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Abstract: About 966 billion US dollars have been spent globally treating and managing diabetic 

patients. Notwithstanding individuals' substantial access to the required primary medical services and 

essential medicines, it is tempting to get momentum in identifying new chemical entities, biologics, or 

small molecules as drug candidates that are prophylactically and therapeutically effective against 

lifestyle-based maladies, thereby backing the overall health mission of Sustainable Development Goals. 

Towards this context, the study aims to screen natural inhibitor(s) targeting dipeptidyl peptidase 4 using 

hybrid approaches of bioinformatics and medicinal chemistry. Data set of 513 ligands of terpenoids in 

nature was retrieved from the naturally occurring plant-based anticancerous compound-activity-target 

database (NPACT) and performed docking studies. Sitagliptin depicted substantial binding affinity 

among reference drugs with dipeptidyl peptidase 4 (DPP IV) (binding energy: -8.63 kcal/mol, Inhibition 

constant: 163.65 μM). Among all terpenoids, Asiatic acid (ΔG: -9.95 kcal/mol, 85.23 μM), Aucubin (-

9.86 kcal/mol, 98.98 μM), Ailanquassin A (-9.25 kcal/mol, 156.23 μM), and 6-α-hydroxyneopulchellin 

(-9.18 kcal/mol, 189.76 μM) depicted strong binding affinities with DPP IV compared to Sitagliptin. 

Based on the MD simulation findings, Asiatic acid and Aucubin were better lead molecules than 

Sitagliptin. However, holistic wet-lab validations are required before manifesting their therapeutic 

implications against diabetes. 
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1. Introduction 

Diabetes mellitus chronically increases blood glucose levels due to absolute or relative 

insulin deficiency. It is highly prevalent, and its complications are among the leading causes of 

death. As per the statistics of the International Diabetes Federation (IDF) diabetes atlas edition 

10.0, 2021, more than 537 million individuals aged 20-79 years were diagnosed with diabetes 

that may be worst and may uprise to 643 million, bypassing 2030, and 783 by 2045, in which 

6.7 million individuals demises could be documented globally, especially in those countries 

that are socially and economically underprivileged [1,2]. Almost 966 billion US dollars, a 

tremendous amount of money, have been allotted to treating and managing this lifestyle-based 

disease. Diabetes is considered socially significant morbidity because of its considerable 

negative impact on the patients' duration and quality of life. Therefore, research activities focus 

on developing novel, more effective therapies to improve glucose homeostasis and alleviate 
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insulin resistance. According to its pathogenesis, two main types of diabetes can be 

distinguished – diabetes mellitus type 1 (T1DM) and type 2 (T2DM). However, novel diabetic 

subgroups based on additional factors for the disease's occurrence, such as body-mass index, 

age, β-cell function, insulin resistance, and presence of autoantibodies, aim at a more precise 

and individualized therapeutic handling. Type 1 diabetes mellitus (T1DM) typically has a 

sudden onset caused by a pancreas dysfunction resulting in insufficient or completely abolished 

insulin production and secretion. Common symptoms are frequent urination (polyuria), 

excessive thirstiness (polydipsia), hunger (polyphagia), fatigue, blurry vision, unexpected 

weight loss, and delayed wound healing. This category of diabetes is caused by autoimmune 

processes targeting insulin-producing β-cells. It usually occurs at a young age. However, a 

form of T1DM manifesting later in adulthood also exists called latent autoimmune diabetes of 

adults (LADA). It can be falsely diagnosed as T2DM [3,4]. 

The risk of short- and long-term complications necessitates tight blood glucose control. 

Novel medical devices that have recently been approved or are undergoing clinical trials may 

improve diabetics' quality of life. Such devices are insulin pumps, closed-loop glucose 

monitoring systems, and artificial bionic pancreas. T1DM is managed by insulin replacement 

treatment. With type 2 diabetes, our body does not use insulin well and cannot manage 

optimum blood sugars. More than 90% of individuals with T2DM took a long time to develop 

and diagnose. We may not notice any symptoms, so we must get our blood sugar tested if we 

are at risk. T2DM can be prevented or delayed with healthy lifestyle changes, such as losing 

weight, eating healthy food, being active, and taking proper medications [5-9]. According to 

the International Diabetes Federation (IDF), in 2019, diabetes occurrence and projections by 

2030 and 2030 have been shown in Figure 1 [10,11]. 

