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studying the structural, electronic, and optical properties of orthorhombic CsPbBr3 doped with I and Cl 

ions by density functional theory. Calculations were carried out using the GGA-PBE and mBJ 

exchange-correlation potentials. The results obtained show that the band gap of CsPbBr3 decreases with 

increasing concentration of I; however, as the concentration of doped Cl atoms increases, the band gap 

increases. The calculated optical constants show that CsPbBr3–xYx(Y=I, Cl) are good materials for 

optoelectronics and suitable for solar cells.  
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1. Introduction 

The global electricity demand is growing every year. Currently, no manufacturers, 

households, or individuals do not require electricity. People's confidence in using solar energy 

is growing, and there is an opinion that the energy of the future should be based on the 

integrated use of solar energy. In recent years, much attention has been paid to perovskites in 

solar cells and optoelectronics [1-10]. 

The first solar cells usually made based on silicon (Si) and heterostructures, had low 

efficiency and high cost. Therefore, high-performance solar panels are not available to 

everyone. 

One of the most interesting materials for creating renewable energy sources is 

perovskites. Solar cells based on these materials are considered promising photovoltaic 

technologies due to their excellent energy conversion efficiency and very low material cost. 

The issue of increasing the efficiency of solar cells and their availability for effective practical 

application attracts the attention of scientists and researchers around the world. 

The study and understanding of the structural, electronic, and optical properties of 

CsPbBr3 doped with I and Cl for use in energy storage systems and solar cells are highly 

relevant from the point of view of fundamental research and practical applications. Perovskite 

materials based on CsPbBr3 doped with various atoms have high functional properties and are 

in high demand. 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC136.516
http://www.scopus.com/inward/authorDetails.url?authorID=57210193113&partnerID=MN8TOARS
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9665-7426


https://doi.org/10.33263/BRIAC136.516  

 https://biointerfaceresearch.com/ 2 of 13 

 

2. Materials and Methods 

To study the structural, electronic, and optical properties of CsPbBr3–xYx (Y=I, Cl), we 

perform density functional theory (DFT) simulations [11] using the full linearized potential 

augmented plane wave method [12] implemented in WIEN2k [13]. Structural and electronic 

properties of CsPbBr3–xYx (Y=I, Cl) were studied within the framework of DFT using 

exchange-correlation potentials GGA-PBE [14] and mBJ [15]. In all calculations, the RMT* 

kmax value was assumed to be 7.0. RMT values were set at 2.5 AU. for Cs, Pb, Br, I, and 2.43 

a.u. for Cl. The CsPbBr3 used in our calculations belongs to the orthorhombic crystal structure 

of the space group Pnma. Models of I and Cl doped with CsPbBr3 are constructed by replacing 

the corresponding number of Br ions with the corresponding number of I and Cl ions. 

3. Results and Discussion 

3.1. Structural and electronic property. 

To study the effect of doping with I and Cl on the structural, electronic, and optical 

properties of CsPbBr3, as well as on its absorption capacity, we replaced the corresponding 

number of Br atoms with the corresponding I and Cl atoms with the abundance ratio of I (х = 

0, 0.5, 1, 1.5) and Cl (x = 0, 0.25, 1, 1.25).  The crystal structures of these materials were 

modeled using the 3D visualization program for electronic and structural analysis VESTA. The 

unit cell of each material consists of 20 atoms. The initial structure of CsPbBr3 and the crystal 

structure after doping with various contents of I and Cl are shown in Figures 1 and 2, 

respectively. 

 
Figure 1. Atomic structures of CsPbBr3-xIx at different contents of I (x = 0, 0.5, 1, 1.5). 

 

Figure 2. Atomic structures of CsPbBr3–xClx at different Cl contents (x = 0, 0.25, 1, 1.25, 1.5). 

Table 1 shows the structural parameters of CsPbBr3–xIx (x = 0, 0.5, 1, 1.5) and CsPbBr3–

xClx (x = 0, 0.25, 1, 1.25) after geometric optimization. The calculated parameters and lattice 

volume of pure CsPbBr3, given in Table 1, are in good agreement with the theoretical and 

experimental results [16, 17]. Thus, we can conclude that our calculated structural parameters 
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are correct. The results show the calculated equilibrium parameters (a, b and c, in Å) and 

volume (V, in Å3) of the lattice. A graphical representation of the results of CsPbBr3–xIx (x = 

0, 0.5, 1, 1.5) is shown in Figure 3. 

