
 

 https://biointerfaceresearch.com/  1 of 11  

1211 

 

Article 

Volume 13, Issue 6, 2023, 515 

https://doi.org/10.33263/BRIAC136.515 

 

Theoretical Evaluation of the Interaction of a Series of 

Chalcone Derivatives on CK2 Protein Surface   

Figueroa-Valverde Lauro 1,* , Rosas-Nexticapa Marcela 2,* , Cervantes-Ortega Catalina 2 , López-

Ramos Maria 1 , Díaz-Cedillo Francisco 3 , Alvarez-Ramirez Magdalena 2 , Mateu-Armad Maria 

Virginia 2  

1 Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. 

Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México 
2 Nutrition Laboratory, Faculty of Nutrition,  Veracruzana University , Médicos y Odontologos s/n C.P. 91010, Unidad del 

Bosque Xalapa Veracruz, México 

3 Laboratory Organic Chemistry, National School of Biological Sciences, National Polytechnic Institute . Prol. Carpio y Plan 

de Ayala s/n Col. Santo Tomas, México, D.F. C.P. 11340 

* Correspondence: lfiguero@uacam.mx (F.L.); rosasnm@yahoo.com (R.M.); 

Scopus Author ID 55995915500 

Received: 6.10.2022; Accepted: 13.11.2022; Published: 4.02.2023 

Abstract: Several studies suggest that chalcone derivatives can produce a broad spectrum of biological 

activities such as antibacterial, antiulcer, antiviral, insecticidal, antiprotozoal, anti-cancer, and 

antifungal. Besides, other reports suggest that chalcone derivatives exert changes in the cardiovascular 

system; however, its site of action is not very clear; perhaps this phenomenon could be to differences 

involved in the chemical structure of chalcone derivatives. This research aimed to carry out a theoretical 

study on the interaction of a series of chalcone analogs (compounds 1 to 20) on casein kinase 2 (CK2) 

protein using 3fl5 protein and quinalizarine drug as theoretical tools in a theoretical model 

(DockingServer). The results showed that chalcone derivatives (compounds 2, 9, 11, and 19) could have 

a higher affinity for the 3fl5 protein surface translated as greater CK2 inhibition than quinalizarine. 

These data open the possibility that chalcone derivatives can produce changes in the biological function 

of CK2, resulting in a decrease in heart failure. 
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1. Introduction 

For several years, chalcone derivatives have been used in organic chemistry and 

pharmaceutical industry fields [1-4]. It is noteworthy that chalcone analogs are α-β-unsaturated 

ketones [5, 6], which can produce different biological activity against Parkinson's [7] cancer 

[8], gastric ulcer [9], malaria [10], antiviral [11-14], antibacterial [15], antifungal [16, 17]. 

Besides, some studies indicate that chalcone derivatives may exert changes in the 

cardiovascular system [18]; for example, difluoro-chalcone derivative protects cardiomyocytes 

from hyperglycemia-induced injuries through ROS (reactive oxygen species) and NF-kB 

(nuclear factor-κB) inhibition [19]. Other reports showed that a chalcone derivative can inhibit 

inflammation of human aortic smooth muscle cells through increased expression of peroxisome 

proliferator-activated receptor gamma [20]. Furthermore, a study shows that trans-chalcone 

inhibits transforming growth factor-β1 in rat heart connective tissue [21]. Recently, a report 

indicated that hesperidin methyl chalcone produces a cardioprotective through lipid 

peroxidation inhibition in vitro [22]. 
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On the other hand, different theoretical models have been used to characterize the 

molecular mechanism involved in the biological activity produced by chalcone derivatives in 

the cardiovascular system. In this way, a theoretical study showed that some chalcone 

derivatives could produce a biological effect through interaction with HMG-CoA (β-hidroxi-

β-metilglutaril-coenzima A) reductase using CASTp software [23]. Other data indicate that 

