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Abstract: Herein, using first-principles density functional theory, we explored the applicability of 

cellulose as a functional material of carbon nanotubes and as an adsorbent material for heavy metals 

(As, Hg, and Pb). The calculations revealed that cellulose is suitable for the non-covalent 

functionalization of SWCNT. The interaction of SWCNT with cellulose is mainly classified as physical 

interaction. This claim is supported by the results of binding energy, equilibrium distances, and charge 

transfer analysis of the SWCNT and cellulose. The electronic structure of the prototype SWCNT in the 

cellulose nanocomposite is well maintained, where no visible hybridization of the orbital characters is 

observed. The calculations explain experimental observations that cellulose is suitable for the non-

covalent functionalization of SWCNT. Further calculations show that As and Pb can be trapped by 

cellulose biopolymer, while  Hg indicates weak interaction. A significant reduction of the bandgap of 

cellulose is observed upon adsorption of As and Pb. These findings show cellulose can be used as an 

adsorbent sensing material for As and Pb. Overall, the results of this study confirm that cellulose is a 

promising functional material for SWCNT and a renewable adsorbent material for heavy metals.   

Keywords: cellulose; carbon nanotubes; heavy metals; adsorption; functionalization; nanocomposite; 

density functional theory. 
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1. Introduction 

The cellulose biopolymer (C6H10O5)n, the most abundant biopolymer on the planet, has 

paid much interest owing to its impressive mechanical properties, biocompatibility, and rich 

chemical properties [1–3]. Cellulose biopolymer is the building block of natural fiber. Thus, it 

can be extracted from various plants and even some organisms, making it a low-cost and 

renewable material [4–6]. The eco-friendliness, biodegradability, and mechanical properties of 

cellulose make it the preferred candidate to replace petroleum-based polymers. Moreover, 

owing to cellulose's strength, lightweight, low thermal expansion, and flexibility, it is used in 

conductive composites, photovoltaic applications, and adsorbent technology for water 

remediation technology [7–10]. The increasing number of research papers and patents on 
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cellulose-based materials reflect its importance for future engineering materials with advanced 

properties and associated eco-friendliness [11–13]. In particular, many reports show that 

cellulose is promising as a functional material for carbon nanotubes and heavy metals adsorbent 

material.  

Carbon nanotubes (CNT) exist in bundles due to the van der Waals interaction between 

the nanotubes. Earlier reports revealed cellulose and its derivatives are effective functional 

dispersants of single-walled carbon nanotubes (SWCNT) and have broad applicability of the 

nanocomposite [4, 14, 15]. For example, Riou et al. [16] report that carboxymethyl cellulose 

can disperse SWCNT uniformly. Also, the paper of Deng et al. [17] reports the super 

capacitance properties observed in the carbon nanotube and cellulose composite. Moreover, 

CNT and cellulose hybrid materials show various functionality reported by multiple authors 

[18, 19]. For example, Ma et al. [20] were able to fabricate strong cellulose and carbon 

nanotube fiber with electrical heating and humidity-sensing properties. Wang et al. [19] were 

able to produce a robust filament that has 472.1 MPa that has strain and humidity sensor 

capabilities. Despite these reports, the wrapping mechanism of cellulose on carbon nanotubes 

is not fully understood and is still a subject of basic research for further optimization of 

cellulose – (SW)CNT composites.  

Aside from composite material of carbon nanostructures, cellulose was extensively 

studied for water purification technology, particularly for heavy metals adsorbent. Heavy 

metals are one of the most common inorganic chemicals released into the environment from 

factories, chemical products, and agricultural waste [21, 22]. The typical heavy metals found 

in water are arsenic (As),  antimony (Sb), cadmium (Cd),  mercury (Hg), and lead (Pb) [21, 

23]. Water intake with these heavy metals exceeding the permitted amount can significantly 

put a person at risk. For example, Pb, As, and Hg can cause damage to the nervous system, 

brain, skin, and lungs, even for a small amount (>10μg), and can be carcinogenic [24]. Thus, 

removing and detecting these heavy metals is crucial in securing the environment and human 

health. Cellulose biopolymer is particularly attractive for water purification adsorbent material 

due to its large surface area and anti-fouling behavior [11]. These important properties are 

further reflected in the number of reports of cellulose-based materials for water purification 

systems [11, 25, 26]. 

