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Abstract: With the emergence of multidrug-resistant bacterial strains, there is an urgent need to find 

antibacterial agents directed at alternative molecular targets. A series of 4-iminohydantoin sulfamides 

were designed, synthesized, and evaluated as antibacterials. QSAR studies of iminohydantoin's 

antibacterial activity were made using OCHEM. The predictive ability of the classification models has 

a balanced accuracy of 83-85%. Validation of the model using a set of external tests showed that the 

models could be used to predict the activity of newly developed compounds with acceptable accuracy 

and applicability domain. The models were used to detect a virtual chemical library with the expected 

activity of compounds against A. baumannii. The five most promising compounds were identified, 

synthesized, and tested. Characterization of these compounds was done by 1H and 13C NMR techniques. 

The tested iminohydantoin derivatives showed antibacterial activity against studied antibiotic-resistant 

clinical isolates of A. baumannii. Among these derivatives, N-(4-Chlorobenzyl)-N'-[(4Z)-5-

(dichloromethylene)-2-oxoimidazolidin-4-ylidene]sulfamide (8) was found to be most active with the 

diameters of bacterial growth inhibition ranging from 18 to 28 mm against all MDR A. baumannii 

strains. Molecular docking results of bioactive compound 8 show the complex form into the active 

center of A. baumannii methionine aminopeptidase with a calculated binding affinity of  ̶  9.3 kcal/mol.  

Keywords: 4-iminohydantoin sulfamides; QSAR; antibacterial activity; Acinetobacter baumannii; 

docking; methionine aminopeptidase. 
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1. Introduction 

The problem of multiple resistance of the microbial pathogen Acinetobacter baumannii 

is currently widely considered in many literary sources of scientists worldwide [1,2]. It is 

known that almost a million people worldwide are infected with multidrug-resistant (MDR) 

strains of A. baumannii every year [3]. Antimicrobial therapy for infections caused by 

multiresistant A. baumannii includes such drugs as colistin, sulbactam, and tigecycline, which 

are used in combination with other antibiotics [4,5]. Published global studies show that the 

percentage of MDR A. baumannii isolates is the highest among all analyzed Gram-negative 

bacteria [5,6]. A. baumannii causes various infections, including ventilator-associated 

pneumonia, bacteremia, meningitis, urinary tract, wound, and bone infections [7]. The 
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mortality risk is high and often reaches 40–55% in the intensive care unit [8]. A. baumannii is 

a life-threatening problem due to multidrug resistance and the ability to evade the host's 

immune response and survive in harsh environmental conditions. Thus, A. baumannii is able 

to survive prolonged drying [9], the formation of protective biofilms, and other conditions [10], 

which is the basis of antibiotic resistance of A. baumannii. A. baumannii develops resistance 

to various antibiotics through its cell-intrinsic and acquired mechanisms. Its ability to induce 

drug-resistance genes is poorly understood. However, given the ability of the A. baumannii 

genome to exchange genetic material both within species and between species, these bacteria 

are rapidly evolving towards increased pathogenicity. 

In general, the 32 strains of the MDR A. baumannii were identified from war-torn 

patients in the military conflict in Ukraine [11]. Treatment of the wounded is often complicated 

by infection with A. baumannii, which prevents wound healing and causes bacterial meningitis 

and severe forms of pneumonia [11]. Thus, one of the ways to solve the existing therapeutic 

problem is to develop new effective pharmacological agents against this infection.  

Among a wide range of chemical classes as potential antibiotic agents, heterocyclic 

compounds with a broad range of biological activity occupy a special place [12,13]. The most 

common are nitrogen-containing heterocycles or various combinations of the positions of 

nitrogen, sulfur, and oxygen atoms in five- or six-membered rings. Based on modern statistics, 

over 85%  of all biologically active chemical compounds contain a heterocycle. And it is this 

fact that reflects the central role of heterocycles in drug development. Using heterocycles is 

useful in modifying lipophilicity, solubility, polarity, and interactions with biotargets. The use 

of heterocycles provides a useful tool for modifying solubility, lipophilicity, polarity, and 

biotarget interactions [14,15]. 

