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Abstract: Six samples of Cu2Zn0.6Ca0.4SnS4 labeled Y1 – Y6 were spin-coated on a pre-cleaned glass 

from 20 ml each of 0.067 moll Calcium sulfate (CaSO4, 98.5% KermerR) and 0.1 mol each of zinc 

nitrate (Zn(NO3)2, 99% Aldrich), Copper(II)sulfate hexahydrate (Cu2SO4.6H2O, 98.5% KermerR), 

stannous sulfate (SnSO4, 99% KermerR), and sodium thiosulfate (Na2S2O3, 98.5% Aldrich) with 

ammonium hydroxide (NH4OH, 99% DHR) and triethanolamine (C6H15NO3, 99% KermerR) used as 

complexing agents. They were left to dry at room temperature. Y2 – Y6 were subjected to heat tempering 

in a carbolite furnace between 150 - 750 ℃ with a step height of 150 ℃. The alloy thin films were 

structurally, morphologically, and optically characterized. The grain sizes for Y1, Y2, Y3, Y4, Y5, and 

Y6 are 15 nm, 40nm,43 nm, 45 nm, 44 nm, and 42 nm, respectively. The interruption of the normal 

stacking sequence of atomic planes initially decreases as the temperature increases and the microstrain. 

The microstrain and stacking fault energy both climaxed at 600 ℃. Microstrain and stacking fault 

energy exhibit a sine and allometric relationship with the temperature (T). As the temperature increases, 

the band gap reduces from 3.60 eV to 3.26 eV. The residue effect of heat on the band gap variation 

gives a relative exponential decay of the crystallite. The difference between a shift in energy and a 

change in optical band gap (∆Estrain) as a function of temperature is given as −0.031 ±

3.66667 × 10−4𝑇. 

Keywords: alloy; thin films; optical band gap; shift in energy; microstrain. 
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1. Introduction 

Cu2ZnSnS4 (CZTS) is a four-element alloy semiconducting material that has sparked 

interest in thin-film solar cells since the late 2000s [1]. Other A2-B-D-F4 (where A, B, D, and 

F are groups:1,2,4, and 6 of the periodic table) materials include Cu, Zn, Sn, and Se (CZTSe), 

and the S-Se alloy CZTSSe. CZTS has optical and electronic properties similar to CIGS (Cu, 

In, Ga, and Se) [2,3]. It is researched to be an intrinsic p-type, high absorption coefficient and 

direct optical band gap of around 1.6 eV, thus making it a good choice for a thin-film solar cell 

absorber layer [4,5]. The irregularity of the Cu-Zn cations makes it challenging to determine 
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the material's structure. It is the most prevalent defect that may be anticipated by theoretical 

analysis and verified by spectroscopy techniques [6].  

The architecture may be misidentified due to the complex arrangement of the copper 

and zinc atoms. According to the theoretical analysis result, the instability of the Cu-Zn cations 

is expected to create unnecessary variations within the CZTS thin-film alloy [7]. As a result, 

this random ordering causes the materials within the solar cell to have the potential to generate 

a significant open circuit deficit which is the primary limiting factor for contemporary solar 

cell devices [8-10]. 

However, reducing or eliminating the disorder can be done by [11,12] elemental 

substitution through heterogeneous phase and temperature treatments. Here, Cu2Zn0.6Ca0.4SnS4
 

(CZCTS) is synthesized and heat tempered. We investigate the effect of heat tempering on the 

alloy thin film prepared through the chemical precipitation route and spin-coating technique by 

considering its crystallographic structures, surface morphology, optical properties, and I-V 

characteristics [13]. 

2. Materials and Methods 

2.1 Synthesis of nanocrystal thin film. 

CZCTS nanocrystals were synthesized in a beaker containing 20 ml each of 0.067 mol 

of Calcium sulfate (CaSO4, 98.5% KermerR) and 0.1 mol each of zinc nitrate (Zn(NO3)2, 99% 

Aldrich), Copper(II)sulfate hexahydrate (Cu2SO4.6H2O, 98.5% KermerR), stannous sulfate 

(SnSO4, 99% KermerR), and sodium thiosulfate (Na2S2O3, 98.5% Aldrich) with ammonium 

hydroxide (NH4OH, 99% DHR) and triethanolamine (C6H15NO3, 99% KermerR) used as 

complexing agents. The mixture was heated for 90 minutes at 90 ℃ while stirring. 50 ml of 

ethanol was added to it after cooling and was centrifuged at 5000 rpm for [14] 20 minutes to 

let the crystal flocculate and precipitate to remove unreacted chemicals for the first time. Two 

times afterward, 50 ml of deionized was added each time it was centrifuged; each set took 20 

minutes. 

