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Abstract: This paper deals with the feasibility study of using existing biomaterials like titanium alloy 

and the collagen-reinforced polymer matrix composite for ankle implant application through FEA 

analysis. The ankle joint is the important joint in the human body that experience maximum 

compressive stresses and undergoes maximum deformation. It must evaluate properties like stress 

concentration, deformation zone, and material behavior. The analysis was carried out in ANSYS 

Workbench with different loading conditions, for instance, normal walking and sprinting. The analysis 

showed that both the Ti-6Al-4V and the 30% collagen-reinforced PMC exhibited minimum stresses, 

but since the density of Ti-6Al-4V is more than 30% collagen-reinforced PMC. Even though the stress 

developed in Ti-6Al-4V is within the yield stress, the density is still not close enough to the density of 

bone. Collagen-reinforced PMC with a 30% density close to the bone is recommended as an implant 

material for better life and performance. 
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1. Introduction 

Ankle sprains in athletes are one of the most widely spread sports injuries, which occurs 

very often. It is expected that 30-41% of athletes with an ankle sprain may lead to permanent 

impairments. The usage of advanced material titanium alloy and biomaterials like collagen 

composites in ankle arthroplasty is gaining interest, mainly due to more functional movements 

than ankle arthrodesis for the reconstruction of degenerative ankles with end-stage arthritis. 

After all, medical reports have stated a wide range of iatrogenic complications and a success 

rate of downfall [1, 2] in ankle procedures. Downrate of success was reported to range from 

10% to 20% within 10 years of post-surgery [3-9]. Sometimes failures need conversion to ankle 

arthrodesis, which may lead to amputation in the worst scenario [10]. Surgical failures might 

be because prostheses cannot completely mimic normal human ankles, which have complex 

anatomical components, sophisticated kinematics, and close connections and stability systems. 

Total ankle arthroplasty biomechanics requires a thorough understanding [11-16]. Previous 

biomechanical research, such as gait analysis, cadaveric experiments, and radiographic views 

[17], gave useful but insufficient insight into the inner foot. Computational approaches are 

utilized to understand human bodies and are commonly used in biomechanical investigations. 

Finite element (FE) models of Total ankle arthroplasty have been developed and used to 

investigate the contact pressure and kinematics of the implants during gait. To study the 
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behavior of biomaterials Ti-6Al-4V and collagen fiber reinforced polymer matrix composite 

as ankle replacement materials, Finite Element Analysis (FEA) was carried out [18-30]. The 

ankle joint is an essential joint in the human body subjected to maximum compressive stresses 

and deformation. Hence it’s important to find out the stress concentrations and deformation 

zones of the implant of the ankle joint. 

2. Materials and Method 

2.1. Modeling of the implant. 

To study the material's behavior, the actual dimensions of the implant are considered. 

CATIA, as the modeling software 3D model, is created in the part body using all the required 

3D options of CATIA. Figure 1 shows the model of the implant. 

 
Figure 1. CATIA model of ankle joint implant. 

2.2. Finite element model. 

The 3D finite element model required for analysis is created by discretizing the 

geometric model. The discretization was performed in ansys environment. The 3D geometry 

of the implant was modeled separately. The model is exported as *stp file. This file is imported 

into the environment where the implant model is opened. Finally, the model is prepared for 

analysis. 86,188 elements are created, and triad elements are used. Using ANSYS, different 

boundary conditions are given, and analysis is performed. Meshed model of the implant is 

shown in below Figure 2. 

 
Figure 2. Meshed model. 
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2.3. Boundary conditions. 

For valid results, a FE mesh should be subjected to realistic boundary and loading 

conditions representative of the actual conditions. For the ankle joint implant analysis, the 

implant must be free to contact with elements in sliding and radial directions. The implant is 

fixed at the bottom, similar to the joint inserted in the talus bone. Also, the forces experienced 

by the ankle joint implant vary greatly under different loading conditions and can reach up to 

20 times the body weight while sprinting or jumping. Free body analysis has been utilized to 

reveal the differences in joint reaction force between single-leg tip-toe stance (3.5-4 times body 

weight) and single-leg stance under dynamic settings (2.5 times body weight). After showing 

that the joint reaction force with the foot suspended horizontally in midair is only about 0.02 

times the body weight acting in a nearly horizontal direction when compared to the near vertical 

direction. The magnitude of the joint reaction force in a single stance, the biomechanical 

justification for maintaining non-weight-bearing status in conservatively managed small 

posterior malleolus is then presented. The shear force acts between the fibula and talus region. 