 

Figure 1. Comparative statistics of diabetic patients in 2019, 2030, and 2045 aged between 20-79 years. The 

number of occurrences and projections are exhibited in millions. 

Besides the ample amount of therapeutic and prophylactic drugs, it is difficult to control 

diabetes in totality. From the very beginning, pharmaceutical industries have been shifting their 

attention toward identifying therapeutically potential molecular targets using various 

interdisciplinary approaches of genomics, proteomics, system biology, traditional experimental 

biology, and biomedical sciences. Despite having various robust and sophisticated high-

throughput technologies, the process of finding new drug candidates and their development as 

therapeutics is moving at a slow pace, viz., identification of small molecules as new lead 

molecules from millions of investigational ligands takes about ten years and about $2-3 billion, 

including from SBVS, preclinical and clinical experiments, regulatory approval, and launch to 
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the market. Molecular modeling, SBDD, LBDD, and machine learning approaches can 

accelerate the process, minimize attrition, and depict the ADMET and medicinal chemistry 

features, curtailing research and development costs and time [12].  

DPP IV (dipeptidyl peptidase 4) was chosen as an essential protein target for identifying 

terpenoids as plausible inhibitors. DPP IV deactivates a group of metabolic hormones of the 

gastrointestinal tract, also known as incretins, that facilitate insulin release at physiological pH. 

The gastric inhibitory peptides GIP (gluco-dependent insulinotropic polypeptide) and GLP-1 

(glucagon-like peptide-1) are induced after food. The α-cells and induced β-cells of pancreatic 

islets of Langerhans are deactivated by both GIP and GLP-1, thereby lowering the blood 

glucose level [13-16]. DPP IV is a GIP and GLP-1 antagonist, inducing glucagon release and 

inhibiting insulin secretion, thus facilitating hyperglycemia. Most DPP IV drugs, e.g., Gliptins 

family and peptide mimetics, inhibit DPP IV and induce incretins ensuing homeostasis of 

glucose level [17-19]. 

The study aims to identify the most probable lead molecules against diabetes via 

molecular interactions of DPP IV with 513 terpenoids using ADT (AutoDock Tools) [20]. 

Comparison of the docking and MD simulation findings with reference drug Sitagliptin favor 

the substantial and stable molecular interactions of Asiatic acid and Aucubin within the critical 

residues of the target protein. 

2. Materials and Methods 

2.1. Protein retrieval and optimization. 

The PDB (3WQH) structure of the human DPP IV co-crystallized with the anagliptin 

was retrieved from the RCSB protein data bank. The only apoprotein was considered for 

preparing an input PDB file suitable for molecular docking via cleaning undesired atoms, ions, 

and molecules viz., NAG), SKK, inhibitor anagliptin, and H2O molecules. The 3D coordinates 

of anagliptin binding pockets were taken forward for docking interactions of terpenoids. The 

molecular mechanic's force field, CHARMm, was assigned to energetically optimize 

ligands'3D structure using a SMART algorithm to eliminate the steric hindrances and clashes 

[21-24]. 

2.2. Ligands retrieval and optimization. 

The standard data format (SDF) of all terpenoids (513 molecules) was retrieved from 

the National Center for Biotechnology Information (NCBI) PubChem database. Likewise, 2D 

structures of known drug molecules in SDF format were also extracted. 2D SDF to 3D PDB 

conversion was accomplished through Accelrys discovery studio visualizer (DSV). All ligand 

molecules were energetically minimized and optimized through the same protocol as the target 

protein. 