This study investigated the bonding mechanism of cellulose with the SWCNT and 

explored the adsorption ability of cellulose for trapping heavy metals. All calculations are 

conducted using first-principles density functional theory (DFT). The simulation revealed that 

cellulose is suitable for the non-covalent functionalization of carbon nanotubes, where it 

preserved the electronic structure of the carbon nanotube. The adsorption of As, Hg, and Pb 

revealed that As and Pb can strongly be adsorbed on the hydroxyl, hydroxymethyl, and 

cellulose backbone sites, while the Hg yields minimal binding energy in all studied 

configurations. 

 2. Materials and Methods 

All DFT calculations are conducted using Quantum Espresso using a plane-wave basis 

set, PAW pseudopotential,  PBE exchange-correlation functional, and Grimme-D3 dispersion 

correction [27–33]. The energy and charge cutoff is set to the standard value, 45 Ry and 330 

Ry, respectively. The optimization calculation sets the energy and force convergence threshold 

to 10-8 Ry and 10-5 Ry /Bohr, respectively. The Γ-point algorithm optimizes Cellulose/SWCNT 

and Cellulose/Heavy-Metal atomic configurations. A 15 Å vacuum slab is included to remove 
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the interaction of the periodic images of studied systems. In the electronic structure calculations 

of SWCNT/Cellulose nanohybrid, a 1x1x11 k-points is used for the SCF calculations, and 

1x1x30 k-points are used for the electronic density of states calculations for an accurate 

description of the electronic state's landscape.    

3. Results and Discussion 

The discussions are divided into two parts, section 3.1 and section 3.2. In section 3.1, 

the synergetic interaction of cellulose and SWCNT nanocomposite is evaluated by examining 

the binding energy, Charge Density Difference (CDD), Electron Localization Function (ELF), 

and electronic density of states. In section 3.2, the interaction of As, Hg, and Pb on different 

sites of cellulose is discussed by careful inspection of the bond lengths, binding energy, 

bandgap, and electronic density of Cellulose/Heavy-Metals atomic configurations. 

3.1. SWCNT and cellulose nanocomposite. 

Two cellulose chains are adsorbed on the prototype SWCNT(7,1), shown in Figure 1.  

Figure 1. The optimized atomic configuration of SWCNT(7,1) and cellulose chains nanocomposite. (a) view 

from tube direction, (b) side view, and (c) top view. 

 

Figure 2. The (a)-(b) Charge Density Difference (CDD) and (c)-(e) 2D Electron Localization Function (ELF) of 

the SWCNT/Cellulose nanocomposite. The yellow and cyan isosurface denotes the accumulation and depletion 

of electronic charge, respectively.  

The choice of the prototype SWCNT is due to the close lattice constant between 

cellobiose and SWCNT(7,1). The equilibrium distance C-C, C-H, and C-O distances of the 

SWCNT and cellulose are 3.94 Å, 2.88 Å, and 3.83 Å, respectively. The binding energy of a 

single cellulose chain is -0.608 eV/nm. The adsorption process is exothermic, where the 

nanocomposite of cellulose chains and SWCNT can form spontaneously and be stable at room 
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temperature. The calculated binding energy is close to other weakly bonded systems such as 

the GO/cellulose (-0.9 eV), graphene/polymer (-0.34 eV to -0.76 eV), graphene/nylon-6 (-0.52 

eV), and SWCNT/nylon-6 (-0.42 eV) [34–36].  

