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Abstract: Electrochemical synthesis of carbon-free ammonia from H2O and N2  is a promising 

technology for reducing global CO2 emissions from the Haber-Bosch process (industrial ammonia 

production process). This study aims to explore the electrocatalyst activity of non-noble metal 

perovskite-based catalyst (La0.3Sr0.7TiO3-Ce0.8Gd0.18Ca0.02O2-δ, LST-CGDC) for ammonia synthesis 

from wet nitrogen (3% H2O). LST was prepared via a sol-gel process and characterized using X-ray 

diffraction (XRD). Ammonia was successfully synthesized in a double-chamber reactor, with a 

maximum ammonia formation rate of about 7 × 10-11 mol s-1 cm-2 and Faradaic efficiency of 0.2% at 

400 °C and 1.4 V. The results demonstrated that direct ammonia synthesis from water and nitrogen is a 

promising green and sustainable ammonia synthesis technology.  
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1. Introduction 

Ammonia (NH3), after sulfuric acid (H2SO4), is ranked as the second most produced 

commodity, with about 160 million tons worldwide production [1,2]. Around (~ 88%) of the 

produced ammonia is used in the agricultural industry to make fertilizers to sustain global food 

production because of the world's population growth, which will result in more demand for 

ammonia. The rest is consumed to manufacture other commodities (e.g., synthetic fibers, 

explosives, pharmaceuticals, refrigerants, nitric acid, dyes, plastics, resins, and cleaning 

products) [1-5]. In addition, carbon-free ammonia is becoming more popular as an ideal energy 

carrier and hydrogen source (H2 content 17.6% by weight) [6,7]. 

Currently, industrial ammonia production (> 70%) relies predominantly on the Haber-

Bosch process (H-B), which was developed in the early 1900s [8,9]. In this process, ammonia 

is produced from its precursors (H2 and N2, 3:1) at high temperature (400-500 ºC) and pressure 

(up to 300 bar) over an iron-based catalyst with a low conversion (10-15%) [6]. The required 

hydrogen for this energy-intensive process is produced through the steam reforming of fossil 

fuel feedstocks (coal or natural gas). This process is responsible for 1-2% world's energy 

consumption, ~ 1.5 greenhouse gas emissions, ~ 400 annual million tons of CO2 emissions, 

and 2-5% of global natural gas consumption [3,8,10]. As the demand for ammonia grows, it is 

of great need to develop alternative approaches that consume less energy and are carbon-free 
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to produce green ammonia [11]. Besides, using green ammonia as clean fuel could reduce 50% 

of carbon emissions from shipping by 2050 [12]. 

The electrosynthesis of ammonia has the potential to overcome the main limitations of 

the Haber-Bosch process, including low ammonia conversion, high energy consumption, and 

severe environmental pollution [11,13-16]. Following the electrochemical synthesis of 

ammonia from its elements (H2 and N2) at atmospheric pressure by Marnellos and Stoukides 

in 1998 [13], many researchers have made significant efforts to synthesize ammonia 

electrochemically [17-20]. Despite its associated problems (i.e., production, storage, and 

transportation) [8,21,22], pure H2 was used as an ammonia precursor in those studies. Hence, 

industrial and carbon-free societies paid more attention to using water as an alternative source 

of H2 and renewable electricity (e.g., wind and solar) for the ammonia synthesis process 

(carbon-free ammonia synthesis) [3,23]. 

The electrosynthesis of ammonia from steam, hydrogen source, and nitrogen at 

atmospheric pressure was first reported by Skodra and Stoukides in 2009 [24]. In that study, 

ammonia was produced in an electrolytic cell based on Ru-MgO, a precious metal-based 

catalyst, and either proton (H+) or oxygen-ion (O2−) conducting electrolyte. Ammonia was 

synthesized successfully with a formation rate of about 3.75 × 10-13 mol s-1 cm-2 at 650 ºC. This 

low ammonia formation rate was attributed to the low electronic conductivity of the Ru-MgO 

catalyst. The principle of ammonia synthesis from water and nitrogen in an electrolytic cell 

based on an oxygen-ion (O2−) conducting electrolyte is represented in Figure 1. 