It is estimated to be 80% of the body weight. Figure 3 shows the actual boundary conditions 

applied to the meshed model. 

  
(a) (b) 

Figure 3. Actual boundary conditions applied to the meshed model (a) Isometric View; (b) Front View. 

In this analysis, the maximum load is taken as 4 times the body weight and 80% of the 

body weight for shear force for the normal walking case. For the jumping or sprinting case 

maximum load is 20 times the body weight, i.e., impact load. In Figure 3, ‘A’ indicates the 

model is fixed at the bottom, which is shown in Figure 3 (b). Figure 4 indicates shear acting on 

the ankle transferred to the implant. D and E is the shear force acting on the implant. 

 
Figure 4. The shear force acting on the ankle, which is transferred to the implant, shown as‘D’ and ‘E’ in figure 

3. 
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2.4. Numerical analysis. 

The finite element analysis is performed to evaluate the stress distribution in the 

proximal region of ankle replacement implant of Ti-6Al-4Vand 30% collagen reinforced PMC 

under different loading conditions. Since each joint carries a different weight under normal 

walking and takes heavy loads in sprinting or jumping, analysis is performed for 50kg, 60kg, 

70kg, 80kg, 90kg, and 100kg patient weight. The following figures 6 to 29 show the plots of 

Displacement and Von Misses Stress for materials under normal and impact conditions of 

50kg, 60kg, 70kg, 80kg, 90kg, 100 kg patient weight. Each figure shows the maximum and 

minimum values of displacement and stresses for the material considered. Ti-6Al-4V exhibited 

maximum stress of 12.912 N/mm2 and a maximum displacement of 4.50e-04mm for the patient 

body weight of 100kg. Further, Ti-6Al-4Vexhibited the maximum stress of 64.6N/mm2 and 

maximum displacement of 2.25x10-3 mm for the patient body weight of 100kg under impact 

loading conditions. Displacement and von misses stresses obtained from analysis for Ti-6Al-

4V are shown below in figures 5-16. 

 
(a) (b) 

Figure 5. (a) Displacement plot; (b) Von misses stress plot for 50kg Under normal loading(walking) for Ti-6Al-

4V. 

 

(a) (b) 
Figure 6. (a) Displacement plot; (b) Von misses stress plot for 60kg Under normal loading(walking) for Ti-6Al-

4V. 
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(a) (b) 
Figure 7. (a) Displacement plot; (b) Von misses stress plot for 70kg Under normal loading(walking) for Ti-6Al-

4V. 

 
(a) (b) 

Figure 8. (a) Displacement plot; (b) Von misses stress plot for 80kg Under normal loading(walking) for Ti-6Al-

4V. 

 

(a) (b) 
Figure 9. (a) Displacement plot; (b) Von misses stress plot for 90kg Under normal loading(walking) for Ti-6Al-

4V. 
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(a) (b) 

Figure 10. (a) Displacement plot; (b) Von misses stress plot for 100kg Under normal loading(walking) for Ti-

6Al-4V. 

 
(a) (b) 

Figure 11. (a) Displacement plot; (b) Von misses stress plot for 50kg Under impact loading for Ti-6Al-4V. 

 
(a) (b) 

Figure 12. (a) Displacement plot; (b) Von misses stress plot for 60kg Under impact loading for Ti-6Al-4V. 
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(a) (b) 

Figure 13. (a) Displacement plot; (b) Von misses stress plot for 70kg Under impact loading for Ti-6Al-4V. 

 

(a) (b) 
Figure 14. (a) Displacement plot; (b) Von misses stress plot for 80kg Under impact loading for Ti-6Al-4V. 

 

(a) (b) 
Figure 15. (a) Displacement plot; (b) Von misses stress plot for 90kg Under impact loading. 
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(a) (b) 
Figure 16. (a) Displacement plot; (b) Von misses stress plot for 100kg Under impact loading for Ti-6Al-4V. 