To further examine the synergetic interaction of the nanocomposite, the CDD (Figure 

2a and Figure 2b) and ELF (Figure 2c-Figure 2e) are calculated. The Bader charge analysis 

yields an electron transfer of 0.04 e. The depletion of electronic charge is mainly in the SWCNT 

(shown in Figure 2a and Figure 2b, tube direction and side view, respectively). It is noted in 

Figure 2c and Figure 2d that there is no localization of electrons in the interface of the 

nanocomposite, indicated by the deep blue region. However, deformed ELF is observed 

particularly at the interface, indicating an induced dipole [37]. In Figure 2e, the cellulose chains 

interact with one another, showing that the cellulose chains can wrap the SWCNT. This result 

explains earlier experimental observations that cellulose chains can be utilized to isolate 

SWCNT [16]. It also supports the claim that cellulose can form tubular structures, as discussed 

in the following report [38].  

 

Figure 3. (a)The electronic density of states and (b) the charge density of the nanocomposite at the valence 

band maximum at the Γ point. The Fermi level is taken as the reference (EFermi = 0 eV).  

The electronic density of states of SWCNT(7,1) and the nanocomposite revealed a 

bandgap of  ~0.14 eV (Figure 3a). It is noteworthy to point out that the electronic density of 

states near the Fermi level (0 eV) is dominated by the SWCNT(7,1), showing that VBM is in 

the SWCNT(7,1) region (Figure 3b). The electronic states of the cellulose chains appearing at 

the valence and conduction band are roughly at -1.5 eV and 3.5 eV, maintaining their wide 

bandgap nature (~ 4.98 eV). The findings indicate that the electronic structure of the 

SWCNT(7,1) is well maintained where minor broadening of the states is observed, a key 

feature of physisorption [34, 36]. The results of the density of states of the nanohybrid can be 

considered a superposition of its constituents with no hybridization of the orbitals between 

components visible. This result validates the calculated weak binding energy, long-range 

interaction, minimal charge transfer, and no localization of electrons at the interface of the 

nanohybrid. The findings confirm that cellulose is suitable for the non-covalent 

functionalization of carbon nanotubes.  

3.2. Cellulose biopolymer for trapping heavy metals. 

The optimized configuration of cellulose is shown in Figure 4. As, Hg, and Pb 

adsorption are investigated in four adsorption sites shown in Figure 4b. The calculated binding 

energy, minimum distance, and bandgap are summarized in Table 1.  

(a)        (b) 
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Figure 4. The optimized cellulose chain is viewed from the (a) chain direction and (b) top view. 

The optimized configuration of cellulose with adsorbed As, Hg, and Pb are displayed 

in Figures 5a, 5b, and 5c, respectively. For the Cellulose-As and Cellulose-Pb configurations, 

the adsorption energy is maximum in site 1, where the hydroxyl group of cellulose interacts 

with As and Pb with a bond length of 2.06 Å and 2.50 Å, and corresponding binding energy of 

-1.05 eV and -0.58 eV, respectively. The bonding is mainly due to the hydroxyl-As and 

hydroxyl-Pb interactions. On the other hand, a relatively weaker interaction is observed 

between cellulose and Hg in all sites. However, the magnitude of the binding energy is still 

higher than the thermal energy (25 meV), indicating that Hg can be trapped at room temperature 

but can quickly diffuse in the system. In site 3, the As, Hg, and Pb are physisorbed as reflected 

by the equilibrium distances showing no formation of a bond between the heavy metals and 

cellulose. In site 4, the As and Pb formed a bond with the oxygen atom of the cellulose, but the 

binding energy is lesser compared to site 1. These results agree with and confirm other reports 

that cellulose and other natural polymers are suitable as adsorbent materials for heavy metals 

[12, 39–41]. 

Table 1. Summary of the binding energy, minimum distance, and bandgap of cellulose chain and heavy metals 

(As, Hg, and Pb) systems displayed in Fig.5. The bandgap of cellulose is 4.98 eV. 