2.3. Docking simulation. 

Molecular docking of terpenoids and reference drug Sitagliptin with DPP IV was 

carried out with ADT to get the most probable pattern of their binding strength. Four input files 

were prepared to run the ADT, viz., PDBQTs of both ligand and protein, GPF, and DPF. The 

grid box around the protein molecule was drawn with variable grid points in the x, y, and z 

axes and maximum spacing (1.00 Å) between two consecutive grids. Ten runs for each ligand 
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took into account. Minimum free energy of binding (ΔG) and inhibition constant (Ki) was 

chosen as selective filters for determining the most stable conformations docked into the 

binding pocket of the target protein [25-29]. 

2.4. ADMET profiling. 

The terpenoids exhibiting ΔG lesser than the reference drug Sitagliptin were evaluated 

on different ADMET descriptors, physicochemical properties, lipophilicity, solubility, 

pharmacokinetics, drug-likeness, and medicinal chemistry attributes through the SwissADME 

[30]. 

2.5. Molecular dynamics simulation. 

The molecular dynamics (MD) simulation study of the best-docked complex of 

terpenoid and DPP IV, along with a docked complex of Sitagliptin and DPP IV, was carried 

out using the online digital platform iMODS, a robust and fast computational tool for 

calculating the flexibility and stability of target protein upon binding with ligands [31]. An 

illustration of the adopted methodology of the proposed study is shown in Figure 2.  

 
Figure 2. Flowchart of adopted methodology for identifying the potential lead molecules affecting DPP IV. 

3. Results and Discussion 

3.1. Molecular docking. 

All terpenoids and reference drug Sitagliptin were docked to DPP IV to find one of the 

most plausible binding interactions of their respective confirmations. Terpenoids exhibit free 

energy of binding (ΔG) between -9.95 to -5.35 kcal/mol and inhibition constant (Ki) in the 

range of 85.23 μM to 687.20 μM. Sitagliptin, a reference molecule, depicts substantial binding 

affinity with DPP IV, having ΔG -8.63 kcal/mol and Ki 163.65 μM. Nine ligands out of 513 

viz., Carnosol, Jatropholone, Rosmanol, Tagitinin, Ailanquassin, Bigelovin, Asiatic acid, 

Aucubin, and 6-α-hydroxyneopulchellin were showing better binding interactions as compared 
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to the Sitagliptin. Asiatic acid and Aucubin showed strong binding propensities toward DPP 

IV, as reflected by their ΔG (-9.95, -9.86 kcal/mol) and Ki (85.23, 98.98 μM) values, 

respectively. Moreover, Asiatic acid interacted with 14 residues of DPP IV through four 

different binding forces rendering stability to the complex viz., van der Waals, conventional 

H-bonds, pi-sigma, and pi-alkyl (Figure 3). 

 
Figure 3. DPP IV-Asiatic acid complex. 2D diagram showing the DPP IV residues bind to Asiatic acid through 

van der Waals, hydrogen bond, pi-sigma, and pi-alkyl forces. 

Likewise, Aucubin exhibited interaction with 12 residues of DPP IV through five 

different binding forces providing stability to the docked complex viz., van der Waals, 

conventional H-bonds, carbon-hydrogen bonds, alkyl, and pi-alkyl (Figure 4). 

 
Figure 4. DPP IV-Aucubin complex. 2D diagram showing the DPP IV residues bind to Aucubin through van 

der Waals, hydrogen bond, carbon-hydrogen bond, alkyl, and pi-alkyl forces. 
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The reference drug Sitagliptin interacted with 13 residues of DPP IV via six different 

binding forces making the docked complex stable viz., van der Waals, conventional H-bonds, 

carbon-hydrogen bonds, halogen, pi-sigma, and pi-Sulphur (Figure 5).  

 
Figure 5. DPP IV-Sitagliptin complex. 2D diagram showing the DPP IV residues bind to Sitagliptin through 

van der Waals, hydrogen bond, carbon-hydrogen bond halogen, pi-sigma, and pi-sulfur forces. 