3,5-disubstituted thiazolidinedione chalcone may interact with PPAR-γ (peroxisome 

proliferator-activated receptor gamma) using AutoDock-4.2  software [24]. In addition, a report 

displayed that dihydrospirochalcone-A could have an affinity to the eNOS enzyme (endothelial 

nitric oxide synthase) using a docking model [25]. All these data suggest that chalcone 

derivatives could produce changes in the cardiovascular system; however, there is no 

information on the effect produced by chalcone derivatives on protein kinases, specifically on 

CK2, which has been involved in heart failure patients [26-28]. Analyzing these data, this study 

aimed to conduct a theoretical study on the interaction of twenty chalcone analogs with Casein 

Kinase 2 (CK2) protein using Docking Server software [29]. 

2. Materials and Methods 

2.1. General methodology. 

A series of chalcone derivatives previously reported [30] were used to evaluate their 

theoretical interaction with CK2 (Figures 1-2) as follows: 
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1 = 1-(4-Hydroxy-2-methoxy-phenyl)-3-(4-hydroxy-phenyl)-propenone. 

2 = 3-[5-(1,1-Dimethyl-allyl)-4-hydroxy-2-methoxy-phenyl]-1-(4-hydroxy-phenyl)-propenone. 

3 = 3-(4-Hydroxy-phenyl)-1-(5-methoxy-2,2-dimethyl-chroman-8-yl)-propenone. 

4 = 1-(3'-Fluoro-biphenyl-2-yl)-3-(3-hydroxy-4-methyl-phenyl)-propenone. 

5 = 1-[4-(3,4-Diamino-indazole-1-carbonyl)-phenyl]-3-phenyl-propenone. 

6 = 1-{4-[2-(1H-Benzoimidazol-2-ylmethylsulfanyl)-pyrimidin-4-ylamino]-phenyl}-propenone. 

7 = 1-Benzo[1,3]dioxol-5-yl-3-phenyl-propenone. 

8 = 3-(2,3-Dihydro-quinazolin-2-yl)-1-phenyl-propenone. 

9 = 3-[3-(1,2-Dimethyl-allyl)-4-hydroxy-phenyl]-1-phenyl-propenone. 

10 = 1-[5-Methyl-3-(4-nitro-phenyl)-isoxazol-4-yl]-propenone 

11 = 3-(4-Pyrrolidin-1-yl-phenyl)-1-(2,4,6-trimethoxy-phenyl)-propenone. 

12 = 1-(5-Hydroxy-2,2-dimethyl-2H-chromen-6-yl)-3-(3-hydroxy-4-methoxy-phenyl)-propenone. 

 

Figure 1. Structure chemical of chalcone derivatives (1-10). 
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13 = 3-[3-(2-Hydroxy-phenyl)-3-oxo-propenyl]-1H-quinolin-2-one. 

14 = 6-Acryloyl-2-methyl-3H-quinazolin-4-one. 

15 = 3-(3-Oxo-3-phenyl-propenyl)-1H-quinolin-2-one. 

16 = 1-{3-[(2,3-Dihydroxy-benzylidene)-amino]-4-methoxy-phenyl}-3-(3,4,5-trimethoxy-cyclohexyl)-prope-none 

17 = 1,3-Bis-(2-chloro-phenyl)-propenone. 

18 = 1,2,3-Trimethyl-4-(1-m-tolyl-ethyl)-benzene. 

19 = 3-[3-(1,2-Dimethyl-allyl)-4-hydroxy-phenyl]-1-phenyl-propenone. 

20 = 1-(3-Hydroxy-phenyl)-3-(4-trifluoromethyl-phenyl)-propenone. 

 

Figure 2. Structure chemical of chalcone analogs (6-20). 

2.2. Pharmacophore model.  

3D pharmacophore model for chalcone derivatives was evaluated using LigandScout 

4.08 software [28, 29]. 

