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Abstract: The ongoing interest of researchers in the direct-acting NS5B inhibitors in the development 

of viral disease hepatitis has attracted our attention in the direction of the development of a quantitative 

four-featured pharmacophore model containing HBA (2), HY (1), and PI (1) features. The model 

showed correlation coefficient, RMSD, and cost difference values as 0.895, 0.911, and 30.896, 

respectively. The model validation is done by using Fisher's randomization test (99%), internal and 

external tests set the expectation with r2 values of 0.80 and 0.65. Simultaneously, the 3D crystal 

structure of NS5B was utilized for generating a pharmacophore model design based on a structure with 

features generation 2 Hydrogen Bond Acceptors, 2 Hydrogen Bond Donors, and 2 Hydrophilic features. 

Further on these two models, HITS searches using NCI and Maybridge databases were done. Three 

hundred forty-five compounds were screened, and the three greatest potent hits were docked to the 

active site of NS5B. It was found that these docked conformations showed interactions with GLN446 

and TYR448 amino acids, which are located at NS5B active site. In an instant, with the use of various 

computational methods in a sequence, we have identified novel structurally diverse NS5B inhibitors. 
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1. Introduction 

Over the past few decades, we have observed several global viral infection outbreaks, 

one of which is chronic hepatitis C; worldwide, an estimated 58 million people have about 1.5 

million new infections occurring annually. It is said by who reported in 2019 that 

approximately 290'000 people died from hepatitis C, mostly from cirrhosis and hepatocellular 

carcinoma (1° liver cancer). Enduring HCV infections can lead to liver and hepatocellular 

carcinoma, being the largest cause of liver transplants and ultimately causing a financial burden 

on the healthcare system. Flaviviridae is the family of this virus, which comprises the 

Flavivirus and Pestivirus genera [1], which are responsible for human and cattle ailments. 

Hepatitis C virus((+)-ssRNA) is around 9.6kb in length, having a diameter of 40–60 

nm. Genetically [1–6] are major genotypes with 31-34 percent nucleotide differences. HCV 
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genotype has 3000 amino acids on a single polyprotein chain. Viral and cellular proteases 

involved in the proteolytic processing of this polyprotein chain are responsible for the 

formation of two parts, i.e., structural proteins (core, E1, E2, and p7) and non-structural 

proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [2]. Currently, no effective medication 

and vaccine is available for HCV due to strain disparity, a wide range of genotypes, and their 

mode of action. The existing treatment, consisting of a blend of pegylated interferon-alfa and 

the nucleoside analog ribavirin, is accompanied by serious health issues such as fatigue, 

hemolytic anemia, depression, and flu-like symptoms, all of which lead to medication non-

adherence. These symptoms challenge identifying novel, safe and effective therapeutics for 

their prevention and treatment. Because NS5B polymerase is a key protein for viral replication, 

it's the best target for intense research [3]. Structurally NS5B polymerase has a 3D rightward 

profile, i.e., finger, palm, and thumb. The palm subdomain contains the NS5B polymerase 

active site and three aspartic acids (Asp318, Asp319, and Asp220) that coordinate two Mg2+ 

ions throughout the polymerization response and lead to improved efficacy and tolerability [4].  

Non-structural protein 5B (NS5B) inhibitors may be characterized into three classes—

nucleoside active site inhibitors (NIs), non-nucleoside allosteric inhibitors (NNIs), 

and pyrophosphate analogs, subsequently, classified into several classes resulting in inhibition 

of viral RNA replication at different stages and sites. Nucleoside inhibitors (Nis) of hepatitis C 

virus NS5B are divided into three major classes: purine nucleoside inhibitors, pyrimidine 

nucleoside inhibitors, and miscellaneous nucleoside inhibitors. They are also known as chain-

terminating inhibitors because they stop RNA synthesis and perform chain termination by 

preventing incoming nucleotides from being added to the RNA chain. It has been anticipated 

that steric hindrance at the catalytic location of NS5B, which contains a 3’-hydroxyl group, 

blocks the polymerase catalytic activity resulting in chain termination.  