Iminohydantoin derivatives are well-studied target-oriented compounds with the 

activity associated with the inhibition of human topoisomerase I [16], BACE1 b-secretase, 

human serine protease [17], HIV-1 protease [18], and DENV-2 NS2B-NS3 protease [19]. It is 

known that bacterial aminopeptidases are used as a promising target for the development of 

new antimicrobial drugs [20,21].  

This work presents a series of 4-iminohydantoin sulfamides as potential anti-A. 

baumannii agents using QSAR and docking procedures along with experimental testing. 

2. Materials and Methods 

2.1. QSAR modeling. 

Data. A series of 1073 compounds and their bioactivity against A. baumannii were 

collected from the ChEMBL database [22]. The MIC values of compounds ranged from 0.175 

to 2849 µM. The data were divided into high (525 compounds with MIC < 50 µM) and low 

activity molecules (548 compounds with MIC ≥ 50 µM). An interactive OCHEM platform [23] 

was used to develop public and freely accessible models for predicting the antimicrobial 

activity of compounds. Approximately 20% of the compounds were randomly chosen by 

OCHEM to form independent test sets, while the remaining molecules were used as training 

sets. 

Machine-learning techniques (MLT). Two classical MLT, Associative Neural 

Networks (ASNNs) and Deep Learning Consensus Architecture (DLCA), were used to build 

classification QSAR models. 
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ASNN unites an ensemble of Feed-Forward Backpropagation Neural Networks 

(FFNNs) with the method of k-Nearest Neighbours (k-NN) [24]. ASNNs use the correlation 

between ensemble outputs (each molecule is represented in the neural network models space 

as a vector of model predictions) as a measure of distance between the analyzed cases by the 

kNNs. This combination corrects the neural network bias and increases its precision. The 

ensemble comprised 100 neural networks developed using the OCHEM default parameters. 

DLCA combines three separate deep-learning neural networks built based on three 

types of fingerprints by averaging their outputs inside the single neural net and improving the 

consensus results [25]. In this case, during training, the neural network calculates the best 

weights for each specific output and for averaging them. As a result, the network provides 

multitask outputs for each type of fingerprint and a consensus output. 

Descriptors. OCHEM supports many software packages for the calculation of diverse 

molecular descriptors. In the current study, we used E-state indices, AlogPS, and CDK2, which 

were frequently top-performing descriptors according to our previous studies. 

The electrotopological state indices define a molecule's key structural features and 

combine electronic and topological attributes of the compounds [26]. 

AlogPS program calculates the estimated lipophilicity (logP) and solubility in water 

(logS) of chemical compounds [27]. 

CDK calculates 256 molecular descriptors, such as topological, geometrical, 

constitutional, electronic, and hybrid descriptors [28]. 

More details about the descriptors can be found elsewhere [23]. A simple Pearson's 

pairwise correlation method was used as a filtering method for each descriptor set before they 

were used as input for the machine-learning methods. The Unsupervised Forward Selection 

method [29] was applied to select a representative, non-redundant set of descriptors. 

Model validation. The initial set of 1073 compounds was split into training (858 

compounds) and test (215) sets. Five-fold Cross-Validation (CV) with variable selection was 

used to estimate the accuracy of the models for the training set [30]. The training data set was 

split into 5-subsets of approximately equal size. Of the five subsets, only one subset was 

retained for validation, and the remaining subsets were used for training. After repeating the 

procedure five times, the statistical coefficients for all 5-test sets were averaged. The predictive 

performance of the final QSAR model developed with 858 compounds was tested using the 

test set of 215 compounds. 

Estimation of prediction accuracy. The applicability domain (AD) and the prediction 

accuracy, which are calibrated using CV, are calculated by OCHEM. A probability of incorrect 

molecular classification based on the standard deviation and average prediction of a model 

class (PROB-STD), which provided the best classification model's accuracy, was used as a 

distance-to-model [31]. The model AD corresponded to PROB-STD, covering 90% of 

molecules within the training set. 