3.2. ADMET assessment.  

Egan-Egg or BOILED-Egg (Brain Or IntestinaL EstimateD) model was used to assess 

the ADMET features. This model forecasts edge values for two essential descriptors, e.g., 

human intestinal absorption (HIA) and blood-brain barrier (BBB) penetration. HIA and BBB 

rely on two crucial physiochemical properties, lipophilicity (reference WLOGP ≤ 5.88) and 

topological polar surface area (reference TPSA ≤ 131.6), and exhibits a clear graphical 

representation of the ligands threshold desired for HIA and BBB permeation [32-34]. As per 

its name, the Egan-Egg model has two regions, i.e., the yolk (yellow) and the white part, 

respectively, revealing intestinal absorption and brain penetration. Only nine terpenoids 

showing better affinities towards target protein DPP IV than Sitagliptin were passed through 

this model. Three ligands, namely Jatropholone, Carnosol, and Bigelovin, are located within 

the yolk region, which means they are good BBB penetrators and HIA permeator. Five ligands, 

Rosmanol, Tagitinin, Ailanquassin, Asiatic acid, and 6-alpha-hydroxyneopulchellin, are 

positioned in the white region of the egg, which means that they are showing good HIA 

absorption. Ligand Aucubin is positioned out of the white and yolk region, showing neither 

brain permeation nor intestinal absorption. Sitagliptin shows excellent BBB permeation and 

intestinal absorption (Figure 6). despite having substantial brain permeation, ligands 

Jatropholone and Carnosol effluxed out because of glycoprotein (P-gp) substrate. Likewise, the 

reference drug was also thrown out from the yolk region because of its propensity towards P-

gp binding. 
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Figure 6. The Egan-Egg model for assessment of passive human intestinal absorption (HIA) and blood-brain 

barrier (BBB) penetration in the function of the position of selected terpenoids and reference drug. The blue and 

red dots represent P-gp positive and P-gp negative molecules, respectively. 

3.2.1. Physicochemical properties. 

Molecular weight (MW), the fraction of carbons in the sp3 hybridization (FCsp3), 

rotatable bond (RB), hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), molar 

refractivity (MR), and polar surface area (PSA), key molecular and physicochemical 

descriptors play an essential role in the quick prediction of ADME attributes of small 

molecules. OpenBabel v2.3.0 was used to calculate the ADME descriptors. Moreover, 

SwissADME implies a fragmental technique to evaluate the PSA of chemical compounds, 

popularly known as topological polar surface area (TPSA) [35,36]. The computed 

physicochemical properties of selected ligands and Sitagliptin is shown in Table 1. 

Table 1. Computed Physicochemical properties of selected terpenoids and reference molecules. 

Ligands MW FCsp3 RB HBA HBD MR TPSA 

Carnosol 330.42 0.65 1 4 2 92.83 66.76 

Jatropholone 296.40 0.55 0 2 1 90.7 37.3 

Rosmanol 346.42 0.65 1 5 3 93.99 86.99 

Tagitinin 350.41 0.68 3 6 1 91.01 85.36 

Ailanquassin 364.39 0.79 1 7 2 87.9 102.29 

Bigelovin 304.34 0.59 2 5 0 79.05 69.67 

Asiatic acid 488.70 0.90 2 5 4 139.24 97.99 

Aucubin 346.33 0.73 4 9 6 77.15 149.07 

6-alpha-hydroxyneopulchellin 282.33 0.80 0 5 3 71.91 86.99 

Sitagliptin 407.31 0.44 6 10 1 87.25 77.04 

Reference range: MW ≤ 500 g/m, HBA ≤ 10, HBD ≤ 5, FCsp3 ≥ 0.25, RB ≤ 10, 40 ≤ MR ≤ 130, TPSA≤ 150 Å2 

 

 

https://doi.org/10.33263/BRIAC134.376
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC134.376  

 https://biointerfaceresearch.com/ 8 of 16 

 

3.2.2. Lipophilicity. 

Lipophilicity is an important physical property that governs solubility absorption, 

plasma protein binding, metabolic clearance, the volume of distribution, enzyme and receptor 

binding, biliary and renal clearance, brain penetration, and storage in tissues bioavailability, 

and toxicity. It can be defined as a partition coefficient between n-octanol and water. 

Mathematically, it can be expressed as:  

LogPo/w = log (concentration of ligand in octanol/concentration of ligand in water)  

The computed lipophilicity of the selected ligands and Sitagliptin is shown in Table 2. 