Non-nucleoside inhibitors(NNIs) are classified into three distinct types: active site 

inhibitors, allosteric site inhibitors, and miscellaneous NNIs. Active site inhibitors neither 

compete with nucleotides nor the RNA template. Instead, they inhibit polymerase activity by 

inhibiting conformational changes by binding to RNA-dependent RNA polymerase, known for 

required NS5B activity. The second category of NNI aims at the allosteric sites of NS5B, 

causing conformational deviations and consequently lowering or obstructing enzyme activity. 

For other non-nucleoside analog inhibitors, the binding site is either not defined or under 

further investigation [5]. 

Molecular modeling has been growing as an important promising tool for drug 

discovery for the past few years. The advantages include an accelerated lead identification 

process, as well as. Thus, in-silico data gives information about the ligand-protein interaction. 

Thus molecular modeling is of utmost importance along with pharmacodynamic applications 

to determine lead compounds' pharmacokinetic fate.  

Various new methods available these days differ from each other based on response 

data by the computer and application scale [6]. After the fruitful results obtained via 

computational drug designing to identify the lead compound,  we envisioned identifying new, 

architecturally differing non-nucleoside Hcv NS5B inhibitors using a model-based virtual 

screening and molecular docking approach.  
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2. Materials and Methods 

2.1. Ligand-based 3-D pharmacophore generation. 

In light of high structural variation in biological activity (0.005 to 17.0µm), a series of 

54 NS5B polymerase inhibitors were chosen from the literature. The chemical structures were 

drawn of all the compounds using Chem. Draw 8.0 and export to Discovery Studio (DS). The 

energy of all the compounds was minimized, and conformational analysis was carried out. A 

maximum of 255 conformations for each compound were generated using the CHARM Force 

field-based best conformation model generation method. All the molecules under consideration 

were divided into two groups: a training set of 35 compounds and a test set of 19 compounds. 

Utmost attention was taken to confirm ample diversity in both sets [7]. 

2.2 Pharmacophore modeling. 

Since selecting the chemical features is the most important step in pharmacophore 

generation, the common chemical feature mapping module of DS was employed to identify the 

common features among the compounds. Instead of identifying the superlative 3-dimensional 

arrangement of chemical features by using only the bottom energy conformation of each 

compound and in each training set, all conformational models were used.  

During the common features hypothesis generation process, four features appeared to 

be shared by all of the training set compounds: two hydrogen bond acceptor-lipid HBA (LI) 

features, one hydrophobic (HY) feature, and one positive ionizable (PI) feature. As a result, 

these prominent features were used to generate quantifiable pharmacophore hypotheses with 

an uncertainty value of 3 and MinPoints and MinSubset Points values of 4. The MinPoints 

parameter determines the minimum number of location constraints required for any hypothesis. 

The MinSubset Point parameter specifies the minimum requirement of chemical features a 

hypothesis must match in all the data sets of compounds [8]. 

 In hypothesis generation, the "Hypogen algorithm", is used to calculate three main cost 

parameters (fixed cost, null cost, and total cost) in the unit of bits. "Fixed cost" is the lowest 

possible value representing a model that perfectly fits all data. "Null cost" is the highest value 

that assumes no relationship exists in the data and those experimental activities are normally 

distributed around their mean. The term "total cost" refers to three cost parameters: weight, 

configuration, and error. The value of weight cost rises if the model's feature weight deviates 

from an ideal value of 2. The error cost represents the difference between the estimated 

activities of the training set and their experimentally determined values, and the configuration 

cost represents the hypothesis's complexity [9]. For a significant pharmacophore model, the 

configuration value should not exceed a maximum of 17. It is always preferable if the 

difference between the null cost and the total cost is greater than 20 bits and the total cost value 

is close to the fixed cost value. If the value of RMS is low, it shows that the correlation between 

the estimated and the actual activity data is good, which further supports the predictive ability 

of the generated pharmacophore models. Among various available pharmacophore hypotheses, 

the one with low RMS value, high correlation coefficient (r), and the high difference between 

null and total cost was considered the best hypothesis and was further subjected to rigorous 

validation using cat scramble, internal test set, external test set and clinical drug candidate 

prediction [10]. 
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2.3. Cat scramble validation. 