Statistical parameters. Statistical parameters, such as sensitivity (SN), specificity (SP), 

and balanced accuracy (BA), were calculated to assess the predictive power of the binary 

classifier (see Figure S1 of the Supplementary Materials). The balanced accuracy (BA) denotes 

a measure of the model's classification quality and is calculated as: 

BA = (SN + SP)/2 

The BA is supplemented by a confounding matrix (Figure S1) that shows the number 

of compounds classified correctly for each class and details of incorrectly classified 
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compounds, e.g., the number of false positive and the false negative predictions. Detailed 

information about additional statistical coefficients can be found on the OCHEM website [32]. 

2.2. Chemistry. 

All chemicals and solvents for the synthetic work were acquired from commercial 

sources and used without further purification. The progress of the reaction was monitored by 

the TLC method. Melting points were measured by a Fisher-Johns apparatus. 1H and 13C NMR 

spectra were recorded on Bruker Avance DRX 500 or Varian Mercury 400 spectrometers in 

DMSO-d6, taking its residual signals as a standard. Combustion elemental analysis was 

performed in the V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry analytical 

laboratory. The carbon and hydrogen contents were determined using the Pregl gravimetric 

method, sulfur – by the Scheininger titrimetric method, nitrogen – using Duma's gasometrical 

micromethod, chlorine – by the mercurometric method. 

The procedure for the synthesis of (Z)-[5-(dichloromethylene)-2-oxoimidazolidin-4-

ylidene]sulfamoyl chloride II was described in [33]. 

Synthesis of (Z)-(5-(dichloromethylene)-2-oxoimidazolidin-4-ylidene)sulfamides 1-3, 

6, 8. To a solution of 3.6 mmol of corresponding amine R1R2NH2 and 3.6 mmol Et3N in 50 ml 

of THF at 0-5°C sulfamoyl chloride II (1 g, 3.6 mmol) was added with stirring in portions about 

0.1 g. The reaction mixture was stirred at 20-25 °C for 6 h. Then the solvent was evaporated in 

vacuo. 10 ml of water was added to the residue, and diluted HCl acidifed the mixture. The 

formed precipitate was filtered off, dried, and recrystallized from ethanol. 

Methyl (Z)-3-((N-(5-(dichloromethylene)-2-oxoimidazolidin-4-ylidene)sulfamoyl) 

amino)propanoate 1. Yield: 1.02 g, 82%; mp: 122-124 °C. 1H NMR (400 MHz, DMSO-d6) δ 

11.10 (br s, 2H), 7.39 (s, 1H), 3.58 (s, 3H), 3.21-3.20 (m, 2H), 2.57-2.55 (m, 2H). 13C NMR 

(125 MHz, DMSO-d6) δ 171.4, 152.4, 150.7, 129.9, 106.8, 51.4, 38.8, 33.8. HRMS (ESI) m/z 

Сalcd. for C8H10Cl2N4O5S (M+H)+ 345.15. Found 346.21. Anal. Calcd., %: C, 27.84; H, 2.92; 

Cl, 20.54; N, 16.23; S, 9.29. Found, %: C, 27.80; H, 2.90; Cl, 20.65; N, 16.40; S, 9.38. 

Ethyl 1-{[(4Z)-5-(Dichloromethylidene)-2-oxoimidazolidin-4-ylidene]sulfamoyl} 

piperidine4-carboxylate 2 was described in [33].  

Methyl (Z)-(N-(5-(dichloromethylene)-2-oxoimidazolidin-4-ylidene)sulfamoyl) 

glycinate 3. Yield: 1.02 g, 82%; mp: 179-181 °C. 1H NMR (400 MHz, DMSO-d6) δ 11.15 (br 

s, 2H), 7.78 (s, 1H), 3.84-3.83 (m, 2H), 3.61 (s, 3H). 13C NMR (125 MHz, DMSO-d6) δ 169.7, 

162.4, 151.2, 129.8, 107.3, 52.0, 44.0. HRMS (ESI) m/z Сalcd. for C7H8Cl2N4O5S (M+H)+ 

331.5. Found 332.2. Anal. Calcd., %: C, 25.39; H, 2.44; Cl, 21.41; N, 16.92; S, 9.68. Found, 

%: C, 25.35; H, 2.42; Cl, 21.48; N, 16.98; S, 9.77. 