2.3. Ligand-protein interaction.  

The interaction of chalcone derivatives with the CK2 protein surface was evaluated 

using 3fl5 protein as a theoretical model [30]. In addition, to evaluate the types of binding 

energy involved in the interaction of chalcone derivatives with the 3fl5 protein surface [33], 

the DockingServer software was used [29].  

2.4 Pharmacokinetics parameter.  

Pharmacokinetic parameters were determined using the SwissADME software [34, 35]. 

3. Results and Discussion 

Several studies indicate that chalcone derivatives can affect the cardiovascular system 

differently [36-39]; however, the interaction with some biological molecules is unclear. 

Analyzing this data, in this investigation, the theoretical activity of a series of chalcone 

derivatives on the CK2 protein was evaluated as follows: 

3.1. Pharmacophore model. 

For several years, various theoretical methods have been developed to design new drugs 

for treating different diseases. For example, the pharmacophore model provides a new 

perspective on the design of new compounds useful for developing new drugs. Based on these 

data, in this study, the LigandScout software [17, 18] was used to design a pharmacophore 

model to evaluate the possible chemical interactions of chalcone derivatives (compound 1-20) 

with some biomolecules such as CK2 protein. The results showed differences in functional 
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groups involved in the chemical structure of the chalcone derivatives, which could interact 

through hydrophobic or hydrogen bonds with CK2 protein (Figures 3 and 4; Table 1). 

 
Figure 3. Pharmacophore was developed for chalcone derivatives (compounds 1 to 8) using the LigandScout 

software. Hydrogen bond acceptors (HBA, red) and hydrogen bond donors (HBD, green). 

 

 
Figure 4. Pharmacophore was prepared to chalcone derivatives (compounds 9 to 20) using the LigandScout 

software. Hydrogen bond acceptors (HBA, red) and hydrogen bond donors (HBD, green). 
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Table 1. Physicochemical parameters of chalcone derivatives (Compounds 1 to 20). 

Compound Concensus Log 

Po/w 

HBA HBD Molar refracty TPSA 

Å 

Quinalizarin 1.38 6 4 67.94 115.06 

1 2.55 4 2 76.79 66.76 

2 3.93 4 2 100.39 66.76 

3 3.85 4 1 98.57 55.76 

4 3.85 3 1 98.63 37.30 

5 3.39 3 2 114.52 104.00 

6 3.60 4 2 111.96 108.86 

7 3.17 3 0 72.31 35.53 

8 2.46 2 1 95.39 41.46 

9 4.95 2 1 91.99 37.30 

10 1.87 5 0 70.25 88.92 

11 3.69 4 0 110.37 48.00 

12 3.60 5 2 100.91 75.99 

13 3.03 3 2 86.40 70.16 

14 1.76 3 1 61.86 62.82 

15 3.23 2 1 84.38 49.93 

16 3.01 8 2 129.61 106.81 

17 4.50 1 0 76.27 17.07 

18 5.30 0 0 80.57 0.00 

19 4.48 2 1 91.99 37.30 

20 3.96 5 1 73.27 37.30 

3.2. Interaction theoretical evaluation. 

Several theoretical methods have been used to predict some ligands' interaction with 

proteins and enzymes [40, 41].  

    

 

 
Figure 5. The scheme shows the binding sites of chalcone derivatives (C-1 to C-12 ) with some amino acid 

residues involved on the protein kinase surface (3FL5). The visualization was carried out using DockingServer 

software. 
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Figure 6. The Figure display some binding sites of chalcone derivatives (C-13 to C-20 ) with some amino acid 

residues involved on the protein kinase surface (3FL5). The visualization was carried out using DockingServer 

software. 

Notably, the molecular recognition of protein-ligand interactions is essential to 

understand some biological activities, which can be of great importance for designing and 

developing new compounds with pharmacological activity [42]. Besides, it is important to 

mention that the drug quinalizarine was used as a control because some reports indicate that 

this drug can produce changes in the biological activity of CK2 [28, 43]. The results showed 

different amino acid residues involved in the interaction of chalcone derivatives with 3fl5 

protein surface compared with quinalizarin (Figures 5 and 6; Table 2); this phenomenon could 

be due to differences in their chemical structure (Figures 1 and 2). 