To assess the statistical significance of the pharmacophore hypotheses generated from 

the training set molecules, Cat Scramble validation was performed. Fischer's randomization 

test serves as the foundation for this validation technique. The reason behind the analysis was 

to validate the strong relationship between chemical structures and biological activity. In this 

test, the activity values of the training set molecules are reassigned by randomization using the 

Cat Scramble technique, and new spreadsheets are created. The number of spreadsheets 

required is determined by the level of statistical significance desired. For 98 % and 99 % 

confidence levels, 49 and 99 spreadsheets are created, and 19 spreadsheets for 95% confidence 

levels, respectively. During the course of the study, a confidence level of 99 percent was 

chosen, and 99 spreadsheets were created. These spreadsheets were used to generate 

hypotheses with the same features and parameters as the original pharmacophore hypotheses, 

and the results were analyzed [11]. 

2.4. Internal test set prediction. 

A common method of validation is the ability of the models to forecast biological 

activity for compounds outside of the model development. To assess the statistical significance 

of the developed model, an internal test set of 19 compounds was used. All the compounds in 

the internal test set were mapped onto the generated pharmacophoric model and predicted 

activities, and fit values were observed. The fit function considers not only the feature mapping 

but also the distance term, which measures the distance between the feature on the molecule 

and the centroid of the hypothesis feature [12]. 

2.5. External test set prediction. 

The created pharmacophore was also authenticated by using an external set of 

structurally diverse NS5B inhibitors. The actual activity of these compounds ranged from 

0.0008 to 0.55. The selected nine external test set compounds were mapped on the built 

pharmacophore model, and the results were analyzed [13]. 

In order to further confirm the universality and predictive ability of the developed 

model, some marketed drugs were mapped onto the chosen pharmacophore & their estimated 

and fit values were observed. 

2.6. Virtual screening of chemical compound database. 

A validated pharmacophore model with two HBA (LI), one HY, and one PI feature was 

used as a query to search the chemical compound databases viz Maybridge and NCI, which 

contained three lac thirty thousand two hundred forty compounds. Fit value, estimated value, 

and Lipinski's rule of five were employed to separate the retrieved hits [14]. 

2.7. Structure-based 3D pharmacophore generation. 

A structure-based pharmacophore is a powerful tool for rapidly identifying structural 

requirements for effective ligand-receptor binding. The structure-based pharmacophore model 

can interpret intermolecular interactions amid proteins and their ligands. As soon as the 

pharmacophore model is identified, it can be employed as a prevailing means for the innovation 

and development of novel hits. 
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The 3D structure of HCV-NS5B rd-rp complexed with PHA-00729145 (PDB entry 

1VYF) has been used for structure-based pharmacophore generation. The protein structure was 

checked for valence and missing hydrogen before being checked for any structural errors using 

the protein health check tool. Active site identification was then performed on the cleaned 

enzyme structure [15]. The active receptor site was identified using a sphere with a radius and 

location adjusted to 9.0 A° to include the active site and the key residues of the protein involved 

in ligand interaction. The interaction maps were generated with the density of lipophilic sites 

and density of polar sites parameters set to 10. In particular, functional features such as 

hydrogen bond acceptors, donors, and lipophilic groups were recognized in the dynamic 

position, and complementary features were placed within the binding position in a chemically 

rational site. Following a numeral of recapitulations, the concluding hypothesis was selected, 

which included six features: two hydrogen bond donors, two hydrogen bond acceptors, and 

two hydrophobic groups (with an additional 10 excluded volumes) describing the interactions 

amid the protein and ligand [16].  

The structure-guided pharmacophore was authenticated by plotting Ana-setrubuvir, 

PI6130, NM283, Balapiravim, and IDX184, which are acknowledged as NS5B polymerase 

inhibitors.  

2.8. Virtual screening of a chemical compound database. 

Similar to ligand-driven pharmacophore-based virtual screening, the established 

structure-based pharmacophore was employed to separate NCI and Maybridge databases. The 

organization of the retrieved hits was done based on fit values, estimated values, and Lipinski's 

rule of five [17]. 

2.9. Validation of identified hits by cross-application of ligand-based and structure-based 

pharmacophores. 