N-[(4Z)-5-(Dichloromethylidene)-2-oxoimidazolidin-4-ylidene]piperidine-1-

sulfonamide 6 was described in [33].  

N-(4-Chlorobenzyl)-N'-[(4Z)-5-(dichloromethylene)-2-oxoimidazolidin-4-

ylidene]sulfamide 8 was described in [33].  

2.3. Biology. 

The anti-A. baumannii activity of the prepared 4-iminohydantoin sulfamides examined 

by disk diffusion assay in Mueller-Hinton agar [34] against three antibiotic-resistant A. 

baumannii strains. All bacterial strains (A. baumannii 1355, A. baumannii 1536, A. baumannii 

725) were obtained from the Museum of Microbial Culture Collection of the Shupyk National 
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Healthcare University of Ukraine. Petri dishes were incubated with 1×105 colony forming units 

per mL at 37 °C and examined after 24 h. Further dilution of 0.02 ml of the tested compounds 

was applied to standard paper disks (6 mm) which were placed on the agar plate. The compound 

content on the disk was 3.0 µM. The tested compounds were dissolved in 0.1% DMSO to which 

the studied bacterial cultures were not sensitive. The tests were repeated three times. The 

activity of tested 4-iminohydantoin sulfamides was identified by measuring the zone diameter 

of the bacterial growth inhibition in millimeters.  

2.4. Docking.  

SWISS-MODEL homology-modeling server [35] was used to create a homology 

model. AutoDock Tools (ADT) 1.5.6 was employed to prepare the protein and ligand [36]. All 

hydrogen atoms have been added to the protein molecule using ADT. All protein atoms were 

renumbered using the no-bond order method, and the Gasteiger method was used to calculate 

and add the partial charges and save them in the PDBQT format. The ligand structure and 

conformation were created using the ChemAxon Marvin Sketch 5.3.735 program [37] and 

saved in the Mol2 format. The ligand structures were optimized, and the energy was minimized 

by Avogadro v1.2.0 program [38]. Docking was performed using the AutoDock Vina 1.1.2 

program [39]. The docking center was selected as the center of the co-crystallized ligand in the 

structure PDB ID: 2P98 [40]. A grid of 30*30*30 points with a grid step of 1.0 Å was used. 

Interaction analysis and visualization were performed by Accelrys DS [41]. 

3. Results and Discussion 

3.1. QSAR prediction. 

The initial set (1073 compounds) was randomly split into training (858) and test (215) 

sets. The classification models built by the ASNN and DLCA MLTs (Table 1) calculated the 

best performances. For this analysis, E-state, ALOGPS, and CDK2 descriptors were included 

in the best models for the ASNN method. The results are partially summarized in Table 1. 

Other statistical parameters and characteristics of individual models are shown in Figure S1 of 

the Supplementary Materials. 

All models had a similar performance by specificity, sensitivity, and BA. The BAs for 

the training sets were 83-85 % (Table 1). The compounds in the test sets were predicted with 

similar accuracies (BA = 88-89%). The statistical parameters of training and test sets have large 

standard mean errors due to small dataset sizes. Despite some variations, both sets' model 

performances were not significantly different.  

Table 1. Statistical coefficients calculated for classification models. 

N Method Sensitivity (%) Specificity (%) Balanced accuracy (%) 

Training Test Training Test Training    Test 

1 DLCA 81 82 89 95 85 ± 1 88 ± 2 

2 ASNN 79 83 86 95 83 ± 1 89 ± 2 

3 Consensus 80 82 89 95 85 ± 1 88 ± 2 

 

A consensus model was constructed as a simple average of the two individual models. 