Table 2. Computed lipophilicity of selected terpenoids and reference molecules. 

Ligands iLOGP XLOGP3 WLOGP MLOGP SLogP CLogP 

Carnosol 2.97 4.38 3.96 3.25 4.05 3.72 

Jatropholone 3.23 4.49 4.62 3.82 5.24 4.28 

Rosmanol 2.5 3.41 2.93 2.42 3.16 2.88 

Tagitinin 2.76 1.73 1.91 1.66 2.37 2.09 

Ailanquassin 2.02 0.12 0.53 1.36 1.26 1.06 

Bigelovin 2.13 1.19 1.82 1.92 2.08 1.83 

Asiatic acid 3.2 5.7 5.03 4.14 3.96 4.41 

Aucubin 1.44 -3.02 -2.8 -2.29 -2.78 -1.89 

6-alpha-hydroxyneopulchellin 1.67 0.72 0.23 0.88 0.55 0.81 

Sitagliptin 2.35 0.7 3.9 2.52 3.08 2.51 

Reference range: XLogP3 (-2 to 5), WLogP (-0.4 to 5.88), MLogP (≤ 4.15) 

3.2.3. Solubility. 

Solubility determines intestinal absorption and oral bioavailability. The low solubility 

hinders absorption and causes low oral bioavailability. Molecular properties for solubility and 

permeability are opposed. Optimum solubility is required for intravenous formulation. 

SwissADME uses three descriptors adapted from the ESOL model, Ali et al., 2012 [37], and 

SILICOS-IT filter to predict the water solubility of small molecules at the log S scale, which 

is a decimal logarithm of the molar solubility in water. Optimum range for water solubility 

follows the order as insoluble <−10 < poorly <−6 < moderately <−4 < soluble <−2 < very < 0 

< highly [37]. Table 3 shows the computed water solubilities of terpenoids and reference 

molecules, revealing that they either fall in the soluble, moderate soluble, or poorly soluble 

category. 

Table 3. Computed solubility of selected terpenoids and reference molecules. 

Ligands Log S (ESOL) Log S (Ali) Log S (SILICOS-IT)  

Carnosol -4.77 -5.5 -4.45 

Jatropholone -4.71 -4.99 -5.42 

Rosmanol -4.25 -4.92 -3.64 

Tagitinin -2.9 -3.14 -2.22 

Ailanquassin -2.11 -1.82 -1.6 

Bigelovin -2.34 -2.25 -2.32 

Asiatic acid -6.33 -7.52 -4.28 

Aucubin 0.18 0.45 2.76 

6-alpha-hydroxyneopulchellin -2.04 -2.13 -0.64 

Sitagliptin -2.7 -1.9 -4.81 
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Reference range: insoluble <−10 < poorly <−6 < moderately <−4 < soluble <−2 < very < 0 < highly. 

3.2.4. Pharmacokinetics. 

Pharmacokinetics (PK) plays a crucial role in determining the safety and efficacy of a 

therapeutic molecule. The PK describes the response of the biological system when drug 

molecules pass through it in terms of ADME. The absorption (A) distribution (D) features of 

selected ligands and inhibitors have been discussed in the previous section of the BOILED-

Egg model of ADME. Biotransformation of therapeutic molecules through phase I 

metabolizing enzymes, especially cytochrome P450 isozymes (CYP450s), is an essential 

aspect of their metabolism (M) and excretion (E). SwissADME predicts whether a drug 

molecule is a substrate or inhibitor of five major CYP450s, viz., CYP1A2, CYP2C19, 

CYP2C9, CYP2D6, and CYP3A4. Inhibiting these CYP450 isozymes causes toxicity and 

undesirable effects due to the lower excretion and accrual of ingested drug molecules. The 

propensity of ligand hits towards the skin permeation (logKp) was predicted and found 

comparable to the selected inhibitors. The more negative the logKp value lower the skin 

permeation [38]. The details of predicted CYP450s metabolism and skin permeation of 

terpenoids and reference drugs are shown in Table 4. 