The final residue was air dry. 0.1 gram of the air-dry crystals were dispersed in distilled 

water to form a homogenous solution and spin-coated on a soda-lime glass at 3000 rpm for 30 

sec to create a 35 nm thin film. The spin-coated thin film (six in number) was allowed to dry 

at room temperature. Five spin-coated thin films were heat-tempered by a carbolite furnace in 

the range of 150 - 750 ℃ with a step height of 150 ℃ and were named Y2 – Y6 and Y1 for 

reference samples without heat tempering. All the materials were optically, morphologically, 

and structurally characterized.  

2.2. Characterization techniques. 

The crystallographic data were acquired by using diffraction (XRD) on the alloy thin 

film. Measurements were made using CuK α radiation with a wavelength of 0.154 nm to obtain 

the XRD patterns of the CZTS nanostructures [11] for; Y1, Y2, Y3, Y4, Y5, and Y6 (Rigaku mini 

flex 600). The crystals' surface nano-morphology was obtained from a scanning electron 

microscope (Phenom prox). The elemental composition was done by energy-dispersive x-ray 

(EDX). Optical characterization [11,15] was evaluated by a UV-Vis-IR spectrometer (AvaSpec 

3648). The effects of temperature on the crystallite size, microstrain, and stacking fault' [16-

19] regarding the temperature change were also evaluated using Equations 2.1 to 2.5 [17-22]; 

https://doi.org/10.33263/BRIAC134.390
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC134.390  

 https://biointerfaceresearch.com/ 3 of 10 

 

𝜏 =  
𝑘𝜆

𝛽 cos 𝜃
          (2.1) 

where 𝜏 is the mean size of the ordered crystalline domain, k is the dimensionless shape factor 

known as Scherrer's constant with a value of 0.9 [17], and β is the line broadening at half the 

maximum intensity (FWHM) (rad), and θ is the Bragg [17,18] diffraction angle. 

1

𝑑2 =  [ℎ2 +  𝑘2 +  𝑙2] [
1

𝑎2
]         (2.2) 

δ =  
1

D2         (2.3) 

SF =  [
2Π2

45(3tanθ)
1
2

]        (2.4) 

𝜀 =  
𝛽 cos 𝜃

4
         (2.5) 

where a is the lattice constants, (h, k, l) are the miller indices, D is the grain size, and d [22-29] 

is the inter-planar spacing. 

3. Results and Discussion 

The XRD spectra of the six samples at varying temperatures are revealed. The effect of 

tempering on the thin-film samples is presented in Figure 1 [28-30]. The diffraction pattern 

obtained from the XRD exhibited a polycrystalline nature. It is revealed here that some 

diffraction peaks appear as the temperature increases until 600 ℃, but these peaks resurface at 

750 ℃. The cliffs that appear are; (100), (210), (220), (410), (421), and (522) at. All these 

peaks were not present until the samples were heat treated. The grain sizes for Y1, Y2, Y3, Y4, 

Y5, and Y6 are 15 nm, 40nm,43 nm, 45 nm, 44 nm, and 42 nm, respectively. The grain size 

increases as the temperature increases, but the size expands towards 600 ℃ and eventually 

shrinks afterward.  
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Figure 1. XRD patterns of CZCTS thin films for Y1, Y2, Y3, Y4, Y5, and Y6 as subjected to different 

temperatures. 
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The initial increase in length may be due to the aggregation of grains that later broke as 

the temperature approached 600 ℃. It may be due to the assembly of many crystallites forming 

these grains. The same will be accounted for in the behavior of the dislocation density since it 

is inversely proportional to the square of the grain size observed in SEM micrographs, as shown 

in Figure 2. The Williamson-Hall (W-H) method was used to estimate the intrinsic strain and 

crystal size of the alloy thin films from the XRD profiling [11,31], as stated in Equation 2.1 

and presented in Table 1. 

   

   

 

Table 1. The microstrain, stacking fault energy, crystal size, and optical band gap for the samples; Y1, Y2, Y3, 

Y4, Y5, and Y6. 