2.9.1 Pharmacophore mapping. 

The NCI and Maybridge hits obtained from a ligand-based virtual screening protocol 

were mapped onto the structure-driven pharmacophore, and NCI hits obtained from a structure-

based virtual screening protocol were mapped onto the ligand-based pharmacophore. The 

mapping patterns of all the hits, along with fit values, were analyzed [18]. 

2.9.2 Molecular docking. 

The ability of ligand-based and structure-based pharmacophore hits to interrelate with 

NS5B active site amino acids was explored. The experimental studies related to molecular 

docking were carried out with the help of the Libdocker program. This molecular dynamic 

simulated annealing-based algorithm is available as an extension of DS V.2.0 [19]. As 

described in the previous section, the complex crystal structure of NS5B RNA-dependent RNA 

polymerase was prepared. The protein was defined as the receptor molecule, and the crystal 

ligand was used to define the 9 Angstrom binding site on the receptor molecule. All of the hits 

and known NS5B inhibitors (Ana-setrobuvir, PI-6130, NM283, IDX-184, and Balapiravim) 

had their structures docked into the active position. In conclusion, all the probable interaction 

means for various configurations were scrutinized based on Libdocker interaction dynamisms 

[20]. 
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3. Results and Discussion 

3.1. Ligand built 3D pharmacophore generation. 

A pharmacophore model was created using 35 compounds in the training set 

representing a sequence of structurally distinct compounds Figure 1. 

 
Figure 1. Ligand-based pharmacophore model. 

Out of various generated models, a set of 10 hypotheses was chosen. Their cost values, 

correlation coefficients (r), RMS deviations, and pharmacophore features are listed in Table 1.  

Table 1. Performance of top ten pharmacophoric hypotheses generated. 

Hypo. no Total cost Correlation(r) RMS Configuration Features 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

154.245 

159.697 

160.56 

161.67 

161.97 

162.38 

162.54 

162.97 

163.45 

163.83 

0.89 

0.81 

0.80 

0.79 

0.79 

0.80 

0.78 

0.79 

0.77 

0.78 

0.91 

1.14 

1.16 

1.20 

1.19 

1.18 

1.22 

1.21 

1.24 

1.23 

16.79 

16.79 

16.79 

16.79 

16.79 

16.79 

16.79 

16.79 

16.79 

16.79 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

2HBALi,1HY,1PI 

 

The total cost of each hypothesis was discovered to be close to the fixed cost values, 

which is thought to be significant for a good model.  

 

 
Figure 2. A plot of actual versus estimated activities of compounds from the training set. 
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The hypotheses' configuration cost value was 16.79, which was within the acceptable 

limit. Hypothesis 1, which consisted of two HBA (LI), one HY, and one positive ionizable 

feature, had the highest cost difference (30.89 bits), the lowest error cost (132.28), the lowest 

rms difference (0.91), and the best correlation coefficient (0.89) [21]. Figure 2 depicts a plot of 

actual versus estimated activities of compounds from the training set. 

While mapping training set compounds onto chosen pharmacophore, it was observed 

that the most active compound (actual activity=0. 005, estimated value=0.013) mapped 

perfectly onto the generated model with a fit value of 10.766. HBA 1 feature mapped over 

oxygen of methyl sulphonyl methane, HBA 2 mapped over oxygen of sulphonyl group of 

pyrimidine ring, PI feature mapped onto the pyrimidine ring, and HY mapped onto 2-pentyl 

pyridazine-3(2H)–one. Mapping of least active molecule (actual activity=17, estimated 

value=5.046) exhibited a fit value of 8.167 with only three feature mapping; HBA 1 mapped 

over oxygen of sulphonyl group, HBA 2 could not map any of the functional group, PI mapped 

onto nitrogen of pyrimidine ring, HY mapped onto pentyl pyridazine-3(2H) –one. The mapping 

pattern of most and least active compounds clearly shows that the model has the ability to 

discriminate between actives and inactives, which is always desirable for a good 

pharmacophore model [22]. Figure 3 depicts the mapping of the most active (A) and least active 

(B) compound onto the developed pharmacophore. 

 

Figure 3 Mapping of (A) the most active and (B) least active compound onto ligand-based pharmacophore 

model. 