In the electrochemical processes, material selection for designing an electrocatalyst 

(working electrode) is challenging [25]. In the literature, different electrocatalyst materials, 

including noble metals (Pt, Ag, and Ru), have been used for the electrochemical synthesis of 

ammonia directly from H2O and N2 [24,26,27], metal-organic-frame work (MOF) [28] spinels 

[29,30], perovskites [26,31,32] and perovskite-nitride composite [25]. However, selective 

nitrogen reduction reaction (NRR) electrocatalysts that support ammonia formation and 

suppress the strong competitive hydrogen evolution reaction (HER) remain elusive [33]. 

Perovskite-type oxides are of great interest owing to their properties such as good 

electrocatalytic activity, ease of synthesis, mixed electronic-ionic conductivities,  low-cost 

compared to noble metals, flexibility, and excellent stability [18,25,34,35]. Among the 

perovskites, lanthanum doped strontium titanate (LaxSr1-xO3, LST), Co and Fe-free and non-

noble containing oxide, has attracted more attention due to its thermal stability, redox stability, 

chemical stability, sulfur resistance, carbon deposition resistance, mixed electronic and ionic 

conduction [36-41]. These properties make LST-based materials promising anodes for solid 

oxide fuel cells (SOFCs) [36,37,42] and direct carbon fuel cells (DCFCs) [43], and cathodes 

for solid oxide electrolysis cells (SOECs) [39-41] and solid-state ammonia synthesis (SSAS) 

[32,44]. In addition to their previous properties, it was also reported that LST-based cathodes 

exhibited good performance in a reducing gas-free atmosphere and without cathode pre-

reduction during H2O and CO2 electrolysis [41]. This feature makes LST also a promising 

cathode for direct electrochemical synthesis of ammonia from H2O and N2. In a previous study, 

precious metal-containing La-doped SrTiO3 (La0.3Sr0.6Ti0.6Ru0.4O3, LSTR) was employed as a 

cathode for ammonia synthesis from H2O and N2 in electrolytic cell based on proton-

conducting (H+) electrolyte [32].  

In this study, a composite cathode La0.3Sr0.7TiO3-Ce0.8Gd0.18Ca0.02O2-δ (LST-CGDC) 

was used as an electrocatalyst for direct ammonia synthesis from H2O and N2 in electrolytic 

cell based on oxygen-ion (O2−) electrolyte (CGDC-(Li/Na/K)2CO3)), with no cathode (LST-
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CGDC) pre-reduction step. Besides, CGDC-ternary carbonate and Sr0.5Sm0.5CoO3-δ (SSCo), 

respectively, were selected as an electrolyte and anode due to their high oxygen-ion 

conductivity [29] and oxygen evolution reaction (OER) activity [45]. 

 
Figure 1. The principle of ammonia synthesis from water and nitrogen in a double-chamber reactor based on 

oxygen-ion (O2−) conducting electrolyte 

2. Materials and Methods 

2.1. Chemicals. 

Titanium (IV) isopropoxide (C12H28O4Ti, 97+%), lanthanum oxide (La2O3, 99%), 

gadolinium oxide (Gd2O3, 99.9%), cerium nitride hexahydrate (Ce(NO3)3·6H2O, 99%), 

calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, 99 %), ethylenediaminetetraacetic acid, EDTA, 

(C10H18N2O8, 99%), strontium nitrate (Sr(NO3)2, 99%), lithium carbonate (Li2CO3, 98%), 

potassium carbonate (K2CO3, 99%), samarium oxide (Sm2O3, 99.9%), and citric acid (C6H8O7, 

99%), were purchased from Alfa Aeasar. Sodium carbonate (Na2CO3, 99.5%) and cobalt nitrate 

hexahydrate (Co(NO3)2·6H2O, 98%) were purchased from Sigma Aldrich. Nitric acid (HNO3, 

70%) and ammonia solution (NH3, 35%) were purchased from Fisher. 

