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Abstract: D-glucofuranose has potent bioactivity against numerous diseases and pathogens, such as 

bacteria, fungi, viruses, and cancer. Normally, the ketal form of D-glucofuranose is converted into the 

non-ketal form by drug metabolism in the human body; as a result, both the ketal and non-ketal forms 

of D-glucofuranose are considered. To make a comparative biological activity study of ketal and non-

ketal species of nine derivatives of D-glucofuranose, two bacteria, black fungus, white fungus, and 

triple-negative breast cancer, were selected. Firstly, the PASS prediction data from the online PASS 

tool indicated the probability of pathogenic efficacy through the Pa and Pi parameters. Secondly, the 

computational studies, such as molecular docking, molecular dynamic, ADMET, drug-likeness, 

pharmacokinetic, aquatic, and non-aquatic features, were calculated with three FDA-approved drugs, 

including azithromycin, nystatin, and cyclophosphamide. A comparative study of computational data 

has been performed where the ketal forms of D-glucofuranose derivatives were found highly 

biologically active with the satisfaction of the pharmacokinetic parameters, ADMET parameters, and 

Lipinski rule. 

Keywords: antimicrobials; docking; molecular dynamics; pharmacokinetic properties; triple-negative 

breast cancer. 
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1. Introduction 

In the age of modern medical science, chemists, biologists, pharmacologists, and 

scientists are focused on carbohydrate-containing molecules and their analogs to develop and 

discover potential medications [1]. Carbohydrates are the largely unexplored reservoir of 

potential therapeutic development; consequently, they hold promise for the future of medicine 
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[2,3]. These sugar compounds have employed and recognized potential medications against 

various pathogens, such as antibacterial [4], antifungal [5], anticancer [6], antiviral [7], anti-

diabetic [8], and anti-inflammatory [9]. Thus, many acylated monosaccharides and their 

derivatives have been studied as a wide spectrum of biological efficacy from 2004 through 

2022 by Matin et al. [10-12], whereas Kabir et al. introduced the same concept in an earlier 

period in this field [13]. 

Computational research has addressed acylated monosaccharides' structure-activity 

relationship (SAR), which has wide applications in biomedical and pharmaceutical research. 

Computer-aided design of molecules or computational chemistry, reaction processes, reaction 

kinetics, and drug design has become the most sought-after research tool in the modern period 

due to their immense advantages [14]. First and foremost, it has been shown that Walton Kohn's 

1990 development of density functional theory (DFT) [15] is among the most effective methods 

for accurately determining the electronic and nuclear structural magnitudes [16]. Furthermore, 

DFT has been used to forecast the structural relationship of HOMO and LUMO, which are 

indicators of chemical compounds' chemical stability and sensitivity, respectively [17]. 

Molecular modeling has become the most trusted reference for chemists, biologists, 

pharmacologists, and scientists designing new drug molecules. It adds to the fulfillment of 

biochemical properties by interacting and building numerous interactions between proteins and 

organic compounds [18]. The complementary field of molecular modeling methodologies 

means that the reactivity environment for organic, metallic, and bio-molecules via biochemical 

systems is characterized by reactive oxygen species (ROS) [19]. 

In recent years, researchers worldwide have focused a great deal of emphasis on this 

field for various investigations, including medication development and the conceptual 

exploration of bioactive compounds using DFT and other functional approaches  [20]. Since 

its most significant benefits pertain to different activities, the first and most crucial utilization 

of computational models is to shorten the time required in the laboratories undertaking 

numerous experimental processes to create medications in the clinical [21]. For example, for 

developing a new drug molecule, there have conducted various tests in the laboratory, ensuring 

that a drug candidate is potentially and therapeutically safe. After that, they have been selected 

for further analysis, which requires at least three to five years to preselect a candidate for the 

drug. If any operation or characteristics of the therapeutic candidate is rejected in the laboratory 

throughout this evaluation, the whole time allotted for this research would be wasted. 

Furthermore, when conducting all these tests, researchers and discoverers utilize a large 

number of chemicals and materials which are expensive and harmful to the environment if 

disposed to aquatic and non-aquatic environments [22].  

Consequently, the field of computational methods is fast expanding, providing more 

detailed findings of the system's behavior under different conditions, often for cases in which 

intuitive analytical solutions are unavailable. Besides, in silico studies are now more common 

in predicting the chemical descriptors, molecular docking, ADMET characteristics, drug-

likeness, etc., to demonstrate the pharmacological background of pathogens. These tools are 

helpful in the gene expression analysis and elucidate biological mechanisms, including the drug 

development process. All these encouraging and significant results led us to apply molecular 

modeling or computational methods in the present investigation/study. 
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2. Computational Details 

2.1. Optimization and ligand preparation.  

Firstly, all the chemical structures were drawn with the help of Chemdraw Professional. 

The optimization of these compounds has been completed by utilizing vibrational frequencies 

from the B3LYP functional and DND basis (diffused basis set) semi-core pseudo-potentials 

[23], and the series of 18 derivative molecules of ketal and non-ketal have been saved to the 

pdb file for further computational studies such as molecular docking, molecular dynamics, and 

ADMET properties, etc. 

2.2. PASS prediction.  

PASS is a toolset that forecasts 565 potential bioactivities of a molecule based on its 

structure and chemical composition [24]. It has been performed and collected data with the 

help of the Pass online website http://way2drug.com/PassOnline/predict.php. This web server 

can predict antibiotics, antidepressants, antiviral (AIDS), contraceptives, tumor necrosis 

factors, antifungal, antibacterial, and many more are among these properties. All these 

characteristics are the fundamental requirement for new drug development [25]. 