Since the chosen pharmacophore model showed all signs of statistical fitness, it was 

subjected to rigorous validation to ensure further the model's accuracy, universality, and 

predictability. 

3.2. Cat scramble validation. 

The pharmacophore's quality was evaluated using the Fischer validation method at a 

confidence level of 99 percent. The experimental activities in the training set were randomly 

scrambled using the Cat Scramble program, and the resulting training set was used for the 

HypoGen run. Out of 99 trials, all had a correlation value of less than 0.90, with very high 

RMS deviation and total cost (Figure 4). In conclusion, none of the generated hypotheses 

outperformed the original hypothesis in terms of statistics, and the results of the cat scramble 

provided high confidence in hypothesis 1 [23]. 
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Figure 4. Fisher validation cost data (99%). 

3.3. Internal test set validation. 

Using the developed model, a test set consisting of 19 compounds was subjected to 

pharmacophore mapping analysis. A correlation coefficient of 0.70 (Figure 5) indicated a good 

correlation between the actual and estimated activities. The internal test set prediction results 

revealed the model's high statistical fitness and predictability [24]. Figure 4 shows a plot 

between actual versus estimated activities of the test set compound. 

 
Figure 5. A plot of actual versus estimated activity of test set compounds 

3.4. External test set validation. 

An external test set comprising ten structurally diverse compounds was used to validate 

the pharmacophore model further. The structure of all the test set compounds was mapped onto 

the chosen pharmacophore model, and a squared Correlation coefficient value of 0.65 between 

actual and estimated values indicated the good predictive capability of the pharmacophore 

model. As expected, the most active compound (3A) exhibited good mapping with a fit value 

of 8.024. The results of the external test set prediction firmly established the predictivity of the 
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pharmacophore model. Figure 6 shows a plot of the actual versus estimated activity of the 

external test set compound. 

 
Figure 6. A plot of actual versus estimated activity of external test set compounds. 

Finally, the generated pharmacophore was validated by mapping marketed drugs, 

namely, Ana-setrubuvir, PI6130, NM283, Balapiravim, IDX184. All the drugs showed three 

features mapping with fit values 7.384, 6.420, 6.277, 6.525, and 7.243, respectively. The fit 

values and feature mapping pattern confirmed the soundness and universality of the model 

[25]. 

3.5. Ligand-driven pharmacophore-based virtual screening. 

The thoroughly validated pharmacophore model was used as a query for retrieving 

compounds from NCI and MayBridge chemical compound database. As a result, 299 and 46 

hits were retrieved from NCI and Maybridge databases, respectively. The retrieved hits were 

filtered based on fit value, estimated value, and Lipinski's rule of five [26].  

Finally, 10 compounds namely NSC14659, NSC29644, NSC4356, NSC18503, 

NSC414, GK03124, AW00783, AW00785, KM08645, CD11501 turned out to be potential 

ligands exhibiting a perfect full feature mapping with good fit values of 

9.631,9.52,9.509,9.221, 8.835,9.212,8.466,8.322,8.013 and7.931, high estimated value of 0.17 

,0.22 ,0.23 ,0.44,1.0,0.45,2.53,3.52,7.19,8.68µm respectively and zero Lipinski’s violation. 

Out of 10 hits, the two most compounds (NSC14659 and GK03124) showed the highest 

predicted activity of 0.17 µm and 0.45 µm. 

In the case of NSC14659, HBA 1 feature mapped well onto the oxygen of ethane 1, 2 -

diol, and HBA 2 was occupied by another oxygen of ethane 1, 2 -diol, while the hydrophobic 

(HY 1) feature mapped onto the 2 methoxybuta-1-3-diene presents on either side of the benzene 

ring and positive ionizable (PI 1) feature mapped onto nitrogen of 3-ethylamino –propane -1-

2-diol group.  
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Similarly, in the case of GK03124, HBA 1 was occupied by the sulfur of 4, 5-dimethyl-

2-3-dihydrothiophene group, whereas HBA 2 was mapped well onto oxygen of methyl formate. 