Collagen-reinforced PMC with 30% composition exhibited maximum stress of 14.835 

N/mm2 and maximum displacement of 6.01e-04 for the patient body weight of 100kg under 

normal walking conditions. Further, the said PMC exhibited maximum stress of 74.188 N/mm2 

and maximum displacement of 3.0097x10-03 for the patient body weight of 100kg under impact 

loading conditions. 

 
(a) (b) 

Figure 17. (a) Displacement plot; (b) Von misses stress plot for 50kg Under normal loading(walking) for 30% 

collagen-reinforced PMC. 

 

(a) (b) 
Figure 18. (a) Displacement plot; (b) Von misses stress plot for 60kg Under normal loading(walking) for 30% 

collagen-reinforced PMC. 
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The analysis revealed the results which suited for implant materials. However, 

minimum displacements were observed with reference to the images. It could be further 

observed that the displacement and stress values varied by the plastic flow of the materials.  

 

(a) (b) 
Figure 19. (a) Displacement plot; (b) Von misses stress plot for 70kg Under normal loading(walking) for 30% 

collagen-reinforced PMC. 

 

(a) (b) 
Figure 20. (a) Displacement plot; (b) Von misses stress plot for 80kg Under normal loading(walking) for 30% 

collagen-reinforced PMC. 

 

(a) (b) 
Figure 21. (a) Displacement plot; (b) Von misses stress plot for 90kg Under normal loading(walking) for 30% 

collagen-reinforced PMC. 
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Displacement and von misses stresses obtained from analysis for 30% collagen-

reinforced PMC is shown below in figures 17-28. 

 

(a) (b) 
Figure 22. (a) Displacement plot; (b) Von misses stress plot for 100kg Under normal loading(walking) for 30% 

collagen-reinforced PMC. 

 

(a) (b) 
Figure 23. (a) Displacement plot; (b) Von misses stress plot for 50kg Under impact loading for 30% collagen 

reinforced PMC. 

 

(a) (b) 
Figure 24. (a) Displacement plot; (b) Von misses stress plot for 60kg Under impact loading for 30% collagen-

reinforced PMC. 
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(a) (b) 
Figure 25. (a) Displacement plot; (b) Von misses stress plot for 70kg Under impact loading for 30% collagen 

reinforced PMC. 

 

(a) (b) 
Figure 26. (a) Displacement plot; (b) Von misses stress plot for 80kg Under impact loading for 30% collagen-

reinforced PMC. 

 

(a) (b) 
Figure 27. (a) Displacement plot; (b) Von misses stress plot for 90kg Under impact loading for 30% collagen-

reinforced PMC. 
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(a) (b) 
Figure 28. (a) Displacement plot; (b) Von misses stress plot for 100kg Under impact loading for 30% collagen-

reinforced PMC. 

3. Results and Discussion 

Analysis of titanium alloy Ti-6Al-4V and 30% collagen reinforced PMC as ankle joint 

replacement material under different loading conditions are given in the following table 1 – 4, 

both for normal loading and for impact loading in terms of displacement and von-misses 

stresses. 

Table 1. Results Summary of Ti-6Al-4V for normal loading condition. 
Patient weight 

(kg) 

Maximum Load 

(N) 

Displacement (max) 

mm 

Von misses 

stress(max)N/mm2 

50 2000 2.25 e-04 6.456 

60 2400 2.70 e-04 7.747 

70 2800 3.15 e-04 9.038 

80 3200 3.60 e-04 10.33 

90 3600 4.05 e-04 11.621 

100 4000 4.50 e-04 12.912 

Table 2. Results Summary of Ti-6Al-4V for impact loading condition. 
Patient weight 

(kg) 

Maximum Load 

(N) 

Displacement (max) 

mm 

Von misses 

stress(max)N/mm2 

50 10000 1.125 e-03 32.278 

60 12000 1.35 e-03 38.732 

70 14000 1.57 e-03 45.186 

80 16000 1.80 e-03 51.64 

90 18000 2.02 e-03 58.093 

100 20000 2.25 e-03 64.5460 

Tables 1, 2, and Figure 29 show the displacement comparison of Ti-6Al-4V for normal 

and impact load conditions for patient weight in the 50 to 100kg range. It is noticed that during 

normal load conditions for a load of 2000N, displacement observed is 2.25e-04mm, and for a 

load of 4000N, displacement observed is 4.50e-04mm. Similarly, under impact load conditions, 

a load of 10000N displacement observed is 1.125e-03mm, and a load of 20000N displacement 

observed is 2.25 e-03mm. The results obtained from the present investigation show that with the 

increase in load, the maximum displacement observed for the material increased. 
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Figure 29. Displacement comparison of Ti-6Al-4V for normal and impact load. 