2.3. In silico pharmacokinetics ADMET and drug-like parameters prediction.  

The ADMET characteristics were designed to identify promising drug contenders by 

predicting pharmacokinetics, biophysical, and drug-like characteristics in the early clinical 

drug development and discovery stages [26]. This method allows researchers to determine 

pharmacokinetic parameters (ADMET), such as the amount of drug absorbed by the human 

intestine, the amount of drug that crosses the blood-brain barrier, and the amount of drug that 

enters and exits the central nervous system [27]. In addition, the metabolism of a medication 

reflects the biochemical bioconversion of medicine by the bloodstream, the total clearance of 

medications, and the toxic effects limits of the substances [28,29]. 

2.4. Protein preparation.  

The 3D structure of two pathogenic bacteria (PDB IDs 5YHG and 1DIH), two fungi 

(PDB IDs 6DEQ and 5B8I), and two triple-negative breast cancer protein fungi  (PDB IDs 

5ha9 and 4pv5) were acquired from the protein data bank "https://www.rcsb.org/" in the pdb 

file format [30]. The PyMol (version 1.3) program removes all heteroatoms and water 

molecules [31]. Protein-energy minimization was achieved using the Swiss-Pdb viewer 

program version 4.1.0 [32]. Next, molecular docking studies were performed on the optimized 

compounds against these different protein targets. 

2.5. Molecular docking study and visualization.  

The PyRx program (version 0.8) was used to create the protein and the ligand's 

molecular docking interaction [33]. We utilized AutodockVina Tools (ADT) from the PyRx 

software suite to import proteins and associated ligands for docking investigation. The grid box 

size in AutoDockVina was set based on protein, and it has been listed below in Table 1 for a 

different protein. After docking was concluded, both the macromolecule and ligand 

frameworks were stored in the pdbqt format specified by Biovia Discovery Studio 2020 to 
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investigate and illustrate the docking outcome and lookup for the non-bonding interactions 

between ligands and amino acid residues of the receptor protein [34]. 

Table 1. Grid box parameters used for docking analysis in this study for bacteria. 

Protein Name with the PDB ID 
Grid box size 

Dimension (Å) Center 

1DIH 

X: 50.213 X: 21.84 

Y: 44.143 Y: 7.1839 

Z: 66.903 Z: 29.7499 

5YHG 

X: 63.912 X: 109.093 

Y: 87.855 Y: 17.117 

Z: 52.949 Z: 51.427 

6DEQ 

X: 82.573 X: 29.154 

Y: 54.122 Y: 95.319 

Z: 780909 Z: 131.42 

5B8I 

X: 68.409 X:31.994 

Y:91.868 Y:44.689 

Z: 77.064 Z:10.346 

5HA9 

X: 83.052 X: -4.0485 

Y: 72.240 Y: 11.0079 

Z: 89.276 Z: -21.4322 

4PV5 

X: 46.011 X = -3.4569 

Y:55.660 Y: 5.9539 

Z:62.007 Z: 13.9701 

2.6. Molecular dynamics.  

Nanoscale Molecular Dynamics (NAMD) application has been used to execute 

molecular dynamics on a desktop or laptop computer, either dynamically with the live stream 

or in batch mode [35]. The molecular dynamics (MD) simulation has been used to support the 

docking data achieved for the optimum and Potential medications and the targeted protein up 

to 100 ns for holo-form (drug-protein) using the AMBER14 force field, which was applied to 

the docking findings [36]. During the simulation, a cubic cell was replicated within 20 Å on 

each side of the corresponding boundary circumstance. Finally, root-mean-square deviation 

(RMSD) and root-mean-square fluctuation (RMSF) were determined with the aid of Visual 

Molecular Dynamics (VMD). After equilibration with 0.9 percent NaCl at 298 K temperature 

and concentration of a solvent, the scheme was re-equilibrated with liquid. 

2.7. Calculation of QSAR and pIC50.  

A number of distinct electronic descriptors are generated when utilizing the electronic 

density approach to describe the studied substances' structure-activity correlation and chemical 

reactivity. Among them, the quantitative structure-activity relationship (QSAR) is a statistical 

simulation tool for identifying correlations between structural features of bioactive molecules 

and bioactivity features [37]. The QSAR and pIC50 data have been assessed with the aid of 

Chemdesk and a trusted algorithm called multiple linear regression (MLR). This free database 

provides us with the required data (including Chiv5, MRVSA9, and PEOEVSA5) for 

calculating QSAR and pIC50 [38]. 
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3. Results and Discussion 

3.1. Optimized structures of the tested ligands.  

Molecular atoms are always moved to achieve the most stable configuration with the 

lowest feasible ground energy state. So, geometry optimization has been achieved using density 

functional theory (DFT). DFT is mainly a computational quantum mechanical modeling tool 

that may be used in physics, chemistry, and materials science to evaluate the stability of a 

molecular structure [39]. The optimized chemical structures of these derivatives are 

represented in Figure 1. 

 

 
Figure 1. DFT optimized structures of ketal and non-ketal glucofuranoses. 
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3.2. Lipinski rule, pharmacokinetics, and drug-likeness.  