2.2. Materials synthesis. 

This study synthesized the electrocatalyst (La0.3Sr0.7TiO3, LST) via an EDTA-citric 

acid complexing sol-gel process, as described elsewhere [46]. In brief, the required amounts of 

C12H28O4Ti, Sr(NO3)2, La2O3 (HNO3 solution was used to convert it to nitrate form), and 

Sr(NO3)2 were dissolved in deionized water. The complexing agents (citric acid and EDTA) 

were then added in a 1.5:1:1 molar ratio (citric acid:EDTA:total metal ions). The ammonia 

solution was then added to the mixture until the pH reached 6, after which it was evaporated 

on a hot plate under stirring to induce gelation. The formed gel was dried further before being 

calcined in air at 900 ºC for 2 hours to produce LST powder. Ca and Gd co-doped ceria 

(Ce0.8Gd0.18Ca0.02O2-δ, CGDC) and Sm0.5Sr0.5CoO3-δ (SSCo) powders were also synthesized via 

the above mentioned sol-gel process [29]. Solid-state reaction (SSR) was used to prepare the 

composite electrolyte (CGDC/(Li/Na/K)2CO3 70:30 wt%), as described elsewhere [29].  
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2.3. Materials characterization. 

The phase purity of the prepared materials was examined using a Panalytical X'Pert Pro 

diffractometer with CuKα radiation (λ=1.5405 Å), at 40 kV and 40 mA and in the 2θ range 

between 5-100º. The lattice parameters (a = b = c) and crystallite size (D) were estimated using 

the following equations [47]; 

a = dhkl
√h

2 + k
2 + l

2
 

(1) 

D =
0.9λ

(βcosθ)
 

(2) 

where, d is the spacing between crystal planes, khl are the Miller indices, λ is the X-ray 

wavelength θ is Bragg's diffraction angle, and β is the full width at half maximum (FWHM). 

2.4. Fabrication of the single-cell. 

In this study, the electrolytic cell (single-cell) used for ammonia synthesis was 

fabricated as described elsewhere [29]. In this cell (SSCo-CGDC|CGDC-carbonate|LST-

CGDC), the anode, electrolyte, and cathode were composed of SSCo-CGDC (70:30 wt%), 

CGDC-carbonate (70:30 wt%) and LST-CGDC (70:30 wt%), respectively. In addition, stach 

(15 wt%) was added to both electrodes as a pore former. The single-cell components (anode, 

electrolyte, and cathode) were pressed into a 19 mm pellet at 121 MPa before being sintered in 

air at  700 °C for 2 h. The geometric surface area of the cathode was 0.785 cm2. A silver paste 

was used to make the electrodes' current collectors (in a grid pattern), and Ag wires were 

attached to both electrodes to serve as output terminals. 

2.5. Ammonia synthesis. 

This study synthesized ammonia using a self-designed double-chamber reactor, as 

described elsewhere [29]. In brief, the cathode chamber was fed wet N2 (3% H2O), while the 

anode chamber was exposed to air. A potentiostat/galvanostat (Solartron 1287A) was used for 

the ammonia synthesis experiments to apply a constant voltage across the electrolytic cell for 

30 minutes. The ammonia produced at the cathode chamber was absorbed using 20 mL of HCl 

solution (0.1 mol L-1). The NH4
+ concentration was estimated using an ion-selective electrode 

(ISE, Orion Star A214). The following equations were used to calculate the ammonia formation 

rate and the Faradaic efficiency [18,48];  

rNH3
=

cNH4
+ × V

MNH4
+ × t × A

 
(3) 

Faradaic efficiency (%) =
3F × rNH3

I
× 100 

(4) 

where rNH3
 is the rate of ammonia formation (mol s-1 cm-2), MNH4

+ is the molar mass of NH4
+ 

(18 g mol-1), V is the volume of HCl solution (20 mL), t (s) is ammonia collection time, cNH4
+ is 