 
Figure 30. Von misses stress (max) comparison of Ti-6Al-4V for normal and impacts load. 

Tables 1, 2, and Figure 30 show the Von misses stress comparison of Ti-6Al-4V for 

normal and impact load conditions for patient weight in the 50 to 100kg range. It is noticed that 

during normal load conditions, for the load of 2000N max, Von misses stress observed is 

6.456N/mm2, and for the load of 4000N, the displacement observed is 12.912 N/mm2. 

Similarly, under impact load conditions, for a load of 10000N, the displacement observed is  

32.278N/mm2, and for a load of 20000N, the displacement observed is 64.5460N/mm2. The 

results obtained from the present investigation show that with the increase in load, the 

maximum displacement observed for the material increased. 

From the above figures, it is observed that Ti-6Al-4V exhibited maximum stress of 

12.912 N/mm2 and maximum displacement of 4.5e-04 mm for the patient body weight of 100kg. 

The stresses produced are within the yield stress; hence the material is safe. Ti-6Al-4V 

exhibited maximum stress of 64.6 N/mm2 and a maximum displacement of 2.25x10-03mm for 

the patient body weight of 100kg. 

Table 3. Results summary of 30% collagen-reinforced PMC for normal loading. 
Patient weight 

(kg) 

Maximum Load 

(N) 

Displacement (max) 

mm 

Von misses 

stress(max)N/mm2 

50 2000 3.00 e-04 7.4173 

60 2400 3.61 e-04 8.9008 

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

50 60 70 80 90 100

2.25E-04 2.70E-04 3.15E-04 3.60E-04 4.05E-04 4.50E-04

1.13E-03
1.35E-03

1.57E-03
1.80E-03

2.02E-03
2.25E-03

D
is

p
la

ce
m

e
n

t 
(M

ax
) 

m
m

Patient weight (kg)

Ti-6Al-4V for Normal load Ti-6Al-4V for Impact load

0

10

20

30

40

50

60

70

50 60 70 80 90 100

6.456 7.747 9.038 10.33 11.621 12.912

32.278
38.732

45.186
51.64

58.093
64.546

V
o

n
 m

is
se

s 
st

re
ss

(m
ax

)N
/m

m
2

Patient weight (kg)

Ti-6Al-4V for Normal load Ti-6Al-4V for Impact load

https://doi.org/10.33263/BRIAC134.378
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC134.378  

 https://biointerfaceresearch.com/ 14 of 18 

 

Patient weight 

(kg) 

Maximum Load 

(N) 

Displacement (max) 

mm 

Von misses 

stress(max)N/mm2 

70 2800 4.21 e-04 10.384 

80 3200 4.81 e-04 11.868 

90 3600 5.41 e-04 13.351 

100 4000 6.01 e-04 14.835 

Table 4. Results summary of 30% collagen reinforced PMCfor impact load. 
Patient weight 

(kg) 

Maximum Load 

(N) 

Displacement (max) 

mm 

Von misses 

stress(max)N/mm2 

50 10000 1.506 e-03 37.07 

60 12000 1.1804 e-03 44.509 

70 14000 2.10 e-03 51.928 

80 16000 2.40 e-03 59.347 

90 18000 2.70 e-03 66.767 

100 20000 3.007 e-03 74.188 

Tables 3, 4, and Figure 31 show the displacement comparison of 30% collagen-

reinforced PMC for normal and impact load conditions for patient weight in the range of 50 to 

100kg.  

 
Figure 31. Displacement comparison of 30% collagen-reinforced PMC for normal and impact load. 

 
Figure 32. Von misses stress(max) comparison of  30% collagen-reinforced PMC for normal and impacts load. 
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It is noticed that during normal load conditions for the load of 2000N, displacement 

observed is 3.00e-04mm; for the load of 4000N, displacement observed is 1.506 e-03mm. 