Drug-likeness is determined by Lipinski's rule of five, which states that any chemical 

molecule having a wide range of pharmacological functions must have chemical and physical 

characteristics that make it probable to be biologically effective or orally active in humans. In 

1997, Christopher A. Lipinski came up with the rule reflected in the fact that almost all orally 

delivered medications are smaller and slightly lipophilic [30,41]. So,  it is vital to consider 

during drug development when a potent bioactive lead molecule is modified step-by-step to 

enhance the affinity and specificity of the molecule and to ensure drug-like biophysical 

characteristics are retained, as represented by Lipinski's rule [42]. An orally administered 

medicine must meet the following features for Lipinski's rule to implement: the hydrogen bond 

donor should be less than five, and the hydrogen bond acceptor should be less than ten with a 

molecular mass of less than 500 Dalton [40]. 

In the above criteria, almost all the newly developed ketal and non-ketal compounds 

have fulfilled the Lipinski rule, excluding ligands, K06 and NK06 didn't follow the Lipinski 

rule due to higher molecular weight (MW>500) (Table 2). The range of MW reported has been 

found to be 256.25-625.71, where the largest MW is 625.71 & 585.65, and these two do not 

follow the rule of five of Lipinski. Secondly, K06 and NK04, NK05, and NK06 are the only 

chemicals poorly absorbed in the gastrointestinal system with lower oral bioavailability. In 

most cases, the bioavailability range has been seen as 0.55. So, these drugs should be 

recommended for further use. 

Table 2. Data of Lipinski rule, pharmacokinetics, and drug-likeness. 

Ligand 

No. 
NBR HBA HBD 

TPSA1, 

Å² 

Consensus 

Log Po/w 

Log Kp (skin 

permeation), 

cm/s 

Lipinski rule 

MW 

Bioava

ilabilit

y Score 

G.I. 

absorption Resul

t 

Viol

ation 

Ketal form 

K01 04 06 02 77.38 0.95 -7.56 Yes 00 296.32 0.55 High 

K02 06 06 01 66.38 2.59 -6.36 Yes 00 372.41 0.55 High 

K03 06 08 00 55.38 4.25 -5.15 Yes 00 448.51 0.55 High 

K04 07 07 04 109.44 0.42 -8.42 Yes 00 355.38 0.55 High 

K05 12 08 05 130.90 1.46 -8.07 Yes 00 490.55 0.55 High 

K06 17 09 06 152.16 2.55 -7.72 No 03 625.71 0.17 Low 

K07 05 07 02 86.61 1.05 -7.77 Yes 00 326.24 0.55 High 

K08 08 08 01 84.84 2.72 -8.76 Yes 00 432.46 0.55 High 

K09 11 09 00 83.07 4.38 -5.76 Yes 01 538.59 0.55 High 

Non-Ketal form 

NK01 04 06 04 99.38 -0.40 -8.42 Yes 00 256.25 0.55 High 

NK02 06 06 03 88.38 1.20 -7.22 Yes 00 332.25 0.55 High 

NK03 08 06 0 77.38 3.00 -6.02 Yes 00 408.44 0.55 High 

NK04 07 07 06 131.64 0.98 -9.28 Yes 01 315.32 0.55 Low 

NK05 12 08 07 152.90 0.20 -8.93 Yes 01 450.48 0.55 Low 

NK06 17 09 08 174.16 1.19 -8.59 No 03 585.65 0.17 Low 

NK07 05 07 04 108.61 -0.51 -8.63 Yes 00 286.28 0.55 High 

NK08 08 08 03 106.84 1.33 -7.63 Yes 00 392.40 0.55 High 

NK09 11 09 02 105.2 03 -6.62 Yes 00 498.52 0.55 High 

Azithro-

mycin  

07 14 05 180.08 2.02 -8.01 No 02 748.98 0.17 Low 

Nystatin  03 18 12 319.61 -0.18 -12.09 No 03 926.1 0.17 Low 

Cyclopho-

sphamide 

05 04 01 51.380 1.23 -7.45 Yes 00 261.09 0.55 High 

1 TPSA: Topological polar surface area; Consensus Log: Logarithm of partition coefficient between n-octanol 

and water; NBR: Number of rotatable bonds; HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; 

MW: Molecular weight; G.I. Absorption: Gastrointestinal absorption. 
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3.3. PASS prediction.  

Using the web, we have estimated the antiviral, antibacterial, antifungal, antibiotic, and 

antineoplastic characteristics of all synthesized ketal and non-ketal derivatives K01–K09 & 

NK01-NK09 application PASS (http://www.pharmaexpert.ru/passonline/) [43,44]. The 

following Table 3 shows the PASS outcomes for Pa and Pi, which have been seen from data 

for synthetic derivatives of ketal and non-ketal. The largest Pa value has been found to be 0.405 

for antiviral in ligand NK01, the antibacterial largest Pa is 0.435 in ligand in NK01 and NK07, 

and in antifungal, the largest Pa is 0.568 in K01 (Table 3). 

The last two are antibiotic and antineoplastic; in this case, the largest Pa score is 0.263 

in K01, and the largest Pa score is 0.704 in ligand K07 for antineoplastic. Our findings showed 

that these compounds were more effective towards antineoplastic, antibacterial, and fungi 

pathogens than viral pathogens and antibiotics. So, in this research, two pathogenic bacteria, 

fungi, and two triple-negative breast cancer proteins have been taken for further computational 

studies, such as molecular docking, MD, etc. 

Table 3. Data of PASS prediction of ketal and non-ketal compounds. 