Samples Microstrain (µm/m) Stacking fault Crystal size Band gap 

Y1 0.13014 0.63846 15.78320 3.60 

Y2 0.14192 0.66064 40.86000 3.51 

Y3 0.16427 0.68225 43.09335 3.47 

Y4 0.16657 0.69184 45.43093 3.41 

Y5 0.15709 0.71449 44.15758 3.35 

Y6 0.14401 0.68745 42.05508 3.26 

Figure 3 illustrates the effect of heat on the alloy's microstrain (µε) and stacking fault 

energy (𝛾𝑆𝐹𝐸). The interruption of the typical stacking sequence of atomic planes initially 

decreases as the temperature increases and the microstrain. The microstrain and stacking fault 

energy both climaxed at 600 ℃. Microstrain and stacking fault energy exhibit a sine and 

allometric relationship with the temperature (T), and the models for both (µε) and (𝛾𝑆𝐹𝐸) for 

the materials are presented in  Equations 3.1 and 3.2, respectively. 

𝜇𝜀 = (0.14521 ± 0.00929) + (0.02219 ± 0.00805)sin [
𝜋(𝑇−(158.82773 ± 93.65109)

(565.48424 ± 176.31184)
]

 (3.1) 

Y1 Y2 Y3 

Y4 Y5 Y6 

Figure 2. Scanning electron microscopy images of Y1, Y2, Y3, Y4, Y5, and Y6. Alloy thin films. 

100 µm 200 µm 100 µm 

100 µm 100 µm 100 µm 
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𝛾𝑆𝐹𝐸 = (0.58647 ± 0.01455)𝑇(0.02591 ±0.00436)     

 (3.2) 

 
Figure 3. Microstrain and stacking fault energy of CZCTS thin film samples of Y1, Y2, Y3, Y4, Y5, and Y6. as a 

function of temperature with sine fit and allometric fit models for microstrain and stacking fault energy. 

The optical transmittance, which is the effectiveness of the alloy in transmitting radiant 

energy, is presented after heat treatment. The shown plots illustrate the variation of optical 

transmittance of the alloy, which was annealed at 150 ℃ – 750 ℃ with a step height of 150 

℃, as shown in Figure 4. The alloy showed better transmittance performance with 450 ℃ and 

600 ℃. The optical absorbance of the heat treatment of the alloy, Cu2Zn0.6Ca0.4SnS4, was 

obtained using a UV-VIS-IR spectrophotometer. Figure 5 depicts the variation in the alloy 

along with the wavelength and temperature. The alloy revealed excellent absorption as the 

temperature increased, showing a greater absorption at 600 ℃. The materials revealed the 

presence of direct optical band gaps. The band gap of the material is obtained through the 

absorption spectrum using a Tauc plot [23]; 

(𝛼ℎ𝑣)𝑛 =  𝛽(ℎ𝑣 − 𝐸𝑔)        (3.3) 

where Eg is the material's band gap, h is the Planck constant, v if the frequency, β is as 

described in Equation 2.1[21], α is the absorption coefficient, and n can take a value of 2 for 

indirect band gap and 0.5 for direct band gap. The graph of  (𝛼ℎ𝑣)𝑛 against hv for n, as the 

case may be for the direct band gaps revealed in Figure 6. As the temperature increases, the 

band gap reduces from 3.60 eV to 3.26 eV (Table 1). Figure 7 shows the variation of the band 

gap of the thin film with the crystallite size [11,29,30]. It shows that the residue effect on the 

difference in the band gap [31-33] gives a relative exponential decay on the crystallite size (D). 

The exponential relationship from the plot is presented as Equation 3.4. 

𝐸𝑔 =  −4.95914 ∗ 10−8𝑒
−𝐷

−2.90805 − 4.95914 ∗ 10−8𝑒
−𝐷

−3.23117 +  

 (−4.95914 ∗ 10−8𝑒
−𝐷

−3.55429 + 3.60002)   (3.4) 
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The upward change in temperature has caused the material's energy band gap reduction. 

This red change within the optical band gap of the material is due to the forceful quantum 

confinement of more electrons in the conduction band [11, 27,28]. We also observed that the 

intrinsic strain varies according to the crystal size and crystallinity of the materials, as presented 

in Table 2.  

Table 2. The crystallinity, band gap shift energy, the shift in the bulk optical band gap, and change in strain for 

the samples; Y1, Y2, Y3, Y4, Y5, and Y6. 