Although its statistical parameters are similar to those of individual models (Table 1), the 

variance of the consensus model was anticipated to be lower. In addition, consensus model 

predictions were used to estimate its applicability domain. 
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A virtual dataset consisting of ten 4-iminohydantoin sulfamides with different 

substitution patterns (Table S1 in Supplementary materials) was generated based on the 

recommendation of an experienced synthetic organic chemist. Four compounds predicted as 

low active as well as one compound predicted outside of the applicability domain, were 

excluded. The rest five compounds were selected for synthesis and testing (Table S1 in 

Supplementary materials). 

3.2. Chemistry. 

For the obtaining of new 4-iminohydantoin sulfamides 1-3, 6, 8 it was used the reaction 

of 2-amino-3,3-dichloroacrylonitrile (ADAN) I [42] with chlorosulfonyl isocyanate [33] 

followed by (Z)-[5-(dichloromethylene)-2-oxoimidazolidin-4-ylidene]sulfamoyl chloride II 

formation (Scheme 1). The next step is the interaction of sulfonyl chloride II with amines in 

the presence of an excess of amine or triethylamine, leading to sulfonamides 1-3, 6, 8 [33]. 

 
Scheme 1. Synthesis of (Z)-(5-(dichloromethylene)-2-oxoimidazolidin-4-ylidene)sulfamides 1-3, 6, 8. 

The structure of synthesized compounds 1-3, 6, and 8 were confirmed by the 1H, 13C 

NMR, and elemental analysis (see Material and Methods). 

3.3. Antibacterial testing  

In vitro antibacterial activity results of studied 4-iminohydantoin sulfamides with 

predicted high activity against a panel of selected Gram-negative multidrug-resistant (MDR) 

A. baumannii strains are summarized in Table 2. 

Table 2. In vitro anti-A. baumannii activity of 4-iminohydantoin sulfamides with predicted activity. 

Compound Zone diameter of growth inhibition of MDR A. baumannii strains, mm  

A. baumannii 1355 A. baumannii 1536 A. baumannii 725 

1 18 13 16 

2 20 11 12 

3 16 11 8 

6 22 14 8 

8 28 19 18 

Table 2 shows the sensitivity of all A. baumannii bacteria tested against the 4-

iminohydantoin sulfamides. The diameters of inhibition zones of studied derivatives against 
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MDR A. baumannii strains were in the range of 8-28 mm. The most sensitive MDR A. 

baumannii 1355 strain, has demonstrated sensitivity to all compounds in the range from 16 to 

28 mm by diameters of growth inhibition. The most active compound 8 seems to be effective 

against several MDR A. baumannii isolates from hospitalized patients. 

3.4. Docking procedure. 

An A. baumannii methionine aminopeptidase (MAP) homology model was created 

based on the amino acid sequence of A. baumannii methionine aminopeptidase (UniProt: 

A0A059ZMR7) [43] using the SWISS-MODEL homology modeling server. The homology 

model was built based on template 4a6w.1.A with 1.46 Å resolution, 55.81% sequence identity, 

and 0.47 sequence similarity characteristics. The created homology model is the most optimal 

considering the resolution (1.46 Å) and quality characteristics: QMEAN (0.84), GMQE (0.86). 

The quality of the homology model was also evaluated using the internal resources of the 

modeling server SWISS-MODEL and SAVESv6.0 Structure Validation Server [44]. The 

results of the Ramachandran plot showed good quality: 91.7% of amino acid residues were in 

the most favored regions, 7.8% in additional allowed regions, 0.0% in generously allowed 

regions, and 0.5% in disallowed regions (Figure 1S). Figure 2S shows the overall quality factor 

is 94.6939 obtained from the ERRAT2 program [45]. The created homology model was used 

for docking compound 8 into the active site of A. baumannii MAP (Figure 1). 

 
Figure 1. Localization the ligand 8 into the active site of the A. baumannii MAP model, blue - inhibitor YE6; 

orange – compound 8. 