Ligand No. 
Antiviral Antibacterial Antifungal antibiotic Antineoplastic 

Pa Pi Pa Pi Pa Pi Pa Pi Pa Pi 

Ketal (K01) 0.225 0.076 0.431 0.024 0.568 0.022 0.263 0.018 0.684 0.029 

K02 0.202 0.093 0.425 0.025 0.550 0.024 0.219 0.024 0.605 0.044 

K03 0.316 0.220 0.337 0.047 0.382 0.054 0.153 0.047 0.278 0.166 

K04 0.176 0.126 0.372 0.036 0.399 0.050 0.194 0.030 0.677 0.030 

K05 0.169 0.136 0.373 0.037 0.390 0.052 0.160 0.043 0.607 0.044 

K06 0.275 0.110 0.283 0.067 0.237 0.114 0.098 0.084 0.355 0.123 

K07 0.194 0.101 0.431 0.024 0.561 0.022 0.266 0.018 0.704 0.025 

K08 0.177 0.024 0.425 0.025 0.543 0.024 0.223 0.024 0.638 0.037 

K09 0.318 0.079 0.337 0.047 0.373 0.056 0.156 0.045 0.340 0.130 

Non-Ketal (NK01) 0.405 0.033 0.435 0.024 0.423 0.045 0.269 0.017 0.381 0.112 

NK02 0.387 0.041 0.429 0.024 0.396 0.050 0.227 0.023 0.252 0.184 

NK03 0.299 0.092 0.399 0.030 0.367 0.058 0.195 0.030 0.240 0.190 

NK04 0.331 0.071 0.376 0.036 0.238 0.113 0.200 0.028 0.454 0.086 

NK05 0.322 0.077 0.378 0.036 0.231 0.117 0.165 0.040 0.350 0.125 

NK06 0.211 0.165 0.338 0.046 0.205 0.131 0.132 0.058 0.335 0.133 

NK07 0.394 0.038 0.435 0.024 0.414 0.047 0.272 0.017 0.450 0.087 

NK08 0.373 0.048 0.429 0.024 0.387 0.053 0.230 0.023 0.325 0.138 

NK09 0.279 0.106 0.400 0.030 0.358 0.060 0.198 0.029 0.308 0.148 

Azithromycin  0.723 0.001 0.964 0.000 0.723 0.009 0.941 0.000 0.416 0.098 

Nystatin 0.210 0.087 0.967 0.000 0.986 0.000 0.946 0.000 0.762 0.17 

Cyclophosphamide 0.200 0.177 N/A N/A N/A N/A N/A N/A 0.996 0.003 

3.4. Molecular orbitals and chemical reactivity descriptors.  

Molecular orbitals and chemical reactivity descriptors are mathematical 

approximations of the characteristics of chemical structures developed by the computational 

system. Table 4 shows the listed compounds' calculated LUMO, HOMO, and E gap, chemical 

potential, electronegativity, hardness, softness, and electrophilicity. These estimates data have 

been computed using the B3LYP functional. In displayed Table 4 reveals that the HOMO–

LUMO gap ranges from 6.516 to 8.352 eV for all investigated derivatives, with NK03 having 
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a lower energy deficit and the maximum softness level & minimum hardness level. The 

HOMO-LUMO energy difference determines the molecule's chemical reactivity, and the 

significant HOMO-LUMO gap indicates greater kinetic with poor chemical durability [45-48]. 

Table 4. Data of chemical descriptors. 
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K01 -1.242 -9.437 8.095   -5.2895 5.2895  -4.0475  -0.2471  -3.4563  

K02 -1.107 -9.127  8.020 -5.117  5.117   -4.01 -0.2494  -3.2648  

K03 -1.267 -9.071 7.804   -5.169 5.169  -3.902   -0.2563 -3.4237  

K04 -1.031 -8.831 7.80  -4.931    4.931 -3.90  -0.2564  -3.1173   

K05 -1.307 -8.767  7.460 -5.037 5.037  -3.73  -0.2681  -3.4010 

K06 -1.316 -8.682 7.366   -4.999 4.999  -3.683 -0.2715  -3.3926  

K07 -1.159 -9.237 8.078  -5.198  5.198   -4.039 -0.2476  -3.4048  

K08 -1.171 -9.102  7.931 -5.1365  5.1365  -3.9655 - 0.2522 -3.3266  

K09 -1.49 -9.089  7.599  -5.2895 5.2895   -3.7995 -0.2632  -3.6819  

NK01 -0.985 -9.337  8.352 -5.161  5.161  -4.176  -0,2375   -3.1892 

NK02 -1.144 -9.149  8.193 -5.2405  5.2405  -4.0965  -0.2441   -3.3520 

NK03 -1.71 -8.226  6.516 -4.968  4.968  -3.258  -0.3069   -3.7878 

NK04 -1.019 -8.815 7.796  -4.917  4.917   -3.898 -0.2565  -3.1012  

NK05 -1.586 -8.688  7.102 -5.137  5.137   -3.551 -0.2816   -3.7157 

NK06 -1.588 -8.561  6.971 -5.0745  5.0745  -3.4865  -0.2868  -3.6929  

NK07 -1.144 -9.217  8.073 -5.1805  5.1805  -4.0365   -0.2477 -3.3242  

NK08 -1.209 -9.094 7.885  -5.1515  5.1515  -3.9425   -0.2536  -3.2556 

NK09 -1.787 -8.975  7.188 -5.381  5.381  -3.594  -0.2782  -4.0283  

Azithromycin -0.40 -9.14 8.740  -4.77  4.77  -4.37  -0.2288   -2.6033 

Nystatin -0.822 -7.16  6.294 -3.969  3.969  -3.147  -0.3178  -2.5029  

Cyclophosph-

amide 
-1.351 -9.945  8.594 -5.648   5.648 -4.297  -0.2327  -3.7119  

3.5. Frontier molecular orbitals (HOMO and LUMO). 

The frontier molecular orbital (FMO) has been used to assess the chemical reactivity of 

compounds and the engaged regions of drug peptides where they have been bounded with each 

other. The FMO has arranged the diagram in Figure 2. The negative terminal of orbitals is 

yellow in LUMO, whereas the positive terminal is green in HOMO. On the other hand, the 

deep maroon hue for HOMO denotes a positive orbital terminal, whereas the bright greenish 

shade represents a negative orbital terminal in LUMO. The smaller energy gap assists in 

forming an engagement between medicines and the targeted protein. 