ITEMS Y1 Y2 Y3 Y4 Y5 Y6 

Crystallinity (%) 83.12 87.29 92.85 90.46 90.12 88.45 

∆𝑬𝑺𝑬  - 0.11 0.13 0.19 0.25 0.34 

∆𝑬𝒈  - 0.09 0.04 0.06 0.07 0.09 

∆𝑬𝒔𝒕𝒓𝒂𝒊𝒏  - 0.02 0.09 0.13 0.18 0.25 

Figure 4. Transmittance spectrum of CZCTS 

thin film samples for Y1, Y2, Y3, Y4, Y5, and Y6. 

Figure 5. Absorption spectrum of CZCTS thin 

film samples for Y1, Y2, Y3, Y4, Y5, and Y6. 

Figure 6. Band gap plots of CZCTS thin 

film samples for Y1, Y2, Y3, Y4, Y5, and Y6. 

 

Figure 7. Variation of band gap with crystallite 

size for thin film samples (Y1, Y2, Y3, Y4, Y5, and 

Y6.) and exponential fit of the band gap model. 
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It has been reported that strain is often responsible for the change "of the optical band 

gap." Therefore the optical band gap decrease can be attributed to the change in size effect and 

intrinsic strain caused by the increase in temperature. It is attributed to the relative contribution 

of these factors to the reduction in the bandgaps vis a vis the crystal size and upward change in 

temperature. In the weak confinement region, the shift in the energy band gap (∆ESE) is 

expressed as [11]; 

∆𝐸𝑆𝐸 =  
𝜋2 ℏ2

2𝑅2
{

1

𝑚𝑒
∗ +

1

𝑚ℎ
∗ } − 

18𝑒2

40𝜋𝜀𝑜𝜀𝑅
  

∆𝐸𝑆𝐸 =  𝐸𝐵 − 𝐸𝑔         (3.5)  

where R is the particle's radius, 𝑚𝑒
∗  and 𝑚ℎ

∗  are the effective masses of electron and hole, 

respectively, εo is the dielectric constant of free space, ε is the dielectric constant of CZCTS 

(approximately 8.5), e is the electronic charge, Eg and EB are the energy band gaps for the 

material and its bulk respectively. The change in optical band gap due to temperature is given 

as follows;  

∆𝐸𝑔 =  𝐸𝑔1 −  𝐸𝑔2         (3.6)  

where ∆Eg is the change in the optical band gap between two marked temperature step heights, 

Eg1 is the initial band gap at the initial temperature, and Eg2 is the final temperature at that 

instance. The plot of the shift in energy band gap with temperature variation is thus given in 

Figure 8. The contribution of the strain in the band gap of the CZCTS thin film is shown in 

Table 1. Also, the contribution of ∆Estrain of the CZCTS thin film can be estimated with 

Equation 3.7 as; 

∆𝐸𝑠𝑡𝑟𝑎𝑖𝑛 =  ∆𝐸𝑆𝐸 − ∆𝐸𝑔       (3.7) 

 
Figure 8. Variation of the shift in energy band gap versus temperature in the samples (Y1, Y2, Y3, Y4, Y5, and 

Y6). 

Figure 9 shows the variation of ∆Estrain in the temperature of the CZCTS thin film. Thus 

to get the idea of the dependence of the ∆Estrain on the bulk thin film as related to temperature, 

the model derived from the plot is given as Equation 3.8. 

∆𝐸𝑠𝑡𝑟𝑎𝑖𝑛 =  −0.031 ± 3.66667 × 10−4𝑇      (3.8) 

It clearly shows that the observed decrease in the bandgap with increased crystallite 

was due to the induced intrinsic strain by the increase in temperature of the thin films. 
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Figure 9. Variation of the intrinsic strain versus temperature with the linear fit of the inherent strain model for 

the thin film. 

4. Conclusions 

We have successfully studied the residue effect of heat on the CZCTS thin film at 

varying temperatures. XRD revealed new peaks which are initially absent in the bulk thin film. 

The intrinsic strain must have induced these new peaks. When the temperature rises, the grain 

size increases but decreases as it reaches 600°C. It is thus possible that the initial growth was 

caused by grains clumping together and breaking apart when the temperature hit 600 °C. Many 

crystallites may have aggregated to make these grains, which might explain it. As the alloy's 

temperature rose, it showed more absorption, peaking at 600 degrees Celsius. Direct optical 

band gaps were found in the materials. The effect of temperature on the impact of the band gap 

fluctuation generates a relative exponential decrease in the crystallite size, according to the 

study results. As a result, the shrinkage of the optical band gap may be linked to temperature-

induced changes in the size effect and intrinsic strain. The relative influence of these variables 

on the decrease in the band gaps concerning crystal size and upward temperature change is thus 

confirmed. 
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