Table 4. Computed pharmacokinetics of selected terpenoids and reference molecules. 

Ligands CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 LogKp (cm/s) 

Inhibitor 

Carnosol No No Yes No No -5.21 

Jatropholone Yes Yes Yes No Yes -4.92 

Rosmanol No No No Yes No -5.99 

Tagitinin No No No No No -7.21 

Ailanquassin No No No No No -8.44 

Bigelovin No No No No No -7.31 

Asiatic acid No No No No No -5.23 

Aucubin No No No No No -10.56 

6-alpha-hydroxyneopulchellin No No No No No -7.51 

Sitagliptin No No No No No -8.29 

3.2.5. Drug-likeness.  

SwissADME tool implements five different pharmaceutical and biotechnology-based 

descriptors with varied arrays of screens that qualitatively estimate the affinity for a molecule 

to become a putative oral drug candidate vis-à-vis bioavailability. Abbott bioavailability score 

(BS) is a determinant of the oral absorption of a drug molecule. Although, similar physical 

properties do not apply to cations, anions, and uncharged molecules at physiologic pH, 

delineating their bioavailability and permeability. PSA for anions and RO5 for both cations 

and uncharged molecules has pretty enough forecasting ability. Abbot BS is 0.11 for anions 

showing PSA >150 Å2, 0.56 if PSA ranges 75-150 Å2, and 0.85 if PSA is less than 75 Å2. 

Abbot BS is 0.55 and 0.17, respectively, for the remaining compounds that comply and breach 

RO5. All virtually screened ligands and reference inhibitors exhibit an Abbott BS value of 0.55 

means they fulfilled the criteria of oral drug molecules [39]. Details of computed drug-likeness 

of selected terpenoids and reference drugs are shown in Table 5. 
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Table 5. Computed drug-likeness of selected terpenoids and reference molecules. 
Ligands Lipinski  Ghose  Veber  Egan  Muegge  Bioavailability Score 

Violations 

Carnosol 0 0 0 0 0 0.55 

Jatropholone 0 0 0 0 0 0.55 

Rosmanol 0 0 0 0 0 0.55 

Tagitinin 0 0 0 0 0 0.55 

Ailanquassin 0 0 0 0 0 0.55 

Bigelovin 0 0 0 0 0 0.55 

Asiatic acid 0 3 0 0 1 0.56 

Aucubin 1 1 1 1 2 0.55 

6-alpha-hydroxyneopulchellin 0 0 0 0 0 0.55 

Sitagliptin 0 0 0 0 0 0.55 

3.2.6. Medicinal chemistry descriptors evaluation. 

In medicinal chemistry attributes evaluation, respectively, Carnosol and Rosmanol 

were depicted as frequent hitters, i.e., Pan Assay Interference Structure (PAINS) alert, while 

other ligands were passed on PAINS parameter. Except for Jatropholone, all ligands and known 

drug sitagliptin exhibited undesirable moieties, i.e., Brenk alert. Moreover, Rosmanol, 

Bigelovin, Aucubin, and 6-alpha-hydroxyneopulchellin succeeded in lead-likeness features, 

while the remaining exhibited lead-likeness violations [40-42].  

Synthetic accessibility (SA) is essential for the chemical synthesis of virtual molecules. 

The one and ten SA values represent very easy and challenging synthesis modes [43]. All 

molecules, including reference inhibitors, depicted an accessible synthesis mode reflected by 

their SA values (range: 3.5- 6.56). Computed medicinal chemistry attributes of selected 

terpenoids and reference molecules are shown in Table 6. 

Table 6. Computed medicinal chemistry descriptors of selected terpenoids and reference molecules. 
Ligands PAINS alerts Brenk alerts Lead-likeness SA 

Carnosol 1 1 1 4.88 

Jatropholone 0 0 1 3.86 

Rosmanol 1 1 0 5.07 

Tagitinin 0 4 1 5.61 

Ailanquassin 0 1 1 5.77 

Bigelovin 0 2 0 4.79 

Asiatic acid 0 1 2 6.56 

Aucubin 0 1 0 5.79 

6-alpha-hydroxyneopulchellin 0 1 0 4.54 

Sitagliptin 0 1 1 3.5 

3.3. Molecular dynamics simulation. 

Molecular dynamics (MD) simulation and normal mode analysis (NMA) of Asiatic acid 

and DPP IV docked complex was conducted to investigate amino acid residues' mobilities and 

flexibilities upon binding. 