There are no special frontier molecular orbital (FMO) trends in D-glucofuranose 

derivatives' ketal and non-ketal forms. In the case of the ketal form, none of HOMO and LUMO 

were found in the functional group, and these were found in the side chains, which is similar 

to the non-ketal form of D-glucofuranose derivatives. 
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Figure 2. HOMO and LUMO diagram of the compounds. 
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partial charges. It creates the comparative polarization of chemical structure. It is an important 

and valuable method of accessing chemical structure's totally positive and negative charges 

and how they are organized across the molecules. The positive portion has designed the blue 

color, and the red portion has been designed by the negative portion. The positive portion is 
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more significant than the negative charge since the blue color is higher in displaying all the 

chemical structures (Figure 3). It is understood that they have the strongest affinity to the 

nucleophilic groups in these compounds [49,50]. 

 
Figure 3. Molecular electrostatic potential (MEP) mappings. 

3.7. Molecular docking against pathogenic bacteria 

The computational concept of docking studies is widely used in structural biology and 

computer-aided drug development. The ultimate focus of molecular docking is to identify the 

probable binding orientations of a possible agonist or new drug molecule that has a recognized 

three-dimensional structure with a biological target employing computer simulations. 
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Specifically, in this study, a total of eighteen bioactive molecules were picked and separated 

into two categories (ketal and non-ketal), after which they were docked with six proteins 

(bacteria, fungi, and triple-negative breast cancer) to determine the most effective antagonist. 

As shown in Table 5, their binding energy experiment findings were favorable. In this work, 

three FDA-approved molecules were considered a starting point to compare with newly 

synthesized compounds (Azithromycin, PubChem CID 447043; Nystatin, PubChem CID 

14960; Capecitabine, PubChem CID 60953). The study's main goal was to find the most 

effective synthetic molecule interacting stronger than standard FDA-approved agonists [51]. 

Table 5. Docking score against ketal and non-ketal groups with bacteria. 

E. coli (1DIH) Staphylococcus aureus (5YHG) 

Ligands 

 

Binding 

Affinity 

(kcal/mol) 

No of H 

bond 

No of 

Hydrophobic 

bond 

Binding 

Affinity 

(kcal/mol) 

No of H 

bond 

No of 

Hydropho

bic bond 

Ketal (K01) -7.0 03 03 -8.3 05 06 

K02 -7.6 04 07 -9.1 05 05 

K03 -8.4 02 05 -7.7 03 08 

K04 -7.0 04 04 -7.3 04 06 

K05 -7.6 08 07 -7.6 03 09 

K06 -7.2 06 09 -8.5 06 12 

K07 -7.1 02 05 -7.5 02 07 

K08 -8.0 07 08 -8.2 03 09 

K09 -8.3 04 12 -8.6 04 14 

Non-Ketal (NK01) -6.5 03 03 -8.3 02 01 

NK02 -6.3 04 03 -8.3 06 05 

NK03 -8.0 04 03 -8.0 01 03 

NK04 -6.6 04 00 -7.4 03 03 

NK05 -7.3 11 04 -7.5 01 05 

NK06 -6.9 09 01 -7.6 06 06 

NK07 -6.4 07 02 -8.1 04 06 

NK08 -7.4 05 05 -7.1 04 01 

NK09 -7.3 03 06 -7.8 03 14 

Azithromycin  -8.2 02 03 -8.0 05 04 

Here, the docking index of K03 against E. coli is -8.4 kcal/mol and -9.1 kcal/mol in 

K02 against Staphylococcus aureus. At the same time, FDA approved azithromycin showed -

8.2 kcal/mol and -8.0 kcal/mol, correspondingly. The newly synthesized compounds had a 

larger affinity for the target bacterial pathogen than azithromycin. 

3.8. Molecular docking against pathogenic fungi 

The molecular docking score against pathogenic fungi also demonstrates better binding 

affinities than the standard drugs (Table 6). In this case, the range of binding affinities was -

7.3 to -11.0 kcal/mol in the ketal group, and the highest binding energy was 11.00 kcal/mol 

against Coccidioides immitis in ligand K03, while the range in the non-ketal group showed -

6.7 to -9.3 kcal/mol and the enormous affinity has been obtained -9.3 kcal/mol in ligand NK03 

against Coccidioides immitis. At the same time, the standard nystatin represented -9.3 kcal/mol. 

So, there is no doubt the newly synthesized molecules are much better than the standard drugs 

[49]. 

Table 6. Docking score against ketal and non-ketal groups with fungi. 