NH4
+ ion concentration (g mL-1), A is the cathode geometric surface area (0.785 cm2), F is the 

Faradaic constant, and I is the generated current density (mA cm-2).  
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3. Results and Discussion 

3.1. Characterization. 

The XRD pattern of La-doped SrTiO3 (La0.3Sr0.7TiO3, LST) after calcinating its dried 

gel precursor in the air at 900 °C for 2 h is shown in Figure 2b. As can be seen, a single phase 

of LST was obtained, and all the diffraction peaks are indexed well to the standard SrTiO3 

(Figure 2a) with a cubic perovskite structure (JCPDS No. 35-0734) [49]. The lattice constant 

(a = b = c) of LST, estimated from the most intense peak (110), was found to be 3.8953 Å. This 

value is similar to those reported by others for La-doped SrTiO3 (3.8876-3.9075 Å) [39,40,50]. 

The crystallite size (D) of LST was approximately 23.31 nm.  

 
Figure 2. XRD pattern: (a) La0.3Sr0.7TiO3 (LST) after firing its dried gel in the air at 900 °C for 2 h; (b) SrTiO3 

standard. 

 
Figure 3. XRD pattern: (a) La0.3Sr0.7TiO3 (LST); (b) LST after heat treatment in 5% H2-Ar at 1200 ºC for 5h.; 

(c) LST after heat treatment in N2 at 500 ºC; (d) LST-CGDC composite fired in the air at 700 ºC for 30 min.  

Figures 3a-d show the XRD patterns of LST, LST fired in 5% H2-Ar (reducing 

atmosphere) at 1200 °C for 5 h, LST fired in N2 at 500 °C and LST-CGDC composite fired in 

the air at 700 °C, respectively. As shown, the LST sample retained its perovskite structure, and 

no phase change was observed after being heated at 1200 °C for 5 h in 5% H2-Ar (Figure 3b) 

https://doi.org/10.33263/BRIAC135.402
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC135.402  

 https://biointerfaceresearch.com/ 6 of 12 

 

and N2 at 500 °C (Figure 3c). Furthermore, the lattice constant (a = b = c) of the LST sample 

that was heated in 5% H2-Ar (3.9082 Å) and N2 (3.8983 Å) was similar to that of the as-

synthesized LST sample (3.8953 Å), indicating its stability in both atmospheres. For the 

composite cathode (LST-CGDC), its XRD pattern exhibits only the peaks belonging (no 

additional peaks observed) to the LST and CGDC after firing the composite cathode at the 

single-cell sintering temperature (700 °C) in the air for 30 min, as shown in Figure 3d. This 

indicates that the composite cathode's components are chemically compatible at this 

temperature (700 °C). 

3.2. Ammonia synthesis. 

3.2.1.  Ammonia synthesis at different temperatures. 

Figure 4 displays the generated current density under the employed ammonia synthesis 

conditions (various operating temperatures ranging from 375 to 450 ºC and a constant applied 

voltage of 1.4 V  for 30 min). As shown from the figure, apart from the drop in generated current 

density at the initial stage (~ 2 min), almost a constant current density was observed at all 

operating temperatures, indicating short-term performance stability of the electrolytic cell 

under these conditions for ammonia synthesis. This observed initial drop in the generated 

current density is due to the blocking effect of charged ions that accumulated at the interfacial 

region between the electrodes and electrolyte, as reported by others [28,51]. In this case, the 

transferred oxygen-ions (O2−) across the electrolyte may partially be blocked by the positively 

charged ions (e.g., Li+, Na+, K+) that accumulated the electrolyte/cathode interface, which in 

turn results in current density decline [52]. Furthermore, by raising the electrolytic cell 

operating temperature from 375 to 450 ºC, a significant increase in generated current density 

was attained, reaching the highest value of about 23.36 mA cm-2 at 450 ºC, as shown in Figure 

4. This increase in the generated current density with a cell operating temperature increase is 

due to the enhancement of the ionic conductivity of the composite electrolyte [29]. 