3.3.1. Mobility. 

The main-chain (protein backbone) deformability is a determinant of the competence 

of a given molecule to distort at each of its residues. The position of the chain pivots can be 

inferred from high deformability areas. The deformability of the target protein upon binding 

with Asiatic acid is shown in Figure 7. 
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Figure 7. Deformability of DPP IV upon binding with Asiatic acid. 

3.3.2. B-factor. 

The experimental B-factor is taken from the corresponding PDB field, and the 

calculated from NMA is obtained by multiplying the NMA mobility by (8pi2). The B-factor 

column gives an averaged root mean square deviation (RMSD). The B-factor of DPP IV and 

Asiatic acid docked complex is shown in Figure 8. 

 

Figure 8. B-factor of DPP IV upon binding with Asiatic acid. 

3.3.3. Eigenvalues. 

The eigenvalue linked to each normal mode signifies the motion toughness. The 

eigenvalue is directly proportional to the energy needed to distort the structure. The lesser the 

eigenvalue, the easier the distortion (Figure 9). 

 
Figure 9. Eigenvalues of the docked complex of DPP IV and Asiatic acid. 
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3.3.4. Variance. 

The variance related to each normal mode is inversely proportional to the eigenvalue. 

Colored bars display the individual (red) and cumulative (green) variances (Figure 10). 

 

Figure 10. Variance of the docked complex of DPP IV and Asiatic acid. Variance. Red and green, respectively, 

show individual and cumulative variances. 

3.3.5. Covariance map. 

The covariance matrix designates coupling between pairs of residues, i.e., whether they 

experience correlated (red), uncorrelated (white), or anti-correlated (blue) motions (Figure 11) 

[44]. 

 

Figure 11. Covariance map of the docked complex of DPP IV and Asiatic acid. Variance. Red, white and blue, 

respectively, show correlated, uncorrelated, and anti-correlated motions. 

3.3.6. Elastic network. 

The elastic network model describes which pairs of atoms are linked by springs (Figure 

12). 
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Figure 12. Elastic network: Each dot in the graph represents one spring between the corresponding pair of 

atoms. Dots are colored according to their toughness. Darker grey regions indicate compact regions. 

4. Conclusions 

Diabetes is one of the most pervasive disorders that cause millions of deaths across the 

globe every year, and it is independent of countries socioeconomic background. The constancy 

of diabetes for a long time directs to irreparable damage to vital organs. The persistence of 

diabetes may induce different microvascular and macrovascular intricacies, viz.,  Monckeberg 

arteriosclerosis, peripheral artery disease, coronary heart disease, cerebrovascular disease,  

peripheral neuropathy, erectile and bladder dysfunction, nephropathy, gastroparesis, 

retinopathy. Albeit multiple prophylactic and therapeutic medications are available, finding 

total control and cures for diabetes is still elusive. Thus, we must impede molecular targets 

accountable for high blood sugar levels via plant-derived phyto-ingredients in our dietary 

meals. In this context, DPP IV was selected as a therapeutic target. Identifying potential DPP 

IV inhibitors comparable to its known drug, molecular interaction studies with 513 terpenoids 

were carried out using ADT followed by MD simulation. Based on the ΔG, nine ligand hits 

were found as the top hits comparable to the reference drug Sitagliptin. Physicochemical 

properties, lipophilicity, solubility, drug-likeness, pharmacokinetics, medicinal chemistry 

features, molecular docking, and MD simulation analyses depicted Asiatic-DPP IV docked 

complex as more stable than the reference drug (Sitagliptin) complex. Based on the research 

findings, it is suggested that Asiatic acid exhibits excellent features of oral drugs. However, to 

validate the research finding, a holistic approach to wet-lab experiments is required before the 

manifestation of its therapeutic use. 
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