Table 2. Aminoacid residues involved in the interaction of chalcone derivatives (1  to 20) and quinalizarin with 

3fl5-protein surface. 

Compound Aminoacid Residues 

Quinalizarin Gly86, Leu97, Ile100 

C-1 Gln86, Leu97, Asp99, Ile100 

C-2 Arg13, Tyr23, Asn87Tyr146, 

Gln158 

C-3 Gl86, Lys96, Leu97, Leu98 

C-4 Leu85, Gln86, Val96, Lys96, 

Leu97, Leu98 

C-5 Lys83, Gln86, Asn87, Leu98 

C-6 Gly86, Lys96, Leu97, Leu98, 
Asp99, Ile100 

C-7 Gln86, Lys96, Leu97 

C-8 Gln86, Leu97, Asp99 

C-9 Gln86, Leu97, Asp99, Ile100 

C-10 Gln86, Gln86, Leu97, Ile100 

C-11 Arg19, Gln86, Tyr146, Gln150 

C-12 Gln86, Leu97, Tyr146, Gln150 

C-13 Lys83, Gln86, Asn87Leu97, Ile100 

C-14 Glu86, Leu97 Ile100 

C-15 Asp99, Ile100 
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Compound Aminoacid Residues 

C-16 Arg19, Tyr23, Lys83, Gln86, 
Asn87, Lys96, Tyr146, Gln150 

C-17 Gln86, Lys96, Leu97, Asp99, 
Ile100 

C-18 Gln86, Lys96, Leu97, Ile100 

C-19 Lys83, Gln86, Asn87, Leu97 

C-20 Lys83, Leu85, Gln86, Asn87, 

Leu88, Val95, Lys96, Leu97 

3.3 Bond energies. 

Some studies suggest that different thermodynamic factors could be involved in the 

drug-protein interaction, such as i) binding free energy, which involves the energy level 

produced by ligand-protein interaction; ii) ii) electrostatic energy that involves an electrical 

charge and electrostatic potential; iii) total intermolecular energy; and iv) Van der Waals (vdW) 

interactions, hydrogen bond (H bond), desolvation energy [44, 45]. Based on these data, in this 

research, some thermodynamic parameters involved in the interaction of chalcone derivatives 

with CK2 surface (3fl 5 protein) were evaluated using quinalizarin as a control. Table 3 shows 

the energy requirements involved in the interaction of compounds 2, 9, 11, and 19 with the 3fl5 

protein surface were lower compared to compounds 1, 3-8, 10-18, 20, and quinalizarin. The 

results indicate that these compounds could interact with the surface of the 3RUK protein, 

implying differences in energy levels and constant inhibition. This phenomenon may result in 

changes in the biological activity of the CK2 enzyme, which translates into a decrease in heart 

failure. 

Table 3. Thermodynamic parameters involved the interaction of Bay-K-8644 drug and compounds 4 with 1t0j-

protein surface. 
Compound Est: Free 

Energy of 

Binding 

(kcal/mol) 

Est. 

Inhibition 

Constant, 

Ki (mM) 

vdW + 

Hbond + 

desolv 

Energy 

(kcal/mol) 

Electrostatic 

Energy 

 

Total 

Intermolec. 

Energy 

(kcal/mol) 

Interact. 