 
Figure 4. Generated current density-time curve during the synthesis of ammonia from water and nitrogen at 

various operating temperatures and applied voltage of 1.4 V. 

Figure 5 shows the effect of the rate of ammonia formation and its corresponding 

Faradaic efficiency on the cell operating temperature (375-450 ºC) when a constant voltage of 

about 1.4 was applied across the electrolytic cell for 30 min. As shown, a significant increase 

in the ammonia formation and its corresponding Faradaic efficiency was observed with 
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increasing the cell operating temperature from 375 to 400 ºC. However, a further increase in 

cell operating temperature (> 400 ºC) resulted in a significant decline in the ammonia formation 

rate and the Faradaic efficiency. This decrease in ammonia formation is due to increased 

ammonia decomposition at high operating temperatures  [26]. In this study, 400 ºC seems to 

be the optimum cell operating temperature at which the highest ammonia production rate of 

about 7 × 10-11 mol s-1 cm-2 with Faradaic efficiency of approximately 0.2% was attained. This 

ammonia formation rate is higher than that reported for precious metal-containing perovskite 

oxide, La0.3Sr0.6Ti0.6Ru0.4O3, (3.8 × 10-12 mol s-1 cm-2 at 500 ºC) [32].  

 

Figure 5. The effect of cell operating temperature on ammonia formation rate. 

3.2.2.  Ammonia synthesis at different applied voltages 

Figure 6 shows the reported generated current density during the electrosynthesis of 

ammonia under various applied voltages ranging from 1.2 to 1.8 V and a fixed cell operating 

temperature of 400 ºC for 30 min.  

 

Figure 6. Generated current density-time curve during the synthesis of ammonia from water and nitrogen at 
various applied voltages and 400 ºC. 

As can be seen, the generated current density increased significantly from 3.68 to 10.12 

mA cm-2 when the electrolytic cell was operated at 1.2 and 1.4 V, respectively. However, at 

high applied voltages (> 1.4 V), there was a decline in the generated current density, reaching 
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a low value of about 6.03 mA cm-2 at 1.6 V. This observed decrease in the generated current 

density is due to the ion-blocking effect as mentioned previously [28,51,52]. Although the 

decrease in the generated current densities was observed at high applied voltages (1.6 and 1.8 

V), the electrolytic cell exhibited almost stale performance at all applied voltages (1.2-1.8 V), 

indicating its short-term performance stability. 

Figure 7 shows the effect of the applied voltages (1.2-1.8 V) on the ammonia production 

rate and its corresponding Faradaic efficiency at fixed cell operating temperature (400 ºC). It 

was observed that the rate of ammonia formation increased significantly with increasing the 

applied voltages, reaching a maximum value (7 × 10-11 mol s-1 cm-2) at an applied voltage of 

1.4 V. However, a further increase in the applied voltage from 1.6 to 1.8 V resulted in a 

significant decrease in the ammonia formation rate to almost a constant value (~ 1 × 10-11 mol 

s-1 cm-2). This decrease in the rate of ammonia formation could be attributed to the observed 

decrease in the generated current density, as mentioned above [53]. Besides, at all applied 

voltages, very low corresponding Faradaic efficiency was attained (< 1%), which implies that 

most of the supplied energy was consumed in the competing hydrogen evolution reaction 

(HER), as observed by others [18,54].  