Ligands 

 

Coccidioides immitis (5B8I) Candida albicans (6DEQ) 
Binding 

Affinity 

(kcal/mol) 

No of H 

bond 

No of 

Hydrophobic 

bond 

Binding 

Affinity 

(kcal/mol) 

No of H 

bond 

No of 

Hydrophobic 

bond 
Ketal (K01) -8.0 02 09 -8.4 05 01 

K02 -9.6 00 11 -7.3 01 01 
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Ligands 

 

Coccidioides immitis (5B8I) Candida albicans (6DEQ) 
Binding 

Affinity 

(kcal/mol) 

No of H 

bond 

No of 

Hydrophobic 

bond 

Binding 

Affinity 

(kcal/mol) 

No of H 

bond 

No of 

Hydrophobic 

bond 
K03 -11.0 02 10 -7.2 02 03 
K04 -7.8 05 05 -6.5 06 06 
K05 -9.1 05 11 -6.4 09 00 
K06 -9.5 01 09 -7.3 06 06 
K07 -7.3 00 07 -6.5 05 07 
K08 -8.5 07 09 -7.1 03 07 
K09 -10.3 02 21 -7.3 05 05 

Non-ketal (NK01) -7.1 05 02 -6.7 01 03 
NK02 -8.7 03 08 -7.4 07 03 
NK03 -9.3 01 06 -7.4 02 05 
NK04 -6.8 07 02 -6.8 05 01 
NK05 -8.0 05 04 -8.0 05 01 
NK06 -8.5 05 04 -7.9 08 05 
NK07 -6.7 07 02 -6.7 09 02 
NK08 -8.2 08 06 -6.8 04 02 
NK09 -8.3 05 11 -7.4 05 02 

Nystatin -9.3 11 00 -8.8 09 00 

3.9. Molecular docking against triple-negative breast cancer proteins 

The antineoplastic range has been found to bring better results in PASS prediction 

value. So, two triple-negative breast cancer proteins have been taken and completed molecular 

docking. After that, it has been seen that the newly synthesized compounds have the strongest 

affinities in contrast with triple-negative breast cancer. In this case, we have taken 

Capecitabine, which is the first oral chemotherapeutic for anticancer drugs and has been 

approved by the Food and Drug Administration (FDA) [52,53] as a standard to compare with 

newly developed ligands and the ligand which we have designed are opposed to the 

Capecitabine. The binding energy of standard Capecitabine has been found at -7.9 kcal/mol 

against 5ha9, and -6.6 kcal/mol against 4pv5. But, the newly synthesized molecules K03 have 

shown -10.8 kcal/mol and NK09 -10.6 kcal/mol, which are much larger than the standard 

antagonist Capecitabine (Table 7). 

Table 7. Docking score against ketal and non-ketal groups with triple-negative breast cancer. 

Ligands 

PDB ID: 5HA9 PDB ID: 4PV5 
Binding 

Affinity 

(kcal/mol) 

No of H 

bond 

No of 

Hydrophobic 

bond 

Binding 

Affinity 

(kcal/mol) 

No of H 

bond 

No of 

Hydrophobic 

bond 
Ketal (K01) -8.8 05 04 -7.2 01 09 

K02 -10.2 00 04 -8.4 00 12 
K03 -10.8 00 09 -8.2 00 05 
K04 -8.8 09 03 -7.1 05 11 
K05 -7.8 03 05 -7.4 01 14 
K06 -7.3 03 03 -7.3 06 08 
K07 -7.9 04 07 -7.2 02 11 
K08 -9.9 01 09 -8.0 04 11 
K09 -10.4 09 09 -8.3 01 08 

Non-Ketal (NK01) -7.5 06 02 -6.3 01 01 
NK02 -9.1 03 04 -7.8 04 06 
NK03 -9.7 04 03 -7.9 00 06 
NK04 -7.9 04 02 -7.2 05 11 
NK05 -9.1 06 02 -7.1 08 04 
NK06 -9.4 10 03 -6.4 04 05 
NK07 -7.5 07 02 -6.4 04 03 
NK08 -9.6 05 07 -6.9 07 7 
NK09 -10.6 11 03 -7.0 03 06 

Capecitabine -7.9 05 03 -6.6 03 03 
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3.10. Protein-ligand interactions 

The purpose is to create and perfect non-covalent connections between ligands and 

peptides essential for new therapeutic drug discovery. Figure 4 shows how the ligands have 

connected with peptides and where an attachment has been created between medicines with 

protein of bacteria, fungus, and triple-negative breast with their pocket region. The Biovia 

discovery studio and Pymol version 2020 have been utilized to design and graphically represent 

the ligand peptide pocket. 

 
Figure 4. Protein-ligand interaction pocket: (a,b,c) Staphylococcus aureus (IDIH) with K09; (d,e,f) 

Coccidioides immitis (5B8I) with K03; (g,h,i) triple-negative breast cancer (5HA9) with NK03. 

3.11. Molecular dynamics.  

The molecular dynamics simulations include a platform for evaluation of the validity 

of the AutoDock protocol in terms of the average root-mean-square deviation (RMSD) and 

root-mean-square fluctuation (RMSF). Both RMSD and RMSF connect the protein's binding 

posture to the ligand. These are also employed to determine the mobility and stability of the 

ligand-protein complex [54,55]. RMSD of docked complexes should be smaller than 2 Å, 

indicating that the system is capable of effectively docking the compounds (excellent matching 

posture of ligand in drug site) [56]. Eventually, the RMSD established both the docked pose 

and that of docked complex straight to each other. A lesser RMSD value implies more precision 

and longevity of the docked mechanism [46]. These eighteen ketals and non-ketals docked 

compounds' longevity was characterized by ligand–protein RMSD, ligand-protein coupling, 

hydrogen bonding, and ligand-RMSF. In this work, the RMSD was estimated using the time 

(0-100 ns) and the interactions between amino acid residues of the protein. 