Table 1. Structural parameters of CsPbBr3–xYx (Y=I, Cl). 

Lattice parameters This work Other 

CsPbBr3 

a (Å) 8,45 
8.56[16], 

8.25[17] 

b (Å) 11,8 
12.18[16], 

11.75[17] 

c (Å) 8,14 
8.51[16], 

8.20[17] 

V (Å3) 812,79 
888.2[16], 

795.6[17] 

CsPbBr2.5I0.5 

a (Å) 8,59  

b (Å) 11,79  

c (Å) 8,31  

V (Å3) 843,1  

CsPbBr2I1 

a (Å) 8,75  

b (Å) 11,81  

c (Å) 8,42  

V (Å3) 870,59  

CsPbBr1.5I1.5 

a (Å) 8,92  

b (Å) 11,79  

c (Å) 8,58  

V (Å3) 903,46  

CsPbBr2.75Cl0.25 

a (Å) 8.42  

b (Å) 11.87  

c (Å) 8.18  

V (Å3) 819.13  

CsPbBr2Cl1 

a (Å) 8.19  

b (Å) 11.91  

c (Å) 8.03  

V (Å3) 784.27  

CsPbBr1.75Cl1.25 

a (Å) 8.14  

b (Å) 11.90  

c (Å) 7.97  

V (Å3) 773.12  

CsPbBr1.5Cl1.5 

a (Å) 8.07  

b (Å) 11.90  

c (Å) 7.95  

V (Å3) 764.14  

The results show that with an increase in the concentration of I atoms, the geometric 

parameters of CsPbBr3–xIx noticeably change. In this case, the parameters a, b, and the volume 

of the crystal lattice increase linearly. The empirical formulas a = 0.314x + 8.442, c = 0.286x 

+ 8.148, and V = 59.9x + 812.56, respectively, express the change in parameters a, c, and the 

volume of the crystal lattice of CsPbBr3–xIx. The change in parameter b does not obey a linear 

law and, in turn, changes little. 

Structural analysis of CsPbBr3–xClx shows that the lattice constants of the unit cell 

change noticeably with an increase in the concentration of doped Cl atoms. As shown in Figure 

4, in contrast to I doped with CsPbBr3, with an increase in the Cl(x) content, the size of the 

https://doi.org/10.33263/BRIAC136.516
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC136.516  

 https://biointerfaceresearch.com/ 4 of 13 

 

elementary cell decreases proportionally from 0.25 to 1.5 according to the function V(x) = -

44.569x + 829.73(Å)3. 

 

Figure 3. Dependences of the lattice parameters of CsPbBr3–xIx on the content of I atoms. 

 
z 

Figure 4. Unit cell volume depends on the content of Cl(x). 

Below, we present the results of studying the electronic properties of CsPbBr3–xIx and 

CsPbBr3–xClx. To obtain additional information about the electronic structure and a 

comprehensive understanding of the band gap energy, quantum mechanical calculations of the 

electronic structure of CsPbBr3–xIx and CsPbBr3–xClx were carried out. The electronic 

properties of these structures are obtained by studying the density of electronic states. The 
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noticed a change in the band gap with a change in the content of I and Cl. Figure 5 shows the 
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and mBJ approximations. The distributions of the density of states are built in the range from 

-4 to 4 eV. 

 

Figure 5. The density of state of  CsPbBr3–xIx (x = 0, 0.5, 1, 1.5 as a function of energy in the GGA (a) and mBJ 

(b) approximations. 

 

Figure 6. The density of state of CsPbBr3-xClx (x = 0, 0.25, 1, 1.25, 1.5) as a function of energy in the GGA (a) 

and mBJ (b) approximations. 

The band gaps of CsPbBr3–xIx and CsPbBr3–xClx calculated using the GGA and mBJ 

potentials are given in Table 2. The results show that the band gap of CsPbBr3–xIx decreases 

with increasing concentration of doped I atoms. In contrast to I doped with CsPbBr3, with an 

increase in the Cl concentration in the composition of CsPbBr3, the band gap increases 

accordingly. The band gap value calculated using the mBJ potential is larger than that obtained 

using the GGA potential. 