Hydrophobe (HY1) mapped onto hydrogen of toluene and positive ionizable (PI1) mapped 

onto nitrogen of di-isopropyl amino ethyl. The suitability of NSC14659 and GK03124 was 

further evaluated by mapping both compounds onto the structure-based pharmacophore 

generated using the structure of NS5B Rd-Rp obtained from PDB (1VYF) [27]. The mapping 

of GK03124 and NSC14659onto ligand-based pharmacophore model is depicted in Figure 7. 

 
Figure 7 Mapping of NSC14659 and GK03124 onto ligand-based pharmacophore model. 

3.6. Structure-based 3D pharmacophore generation. 

The pharmacophore derived from the 3D structure of a protein (PDB code 1VYF) with 

six features: two hydrogen bond donors, two hydrogen bond acceptors, and two hydrophobic 

groups (Figure 8) were validated by mapping of Ana-setrobuvir Balapiravim, IDX184, 

NM283, and PI6130. The identified NS5B inhibitors exhibited four feature mapping with a 

decent fit value, demonstrating the model's precision and strength [28]. 

 
Figure 8 Structure-based pharmacophore model. 

 

Comparing pharmacophoric features extracted from the structure-based and ligand-

based pharmacophore revealed that both models share three common features: two hydrogen 

bond acceptors (HBA) and one hydrophobic group (HY2). Even the inter-feature distances 

(HBA1 to HBA2, HBA1 to HY1, HBA 2 to HY1) in the ligand-based pharmacophore model 

were nearly identical to those in the structure-based pharmacophore model (Table 2). The 

pharmacophore so achieved by using a structure-based study exhibited three additional 

features, namely two hydrogen bond donors (HBD1 and 2) and one hydrophobe (HY1), 
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whereas the pharmacophore obtained from the ligand-based study exhibited one additional 

feature, namely positive ionizability (PI) [29]. 

Table 2. Interfeature distances between ligand-based and structure-based pharmacophore features. 

 Interfeature distance 

Pharmacophore features LBDD SBDD 

HBA1-HBA2 9.48 10.65 

HBA1-HY1 15.18 15.57 

HBA2-HY1 13.17 13.30 

HBA1-HY2 - 8.33 

HBA2-HY2 - 8.65 

HBA1-PI 8.113 - 

HBA2-PI 4.487 - 

HY1-PI 8.356 - 

In order to recognize new, latent lead compounds, pharmacophore-based virtual 

screening was carried out using the NCI chemical compounds database. Two hundred forty-

five hits were found and arranged based on their fit value and Lipinski's violation. Following 

categorization, five latent compounds were chosen: NSC353454, NSC250686, NSC250684, 

NSC109605, and NSC639365, with fit values ranging from 2.238 to 1.654 and no Lipinski's 

violation. NSC109605 exhibited full feature mapping and appeared to be the most active 

compound of the five (fit value 2.238).   

3.7. Validation of identified hits. 

3.7.1. Cross application of pharmacophores. 

The NCI and Maybridge hits retrieved from ligand-driven pharmacophore-based virtual 

screening were mapped over the six featured pharmacophore models, and as expected, 

NSC14659, GK03124, showed a good fit value of 2.08, 1.94, and NSC 109605 when mapped 

on four feature ligand driven pharmacophore a fit value of 5.42 was observed [30]. 

3.7.2 Molecular docking studies. 

With an aim to evaluate the precise molecular interaction of all three hits identified 

using ligand-based and structure-based pharmacophores, they were docked into the active site 

of HCV NS5B using Libdocker software implemented in DS. During the course of the study, 

it was perceived that the active site of the NS5B protein is surrounded by the ASP318, 319, 

ASN316, CYS366, GLN446, TYR 415, 448, MET414, ARG158, ASN411, SER556, ARG386, 

GLY449, ARG394SER446, 556, ASN291, amino acid residues (figure 9). NSC14659, 

GK03124, and NSC109605 showed good Libdocker interaction energy of 108.32, 118.35and 

108.06, respectively [31]. The interaction analysis of the lead compound NSC14659 showed 

hydrogen bond interaction between oxygen present on 6-chloro-2-methoxyacridine with 

TYR415 and ARG158, hydrogen bond interaction with TYR448 and SER368 by -NH group, 

and hydrogen bond interaction with SER556, ASP318, and SER407 by CH3OH group, and 

hydrogen bond interaction with ASP318, ASN291and GLN446 by –OH group. Methylamino 

propane-1, 2-diol exhibited hydrogen bond interaction with TYR195, ASN316, MET414, and 

CYS366. 6-chloro-2-methoxyacridine also showed Van der-Waals interaction with ARG158. 
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Figure 9. Molecular relationship of NSC14659 with active site amino acids. 