(a) (b) (c) 

(f) 
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In the protein of bacteria (pdb id 5YHG), the RMSD value is 0.7 Å in time 20 ns for all 

ligands, including standard azithromycin. But, while the time is increased up to 100 ns, the 

RMSD remains constant for NK02 (Figure 5). But, the other compounds have reached 0.9 Å. 

Similarly, the RMSD & RMSF has found 0.8 Å amino acid vs. residues. 

The second one is a fungal protein (pdb id 5b8i); the RMSD has been found to be 0.8 

Å at the early stages of time 20 ns. But, the RMSD has been seen to be different for each 

compound when the time is increased up to 100 ns, such as K03, NK02 & K09 show 0.8 Å 

while the ligands NK09 & Azithromycin have reported 0.9 Å. At the same time, the RMSD vs. 

amino acid residue has been seen at 0.8 Å in NK02, and the other compounds show 0.9 Å. But, 

the RMSF value has been seen as 0.7 Å for all complexes. 

The last one is MD simulation for triple-negative breast cancer. In this simulation, it 

has been seen the RMSD has reached the maximum, which is 1.0 Å, both RMSD vs. Time and 

RMSD vs. amino acid residue (Figure 5). But, the RMSF is lower compared to RMSD, which 

is 0.6 Å for NK02 and 0.7 Å for other ligands. 

It concluded that all the ligands' RMSD and RMSF value ranges had been found to be 

0.6 Å -1.0 Å, much lower than the standard fitting pose. So, it can be said that all the ligand 

binds with peptides or pockets of protein accurately, and their stability is also excellent, which 

signifies the standard drug. 

Figure 5. Molecular dynamics (MD) simulation. 

MD simulation of bacteria (5yhg) with ketal and non-ketal compounds 

MD simulation of fungus (PDB id: 5b8i) with ketal and non-ketal compounds 

MD simulation of triple-negative breast cancer (5ha9) with ketal and non-ketals 
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3.12. Comparative study of docking score between ketal and non-ketal form of molecules 

In this study, computational studies have been conducted for the compounds K01-K09 

and NK01-NK09 to compare their performance before and after reaching a physiological 

system. This is because ketal compounds contain an acid-sensitive acetonide group, which 

could be open in physiological systems [57].  

So, to provide a basic comparison, the K01-K09 and NK01-NK09 ligands have been 

docked among two bacteria, two black and white fungal strains, and triple-negative breast 

cancer to determine their binding interactions (Figure 6). The bar diagram displayed the 

comparison between the outcomes of the ketals and non-ketals. It could be concluded that the 

binding affinity of ketal molecules is better than the non-ketal form against bacteria, black 

fungus, and triple-negative breast cancer. Still, the binding affinity against white fungus is 

almost identical to the ketal and non-ketal groups. 

 
Figure 6. Docking score comparison between ketals and non-ketals. 

In the case of molecular docking, the ketal form shows an almost high value of docking 

score. However, in molecular dynamics, the average value of root-mean-square deviation 

(RMSD) and root-mean-square fluctuation (RMSF) values of the docked complexes are used 

to assess the mobility and stability of the compounds. There are no accountable differences 

between RMSD and RMSF values for both ketal and non-ketal forms. The docked complexes 

of both the ketal and non-ketal forms convey similar stability.  
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3.13. ADMET studies.  

ADMET is an acronym for Absorption, Distribution, Metabolism, Excretion, and 

Toxicity. Approximately 40-60 percent of all medications in clinical trials rapidly deteriorate 

to ADMET property predictive performance; hence this is a critical and essential step in the 

new drug design and discovery [58,59]. Although previously ADMET methods have been 

deployed at the end of a drug development stage, ADMET is currently deployed early stages 

of the drug development cycle to exclude compounds with inadequate ADMET features from 

the development stages, which results in a substantial reduction in R&D expenses and 

resources [60]. 

Table 8 provides information on the ADMET properties of the substances predicated 

on factors such as water solubility, Caco2 cell permeability, skin permeability, intestinal 

absorption of humans, P-glycoprotein substrate, P-glycoprotein I inhibitor, Blood-Brain 

Barrier permeant, etc. [61]. The water-solubility properties of a substance determine how well 

the drug is absorbed. High water-soluble compounds have good absorption qualities and hence 

provide optimal drug bioavailability [62]. There were some differences in the water-soluble 

properties of mentioned molecules.  

Table 8. ADMET properties of ketals and non-ketals. 
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K01 -2.297 0.243 No No No 1.067 No No 

K02 -4.426 1.226 Yes Yes No 1.021 Yes No 

K03 -6.137 1.104 Yes Yes No 1.204 Yes No 

K04 -2.562 0.461 No No Yes 0.89 No No 

K05 -3.714 0.824 No Yes Yes 0.706 No No 

K06 -4.022 -0.095 No No Yes 0.346 Yes No 

K07 -2.674 0.032 No No Yes 0.989 No No 

K08 -4.84 1.22 No Yes Yes 0.937 Yes No 

K09 -4.213 1.513 No Yes No 0.617 Yes No 

NK01 -0.71 0.169 No Yes No 0.22 No No 

NK02 -3.087 -0.013 No No Yes 0.176 No No 

NK03 -5.46 1.223 Yes Yes No 0.202 Yes No 

NK04 -2.392 0.072 No No Yes 0.625 No No 

NK05 -3.367 0.395 No No Yes 0.633 No No 

NK06 -3.147 0.517 No No Yes 0.65 No No 

NK07 -2.101 0.334 No No Yes 0.673 No No 

NK08 -3.967 0.951 No No Yes 0.739 No No 

NK09 -3.779 1.169 No No Yes 0.846 No No 

Azithromycin -2.06 0.7578 No Yes Yes   No No 

Nystatin -2.892 -0.563 No No No 5.694 No No 

Capecitabine -3.135 0.255 No No No 1.054 No No 

The molecules K01, K04, K07, NK01, NK04, and NK07 are slightly soluble in an 

aqueous system compared to the other molecules. While the higher water-insoluble properties 