Surface 

Quinalizarin -5.09 185.45 -3.57 -0.32 -3.89 437.26 

C-1 -3.60 2.31 -5.01 -0.11 -5.11 514.86 

C-2 -2.98 6.57 -5.25 0.03 -5.28 611.65 

C-3 -4.10 993.60 -5.33 0.11 -5.22 535.19 

C-4 -5.65 72.29 -6.72 -0.02 -6.74 554.13 

C-5 -5.13 173.28 -6.13 -0.28 -6.40 631.31 

C-6 -6.34 22.59 -6.54 -0.10 -6.64 626.60 

C-7 -4.17 882.31 -5.06 1.05 -5.00 505.48 

C-8 -4.24 779.52 -4.61 -0.38 -4.99 545.77 

C-9 -3.84 1.52 -5.41 -0.15 -5.96 577.09 

C-10 -5.06 195.53 -6.12 -0.14 -6.26 474.70 

C-11 -3.26 4.05 -5.13 -0.10 -5.23 674.48 

C-12 -4.49 513.08 -5.44 -0.21 -5.66 662.33 

C-13 -4.80 301.75 -5.30 -0.03 -5.33 515.46 

C-14 -4.77 321.26 -5.19 -0.16 -5.35 479.32 

C-15 -4.49 510.79 -5.32 -0.06 -5.38 572.74 

C-16 -5.07 190.89 -7.09 -0.11 -7.20 711.60 

C-17 -5.54 87.32 -6.39 -0.01 -6.40 552.05 

C-18 -5.61 77.57 -5.98 -0.01 -5.99 529.89 

C-19 -3.69 1.98 -5.36 -0.08 -5.44 540.00 

C-20 -4.41 590.31 -5.78 -0.11 -5.89 482.66 

3.7. Pharmacokinetic evaluation. 

For several years, different protocols have been used to predict some pharmacokinetic 

parameters, such as PKQuest [46], PharmPK [47], and SwissADME [48]. In this investigation, 

some pharmacokinetic factors involved in chalcone derivatives were analyzed using 
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SwissADME software (Table 3). The results showed differences in gastrointestinal absorption 

and metabolism (involving different types of cytochrome P450 systems). This phenomenon 

could depend on each chalcone derivative's chemical structure and the lipophilicity degree 

(Tables 1, 4, and 5). 

Table 4. Pharmacokinetic parameters involved in the chemical structure of compounds 1 to 10. 
Parameter 1 2 3 4 5 6 7 8 9 10 

GI absorption 
BBB 

permeant 

P-gp substrate 

CyP1A2 
Inhibitor 

CyP2C19 

Inhibitor 

CyP2C9 
Inhibitor 

CyP2D6 

Inhibitor 

CyP3A4 
Inhibitor 

High 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

High 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

High 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

High 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

High 

No 

No 

No 

No 

Yes 

No 

No 

High 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

High 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

High 

Yes 

No 

No 

Yes 

Yes 

No 

No 

High 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

High 

No 

No 

Yes 

Yes 

No 

No 

No 

Table 5. Pharmacokinetic parameters involved in the chemical structure of compounds 11 to 20. 
Parameter 11 12 13 14 15 16 17 18 19 20 

GI absorption 
BBB 

permeant 

P-gp substrate 

CyP1A2 
Inhibitor 

CyP2C19 

Inhibitor 
CyP2C9 

Inhibitor 

CyP2D6 

Inhibitor 
CyP3A4 

Inhibitor 

High 

Yes 

No 

No 

Yes 

Yes 

No 

Yes 

High 

Yes 

No 

Yes 

Yes 

Yes 

No 

Yes 

High 

Yes 

No 

No 

No 

Yes 

No 

No 

High 

Yes 

No 

Yes 

No 

No 

No 

No 

High 

Yes 

No 

No 

No 

Yes 

No 

No 

High 

No 

Yes 

No 

No 

No 

Yes 

Yes 

High 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

Low 

Yes 

No 

No 

No 

No 

Yes 

No 

High 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

High 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

4. Conclusions 

Theoretical analyzes on the interaction of chalcone derivatives (compounds 2, 9, 11, 

and 19) with the 3fl5 protein surface suggest that these chalcone derivatives might have a 

higher affinity for 3fl5 translated as greater CK2 inhibition compared to quinalizarine drug. 

These data open the possibility that chalcone derivatives can produce changes in the biological 

function of CK2, resulting in a decrease in heart failure. 
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