The docking results show the formation of the protein-ligand complex with estimated 

binding energies of  ̶ 9.3 kcal/mol. It should be noted that the complexation of compound 8 

occurs in the active site of A. baumannii MAP, similar to inhibitor YE6 co-crystallized with 

the E. coli MAP (PDB ID: 2P99). The obtained high calculated values of the binding energies 
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of docking and similar docking position compound 8 and inhibitor YE6 confirm the correct 

docking strategy. The structure and chemical properties of compounds are in good agreement 

with complexation in the MAP active site in the region with polar amino acid residues. The 

formation of bonds during the complexation of ligand 8 in the MAP active site is shown in 

Figure 2. 

 
Figure 2. Molecular docking the ligand 8 into the active site of A. baumannii MAP model; blue – compound 8. 

The oxoimidazolidine group forms the tree hydrogen bonds (2.67 - 3.46 Å) with amino 

acids Cys73, Asn62, and Asp100, one electrostatic interaction (4.04 Å) with amino acid His82 

and hydrophobic tree interactions (4.75 - 5.54 Å) with amino acids His82, Cys73, and Tyr180. 

The sulfamide group forms a hydrogen bond (2.36 Å) with His174 and pi-sulfur interaction 

(4.74 Å) with His181. The aromatic ring forms a hydrogen bond (3.62 Å) with Cys172, 

hydrophobic interaction (4.79 Å) with amino acid Tyr171, and pi-sulfur interaction (5.38 Å) 

with Cys172. Thus, the oxoimidazolidine group, the sulfamide group, and the aromatic ring of 

the ligand 8 participate in the complexation into the active site of the A. baumannii MAP model. 

4. Conclusions 

The current study presents a new anti-A. baumannii activity results from synthetic 4-

iminohydantoin sulfamides using in silico and in vitro methods. A number of created predictive 

QSAR models built using the OCHEM platform with good robustness, stability, and predictive 

power can be used to search and analyze the new antibacterial agents of appropriate structure 
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and mechanism of action. It will be helpful for structure optimization to improve the anti-A. 

baumannii activity. 

The five 4-iminohydantoin sulfamides identified based on the QSAR modeling had 

different levels of antibacterial potential against antibiotic-resistant clinical isolates of A. 

baumannii. 4-Iminohydantoin sulfamide 8 showed the highest activity against all studied MDR 

A. baumannii strains with diameters of bacterial growth inhibition in the range from 18 to 28 

mm and has substantial potential for therapeutic application as a new drug candidate against 

MDR bacterial infections.  

Molecular docking demonstrated that the high antibacterial activity of all compounds 

could be associated with the specific binding of the MAP enzyme. Complexation of the ligand 

8 in the active center of A. baumannii MAP followed the binding energy estimation of  ̶  9.3 

kcal/mol. The Cys73, Asn62, Asp100, His174, and Cys172 amino acids play a key role in the 

ligand-MAP complexes formation. 
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Supplementary Material 

Classification machine learning models  

 

b) 

 

c) 

Figure 1S. Classification machine learning models built by the OCHEM server for data; a-b) Performance 

statistics of binary classifiers; c) Consensus model calculated on the basis of previous 2 models. 
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Evaluation antibacterial activity of new compounds 

Table S1. Antibacterial activity calculated by using the consensus classification models for virtual set of 

imidazole derivatives. 

Compound 

No 
Chemical Structure Pred. activity 

CONSENSUS-

STD 

Estimated 

accuracy 

AD 

 

1a 

 

high 0.14 0.79 TRUE 

2a 

 

high 0.06 0.87 TRUE 

3a 

 

high 0.06 0.9 TRUE 

4 

 

low 0.15 0.79 TRUE 

5 

 

low 0.12 0.86 TRUE 
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Compound 

No 
Chemical Structure Pred. activity 

CONSENSUS-

STD 

Estimated 

accuracy 

AD 

 

6a 

 

high 0.18 0.74 TRUE 

      

7 

 

low 0.01 0.88 TRUE 

8a 

 

high 0.03 0.91 TRUE 

9 

 

low 0.06 0.87 TRUE 

10 

 

high 0.33 0.66 FALSE 

aFinal set of compounds are represented in bold. CONSENSUS-STD – the standard deviation of the predictions, obtained from 

an ensemble of models. 
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