother to infant if the level of S. mutans in the
mother's saliva is more than 10%/ml. In return, the chance of transmitting S. mutans to the infant
is decreased to 20 percent if the level of S. mutans in the mother's saliva is less than 3x10%/mL.

10. Sugar Metabolism

In S. mutans, sugars are used both extracellularly and intracellularly. Internal sugars are
mostly utilized for glycolysis, the production of different components, including intercellular
polysaccharides (IPS), lipoteichoic acid (LTA), and cell-walls biosynthesis. In return, external
sucrose is used to produce glucans, which are extracellular polysaccharides (EPSs) [133]. Oral
bacteria consume the sugars of foods and metabolize them to produce energy via fermentation
and glycolysis and produce organic acids as metabolic products [148, 149].

The FTF and GTFs secreted by S. mutans provide attachment sites available for
bacterial colonization on the tooth surfaces or bacterial binding to each other and regulate the
precursor of dental caries and adherent to biofilm formation [150-152]. In addition,
fucosyltransferase catalyze the synthesis of fructans and maybe energy sources [153].
Tahmourespour et al. [154] demonstrated that the ftf, gtfB, and gtfC, genes are required to bind
S. mutans to hard surfaces through the sucrose-dependent mechanism and are potential targets
for protection against tooth decay, but gtfD is not essential.

Fructanase (FruA) digests sucrose which is an exo-beta-D-fructosidase enzyme. The
digested sucrose is used as a substrate to create fructan (B(2,1)- and p(2,6)- linked extracellular
fructose polymers) and soluble (a(1,6)-linked) and insoluble (a(1,3)-linked) glucans in S.
mutans [155]. Suzuki et al. [155] demonstrated that FruA has multiple effects associated with
the survival functions of S. mutans, such as genetic transformation, bacteriocin production, and
biofilm formation.

Dextran or water-soluble glucan (WSG) provides energy storage for bacteria, which
has a nonlinear molecular structure and is rich in a-1,6 glucosidic linkages [156]. During glucan
production, glucans undergo structural changes due to the effects of fructosyltransferases (Ftf)
and GTFs, along with dextranase (Dex), a type of glucanase involved in the breakdown of
WSG [157]. DexA is a WSG hydrolase, which degrades the WSG a-1,6 glycosidic bond to
affect the features of dextrans and provides an energy source for bacteria. As well as it
decreases the number of dextrans and has an integral effect on the production of
exopolysaccharides and their chemical and physical properties [158, 159]. Its loss has also been
reported with reduced virulence in some mouse models. Dextran glucosidase (DexB) cleaves
the a-1,6 bond from isomalto-oligosaccharide or the nonreducing end of dextran and releases
glucose [160].

The DIt1-4 protein is responsible for the accumulation of intracellular polysaccharides
as well as the storage of energy. Hence, loss of DItl-4 reduces pathogenicity, and its
overexpression increases pathogenicity [161, 162]. The relA gene of S. mutans plays a role in
regulating the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) [163].
The enolase of S. mutans is a major component of the PTS that facilitates the absorption of
bacterial sugar uptake [123]. Furthermore, lactic acid dehydrogenase S. mutans facilitates lactic
acid production [149, 164].
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11. Bacteriocin

Bacteriocins are antibacterial proteins synthesized by a number of bacteria to prevent
or inhibit other bacteria [114]. S. mutans synthesizes mutacin, which is active against non-
streptococcal Gram-positive bacteria and other streptococcal species [114, 165]. The mutacin
production helps effectively colonize and establish S. mutans inside the oral cavity [166].
Rogers [166] demonstrated that 70% of S. mutans synthesize one or more bacteriocins.

Mutacin synthesis is controlled by two main systems: Rgg-like regulators and LytTR
regulatory system [167]. The lantibiotic mutacin is controlled by mutR, a Rgg-family controller
present in the gene cluster of the mutacin I, I, and I11 loci. They regulate the transcription of
mutacin operons, but their exact role has not yet been reported. The non-lantibiotic mutacin
production is regulated by the CSP- induced factors. [97, 168].

The ComCDE TCSTS play a critical role in regulating a variety of non-lantibiotic
bacteriocins in S. mutans. Phosphorylated ComE then activates gene expression by its target
bacteriocin promoters, leading to a dramatic increase in bacteriocin production [169-173]. In
the lantibiotic-producing bacteria, the same lantibiotic biosynthesis operon produces
bacteriocin immune proteins (Bip) to protect themselves from the harmful effects of their
lantibiotics [174-176]. In general, the Bip protects the bacteria against specific classes of
antimicrobial agents and often increases stress tolerance [70, 174].

12. Conclusion

In this review, we aimed to investigate factors that influence S. mutans pathogenicity
in the mouth. The included articles' review revealed that S. mutans established infections and
periodontitis through its virulence factors. The most important factor of S. mutans pathogenesis
includes biofilm formation that leads to emptying tooth enamel and caries. The cariogenic
functions of S. mutans biofilms are regulated by various genes. The studies showed that
inhibition of some virulence factors could be a successful method of preventing tooth decay
and other biofilm-related diseases. Therefore, increasing knowledge of the mechanism of
pathogenicity and virulence factors is helpful for public health in prevention, diagnosis, and
therapy. However, there are many issues that remain to be understood. Therefore, the
pathogenesis mechanism of these factors in oral infections and periodontitis associated with S.
mutans needs to be studied more to produce new methods for the therapies of S. mutans —
related diseases, as well as new possible mechanisms to remove S. mutans.
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