Whereas the GK03124 showed hydrogen bond interaction between oxygen present on 

the 1-methyl-4-(methylsulphonyl) benzene with TYR415 and ASN291 (Figure 10),  the same 

oxygen also showed Van der-Waals interaction with ASN291. Sulfur of 1 methyl-4-

(methylsulphonyl) benzene ring showed hydrogen bond interaction with CYS366. Similarly, 

the oxygen of methyl thiophene-3-carboxylate exhibited hydrogen bond interaction with 

GLN446, ASN316, and SER556. Sulpher of 2-(methylamino) thiophene-3-carbaldehyde 

showed Van der-Waals interaction with GLY449, and its nitrogen showed Van der-Waals 

interaction with SER556. The hydrogen of decamethyl piperazine showed Van der-Waals 

interaction with TYR448 [32].  

 

 
Figure 10. Molecular relationship of GK03124 with active site amino acids. 

The NSC109605 hydroxyl group showed hydrogen bond interaction with MET414, 

CYS366, and ASP319 (Figure 11). On another side of the ring, the oxygen of ethanol exhibited 

hydrogen bond interaction with TYR448. The oxygen of benzaldehyde displayed hydrogen 
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bond interaction with TYR448, TYR415, and ASN316. The oxygen of anisole presented Van 

der-Waals interaction with ASN316 [33]. 

 
Figure 11. Molecular interaction of NSC109605 with active site amino acids. 

As a reference known compound, NS5B inhibitor IDX-184 was also docked. Hydrogen 

bond interaction was observed between the nitrogen of 1-methyl-4, 5-dihydro-1H-imidazole, 

and TYR415. The nitrogen of 2 amino-5, 6-dihydropyrimidine 4(3-H)-one showed hydrogen 

bond interaction with the oxygen of SER556. Tetrahydrofuran-3,4diol showed hydrogen bond 

interaction with CYS366, ARG386, and ASN411 (Figure 12). The oxygen of dimethyl methyl 

phosphoramidite showed hydrogen bond interaction with CYS366 and GLY449, and its 

oxygen showed interaction with ASN316. N-methyl (phenyl) methanamine group exhibited 

hydrogen bond interaction with ASP318. The oxygen of the methanol group exhibited 

hydrogen bond interaction with GLN446 and also showed Van der-Waals interaction with 

GLN446 [34]. 

 
Figure 12. Molecular interaction of IDX184 with active site amino acids. 
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Reviews of previous literature have also revealed the importance of ASP318, 319, TYR 

415,448, CYS366, GLN446, ARG158, and MET 414; in our study also, ASP318, 319, TYR 

448, CYS366, MET 414, GLN446, and ARG158 has appeared as important amino acids. Since 

all three hits showed good interaction with important amino acid residues of the active site of 

NS5B polymerase, they hold good prospects for their future development into novel anti-HCV 

agents [35-36]. 

4. Conclusions 

With the help of recent advances and the development of in-silico protocols, we have 

developed universal pharmacophores through structure and ligand-based molecular modeling. 

The thoroughly validated pharmacophore models have been used for database mining, leading 

to the retrieval of the three most potent and druggable NS5B inhibitors. The ability of all three 

hits (NSC14659, NSC109605, GK03124) to interact with NS5Bactive site amino acids has 

been evaluated using molecular docking studies, and the results revealed the importance of 

ASP318, 319, TYR 415,448, CYS366, GLN446, ARG158and MET 414 amino acids which 

are in agreement to previous studies. Current research has recognized three potent, structurally 

diverse, druggable, and novel NS5B inhibitors, which could be hoisted into anti-HCV drugs. 

In the future, NS5B inhibitors will likely form an integral part of more effective anti-HCV 

therapies. 
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