Table 1 compares the rate of ammonia production from water (H2O) and nitrogen (N2) 

using various electrocatalysts to that observed by the prepared composite cathode (LST-

CGDC). As shown in the table, the proposed electrocatalyst has a higher ammonia formation 

rate than noble metal-based catalysts (Ru, Ag, and Pt) [24,26] or La0.3Sr0.6Ti0.6Ru0.4O3 (noble 

metal-containing perovskite oxide) [32] and comparable to that observed using spinel based 

oxides [29,30]. Besides, it can also be seen from the table that the ammonia formation rate 

obtained using LST-CGDC was lower than the reported for the noble metal-free-perovskite 

oxides (La0.75Sr0.25Cr0.5Fe0.5O3-δ and La0.8Cs0.2Fe0.8Ni0.2O3-δ) [55,56] and metal-organic-

framework (MOF)-based catalysts [28]. In general, the listed electrocatalyst exhibited low 

Faradaic efficiencies (< 4%), indicating that the competing hydrogen evolution reaction (HER) 

is the dominating process. Thus, finding an efficient electrocatalyst that supports ammonia 

production and suppresses HER is of crucial importance. Furthermore, despite their low 

Faradaic efficiency, precious metal-free perovskite oxides are more affordable than noble 

metal-based electrocatalysts. 

 
Figure 7. The effect of the applied voltage on ammonia formation rate. 
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Table 1. This is a table. Tables should be placed in the main text near the first time they are cited. 

Electrocatalyst 

Applied 

voltage 

(V) 

T 

(ºC) 

rNH3
 

(mol s-1 cm-2) 

Faradaic 

Efficiency 

(%) 

Ref 

Ru-based catalyst 2 650 3.75  10-13 - [24] 

Pt 0.8 550 < 1  10-12 - [26] 

La0.3Sr0.6Ti0.6Ru0.4O3 - 0.1 500 3.8  10-12 - [32] 

Ag 0.8 550 4.9  10-11 0.46 [26] 

CoFe1.9Mo0.1O4-Ce0.8Gd0.18Ca0.02O2-δ 1.4 400 6  10-11 0.11 [30] 

CoFe2O4-Ce0.8Gd0.18Ca0.02O2-δ 1.6 400 6.5  10-11 0.17 [29] 

La0.3Sr0.7TiO3-Ce0.8Gd0.18Ca0.02O2-δ (LST-CGDC) 1.4 400 7  10-11 0.2 This study 

La0.6Sr0.4Co0.2Fe0.8O3-δ 0.8 550 8.5  10-11 0.33 [26] 

LaFeO3 2 80 1.26  10-10 0.32 [56] 

Pt/C-loaded carbon paper 1.2 220 2  10-10 2.1 [27] 

La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Gd0.18Ca0.02O2-δ 1.4 400 2  10-10 0.52 [31] 

La0.8Cs0.2Fe0.8Ni0.2O3-δ 2.4 80 3.52  10-10 0.16 [56] 

La0.75Sr0.25Cr0.5Fe0.5O3-δ-Ce0.8Gd0.18Ca0.02O2-δ 1.4 375 4  10-10 3.87 [55] 

Metal-organic-framework, MOF(Fe) 1.2 90 2.12  10-9 1.43 [28] 

4. Conclusions 

In summary, the activity of a composite cathode based on a non-noble metal, Co and 

Fe-free perovskite oxide (La0.3Sr0.7TiO3-Ce0.8Gd0.18Ca0.02O2-δ, LST-CGDC) for ammonia 

synthesis electrochemically from H2O and N2 was successfully explored. The X-ray diffraction 

(XRD) was used to characterize La0.3Sr0.7TiO3 (LST), which was synthesized via a sol-gel 

method. The XRD results revealed that after 2 h of calcination at 900 °C, a single-phase 

perovskite oxide (LST) with an average crystallite size of 23.31 nm was obtained. The XRD 

results also showed that the LST was stable in the reducing atmosphere (5% H2-Ar). The results 

showed that ammonia could be successfully synthesized under atmospheric pressure from wet 

N2 (3% H2O) using LST-CGDC composite as an electrocatalyst. Furthermore, the maximum 

ammonia formation rate (7 × 10-11 mol s-1 cm-2) and Faradaic efficiency (0.2%) were attained 

at a cell operating temperature of 400 °C and an applied voltage of 1.4 V. Despite the low 

Faradaic efficiency and ammonia formation rate; the findings showed that the prepared non-

noble electrocatalyst (LST) is a promising material for carbon-free ammonia synthesis. 
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