System Min. Distance 

{Å} 
Binding Energy 
{eV} 

Bandgap  

{eV} 

Cellulose – As    

Site – 1  2.06 -1.05 1.63 

Site – 2  2.07 -0.77 1.41 

Site – 3  1.89 -0.35 2.61 

Site – 4 2.12 -0.66 1.37 

Cellulose – Hg     

Site – 1  2.73 -0.13 4.70 

Site – 2  3.21 -0.09 4.64 

Site – 3  2.98 -0.16 4.83 

Site – 4  3.35 -0.17 4.89 

Cellulose – Pb     

Site – 1  2.50 -0.58 0.09 

Site – 2  2.64 -0.26 0.03 

Site – 3   3.08 -0.20 2.67 

Site – 4  2.67 -0.41 0.94 

The charge density isosurface of cellulose with adsorbed As, Hg, and Pb are further 

investigated in Figure 6. At the isosurface value of 0.035, overlapped electrons are shown in 

Figure 6a and Figure 6d between cellulose and As, indicating sharing of electronic charge. The 

cellulose and Pb systems show overlaps of electronic density in Figure 6c (at the OH-Pb 

region). However, no sharing of electronic charge at site 3 (Figure 6f), justifying its calculated 

weak binding energy. In both cases of cellulose-Hg systems (Figure 6b and Figure 6e), no 

overlapping electronic charge is observed, explaining the weak interaction of Hg.    

(a)     (b) 

site 1                  site 2 

  

site 3                    site 4 
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Figure 5. The optimized structure of (a) Cellulose-As, (b) Cellulose-Hg, and (c)Cellulose-Pb systems in four 

sites. 

The calculated bandgap of the cellulose is 4.98 eV, which agrees with a recent report 

(5.0 eV–5.5 eV) [42]. Significant bandgap reduction is observed in Cellulose-As and 

Cellulose–Pb systems, while Cellulose–Hg systems maintain the wide bandgap nature of 

cellulose. The electronic bandgap is related to the material's conductivity and absorption 

spectra, in which significant changes in the material's bandgap can be utilized as sensing criteria 

[43]. Thus, based on these findings, cellulose can be used for trapping and sensing heavy metals 

such as As and Pb. 
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Figure 6. The charge density of cellulose with adsorbed As, Hg, and Pb in (a)-(c) site 1 and (d)-(f) site 3. The 

charge density isosurface value is set to 0.035. 

Further calculations are still needed to reveal the interaction of heavy metals and their 

compounds to fully elucidate the potential of cellulose as an adsorbent and sensing material for 

heavy metals. The topological analysis of electrons is also essential to further understand the 

interaction of cellulose and heavy metal systems. Moreover, higher-level theory and hybrid 

exchange-correlation functionals can be ideally used to examine the excited properties of 

cellulose and heavy metals systems. Although DFT under PBE level theory is known to 

underestimate the band gap of semiconductors and insulators, the results can provide important 

and valuable trends of the many-body electronic system, which helps understand the properties 

of materials at the fundamental level [34, 39, 41, 44–47]. 

4. Conclusions 

First-principles density functional theory calculations are conducted to explore the 

applicability of cellulose as a functional dispersant of SWCNT and adsorbent material for 

trapping heavy metals. The findings show that cellulose is physisorbed on the SWCNT. This 

claim is based on the calculated weak binding energy, no value of ELF in the interface, and no 

hybridization of the orbital characters observed between cellulose and SWCNT. The optimized 

configuration of the nanocomposite revealed a long-range interaction of cellulose and SWCNT. 

Further calculations show that cellulose is suitable for trapping heavy metals such as As and 

Pb, while a relatively weaker interaction is observed in Hg. To conclude, first-principles 

calculations show cellulose has diverse technological applicability, such as a functional 

dispersant material for SWCNT and adsorbent–sensing material for heavy metals. 
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