Similarly, under impact load conditions, for a load of 10000N, the displacement observed is 

1.125e-03mm, and for a load of 20000N, the displacement observed is 3.007e-03mm. The results 

obtained from the present investigation show that with the increase in load, the maximum 

displacement observed for the material increased. 

Tables 3, 4, and Figure 32 show the Von misses stress comparison of 30% collagen-

reinforced PMC for normal and impact load conditions for patient weight in the range of 50 to 

100kg. It is noticed that during normal load conditions, for the load of 2000N max Von misses 

stress observed is 7.4173N/mm2, and for the load of 4000N, the displacement observed is 

14.835N/mm2. Similarly, under impact load conditions, for a load of 10000N, the displacement 

observed is  37.07N/mm2, and for a load of 20000N, the displacement observed is 

74.188N/mm2. The results obtained from the present investigation show that with the increase 

in load, the maximum Von misses stress observed for the material increased. 

From the charts, it is observed that 30% collagen-reinforced PMC exhibited maximum 

stress of 14.835 N/mm2 and maximum displacement of 6.01e-04 for the patient body weight of 

100kg under normal walking conditions. The stresses produced are within the yield stress. 30% 

collagen-reinforced PMC exhibited maximum stress of 74.188 N/mm2 and maximum 

displacement of 3.009x10-03mm for the patient body weight of 100kg under impact loading 

conditions. The stresses produced are within the yield stress. 

 
Figure 33. Displacement comparison of Ti-6Al-4V and 30% collagen-reinforced PMC for a normal load. 

Figure 33 shows the displacement comparison of Ti-6Al-4V and 30% collagen-

reinforced PMC for normal and impact load conditions for patient weight in the range of 50 to 

100kg. The chart shows that with an increase in load, the displacement of both materials is 

increasing. It is noticed that 30% collagen-reinforced PMC showed better displacement than 

the Ti-6Al-4V alloy for the same loading conditions. Thus, 30% collagen-reinforced PMC is a 

better ductile property when compared with Ti-6Al-4V alloy. However, since displacement is 

marginal for the applied load, both materials showed exceptionally acceptable limits for ankle 

implants. 
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Figure 34. Von misses stress(max) comparison of Ti-6Al-4V and 30% collagen-reinforced PMC for a normal 

load. 

Figure 34 shows the Von misses stress comparison of Ti-6Al-4V and 30% collagen-

reinforced PMC for normal and impact load conditions for patient weight in the range of 50 to 

100kg. The chart shows that with an increase in load, Von misses stress of both the material is 

increasing. It is noticed that 30% collagen-reinforced PMC shows higher Von misses stress 

than the Ti-6Al-4V alloy for the same loading conditions. Thus, 30% collagen-reinforced PMC 

provides a better stress state that exceeds the yield stress obtained from a uniaxial tensile test 

for ankle implants compared to Ti-6Al-4V alloy. 

4. Conclusions 

The 3D finite element model required for analysis is created by discretizing the 

geometric model. 86,188 elements were created using triad elements. To get valid results, FE 

mesh is subjected to realistic boundary and loading conditions that replicate the actual 

conditions. In this analysis, the maximum load is considered as 4 times the body weight, and 

shear force is taken 80% of the body weight for normal walking. While jumping or sprinting 

maximum load is considered to be 20 times the body weight. The model is fixed at the bottom, 

and the load was applied vertically as compressive loading. Von Misses stress and 

displacement values in the implant were calculated. The analysis results showed that both the 

Ti-6Al-4V and the 30% collagen-reinforced PMC showed minimum stresses but since the 

density of Ti-6Al-4V is more compared to 30% collagen-reinforced PMC. Even though the 

stress developed in Ti-6Al-4V is within the yield stress, the density is still not close enough to 

the density of bone. The analysis shows that titanium alloy (Ti-6Al-4V) has minimum stresses 

and high density compared to the collagen-reinforced polymer matrix composite (PMC). As 

Ti-6Al-4Valloy is heavier in density, it is not compatible with the bone. Thus, a person can feel 

the presence of an implant in the body. Also, all the metal/metal alloys are denser than bone, 

thus lacking compatibility with the bone. Therefore, collagen-reinforced PMC with a 30% 

composition having a density close to that of bone is recommended as an implant material for 

better life and performance. 
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