of compounds K02, K03, K06, K08, K09, and NK03 refer, they are more soluble in the oil 

phase, such as lipids. Another important statistic is Caco-2 permeability, which evaluates a 

substance's flow rate through the polarized Caco-2 cell monolayers to anticipate oral 

medication absorption from the research conducted [63]. The Caco-2 permeability of medicine 

should be acceptable for effective medication. The molecules K02, NK03 & NK09 had more 

excellent Caco-2 permeability than the others. Only K02, K03 & NK03 compounds can 

produce permeant BBB among 18 derivatives simultaneously, and the ligand K03 has the larger 
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Total Clearance rate among all the drugs. According to this data, most drugs are not 

metabolized in CYP4502C9, except molecules K01, K02, K06, K08, K09 & NK03, while no 

drugs can inhibit the CYP450 1A2 inhibitor. 

3.14. Aquatic and non-aquatic toxicity 

After satisfying all of the necessary tests, therapeutic candidates may reject and 

withdrawn from the market because of their aquatic and non-aquatic toxicity. Because of this, 

medication research and discovery should need adequate safety assessments. Several 

indicators, including the maximum, tolerated dosage (human), oral rat acute toxicity (LD50), 

oral rat chronic toxicity (LOAEL), hepatotoxicity, and T. pyriformis toxicity, are being used to 

ensure the safety of the drug and hepatotoxicity. Almost 50% of the compounds showed 

carcinogenicity in AMES toxicity and hepatotoxicity (Table 9). So, during the manufacturing 

process, they should be handled carefully in the environment, and hepatic or liver disease 

patients should be conscious before taking this medication due to hepatotoxicity [64]. 

Table 9. Aquatic and non-aquatic toxicity of ketals and non-ketals. 
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K01 Yes Yes 2.532 2.531 0.363 0.364 

K02 No No 2.294 1.885 0.501 0.385 

K03 Yes No 1.769 2.50 0.931 0.288 

K04 No Yes 2.353 2.386 -0.116 0.291 

K05 No Yes 2.363 2.68 0.324 0.290 

K06 No No 3.916 2.663 0.411 0.285 

K07 Yes Yes 2.10 2.395 0.578 0.269 

K08 Yes No 1.902 2.487 0.651 0.285 

K09 No No 1.633 3.17 0.711 0.285 

NK01 Yes No 3.434 1.853 0.55 0.285 

NK02 Yes No 2.842 1.814 0.470 0.382 

NK03 Yes No 1.789 1.823 0.489 0.298 

NK04 No Yes 3.677 2.145 0.859 0.285 

NK05 No Yes 3.851 2.395 0.602 0.285 

NK06 No Yes 4.537 2.745 0.821 0.285 

NK07 No Yes 3.683 2.450 0.859 0.285 

NK08 Yes No 3.644 2.592 0.288 0.285 

NK09 No No 3.124 2.475 0.389 0.285 

Azithromycin No No 0.7761 2.5423 1.5567 0.4275 

Nystatin No No 8.655 2.482 0.436 0.4977 

Capecitabine  No Yes 2.401 2.459 1.051 0.288 

4. Conclusions 

The fundamental resilience and biological activity of D-glucofuranose generated ketal 

and non-ketal derivatives have been explored and studied against three different diseases such 

as bacteria, fungus, and triple-negative breast cancer. We determined different 

pharmacokinetics and bioactivities of these 18 ketals and non-ketal derivatives of D-

glucofuranose. We compared them to those of the conventional medication azithromycin, 

nystatin, and Capecitabine to determine if they have the potential to be utilized as a medication 

in the foreseeable.  

The PASS prediction characteristics have been hypothesized to determine the 

biologically active compounds among these synthesis derivatives chemicals that were most 
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effective. PASS prediction of the ketal and non-ketal derivatives of D-glucofuranose 1–18 was 

0.150<Pa<0.400 for antiviral, 0.280<Pa<0.450 for antibacterial, 0.205<Pa<0.570 for 

antifungal, 0.098<Pa<0.272 for antibiotic and 0.240<Pa<0.704 for antineoplastic. Based on the 

PASS prediction value, we have decided that the synthesized ketals and non-ketals may inhibit 

the best antibacterial, antifungal, and antineoplastic efficacy. With these synthetic compounds, 

further studies have proceeded against bacteria, fungi, and triple-negative breast cancer. Virtual 

screening or molecular docking, non-bonding interaction, molecular dynamics, 

pharmacokinetic properties, ADMET, Lipinski, etc., have been calculated. The results were 

correlated to Azithromycin, Nystatin, and Capecitabine values. This study indicated that all the 

compounds are highly stable with excellent fitting pose against targeted protein and excellent 

binding energy, ranging from -6.00 to -11.0 kcal/mol. Although the drugs showed 

hepatotoxicity and AMES toxicity in some cases, the other parameter has been satisfied as a 

potential drug candidate. Further in vivo and related studies are necessary to establish them as 

drug candidates. 
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