Table 2. Band gaps of CsPbBr3–xIx (x = 0, 0.5, 1, 1.5) and CsPbBr3–xClx (x = 0, 0.25, 1, 1.25, 1.5) calculated 

using the GGA and mBJ potentials. 

System 
This work 

Other works (эВ) 
GGA(эВ) mBJ(эВ) 

CsPbBr3 2,27 3,06 

2.89[19],  

2,22[20], 

2,29[21] 

CsPbBr2.5I0.5   1.99 2.75  

CsPbBr2I1   1.90 2.61  

CsPbBr1.5I1.5 1.86 2.57  

CsPbBr2.75Cl0.25   2,32 3,20  

CsPbBr2Cl1   2,35 3,23  
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System 
This work 

Other works (эВ) 
GGA(эВ) mBJ(эВ) 

CsPbBr1.75Cl1.25 2,40 3,28  

CsPbBr1.5Cl1.5 2,42 3,34  

Figures 7 and 8, respectively, show the dependence of the CsPbBr3 band gap on the 

concentration of doped I and Cl atoms. The empirical formulas bg=-0.162x+2.084 and bg=-

0.19x+2.835 express the change in the band gap of CsPbBr3–xIx in GGA and mBJ calculations, 

respectively. Using these equations, one can estimate the band gap in CsPbBr3–xIx for any 

concentration I. 

 

Figure 7. Band gap at various concentration ratios of I doped in CsPbBr3. 

 

Figure 8. Band gap at various concentration ratios of Cl doped in CsPbBr3. 

3.1. Optical property. 

The study of the optical properties of these perovskites is of great importance in 

connection with the possibility of their use in solar cells [22–27]. Typically, the optical 
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σ(ω)  =
𝑖𝜔

4𝜋
𝜀(𝜔)   (2) 

n(ω)  =
1

√2
√√ε1

2(ω) + ε2
2(ω) + ε1(ω) (3) 

R(ω)  = |
√𝜀(𝜔)−1

√𝜀(𝜔)+1
|

2

  (4) 

где 𝜀(𝜔) = ε1(ω) + 𝑖ε2(ω)  

If you calculate a complex dielectric function, then you can easily study all the other 

optical properties of perovskite materials. As is known, the permittivity consists of two parts: 

the real part ε1(ω) and the imaginary part ε2(ω). ε1 (ω) is the accumulated energy available for 

issuing. ε2(ω) explains the absorption capacity and behavior of these materials. Figures 9 and 

10 show the real ε1(ω) and imaginary ε2(ω) parts of the permittivity of CsPbBr3-xIx and 

CsPbBr3-xClx depending on the photon energy in the framework of quantum chemical 

calculations, respectively. 

 

Figure 9. Calculated (a) values of ε1(ω) and (b) values of ε2(ω) of CsPbBr3-xIx (x = 0, 0.25, 1, 1.25, 1.5) 

depending on the energy using the GGA potential. 

 

Figure 10. Calculated (a) values of ε1(ω) and (b) values of ε2(ω) of CsPbBr3-xClx (x = 0, 0.25, 1, 1.25, 1.5)  

depending on the energy using the GGA potential. 

ε1(ω) is the reserve energy of the medium or material that can be given away. Figure 
9(a) shows that at sufficiently high energies, CsPbBr3-xIx exhibits metallic behavior. The value 

of ε1(ω) increases in the range of 0–3 eV and reaches its maximum value in the region of 3 eV. 

It can be seen that with a further increase in the photon energy, the value of ε1(ω) begins to 
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take negative values beyond 10 eV. These negative values explain that in this range, the 

CsPbBr3–xIx compounds will behave like a metal, having a high reflectivity of the light incident. 

ε2(ω) explains the absorption capacity and behavior of these materials. The imaginary 

part of the permittivity (ε2) is zero at 0 eV in the case of a pure system. This means there is no 

energy absorption in CsPbBr3, in contrast to iodine-doped perovskite CsPbBr3, where a 

positive value of ε2 is observed. As can be seen from Figure 9(b), the absorption capacity of 

CsPbBr3, CsPbBr2.5I0.5, CsPbBr2I1, and CsPbBr1.5I1.5 increases to maximum values of 4.17, 3.9, 

3.33 and 3.6 at 6.05, 6.39, 7.02 and 6.6 eV, respectively. Then the values of ε2(ω) rapidly 

decrease for all compounds. These systems showed a noticeable peak around 3 eV with non-

zero absorption even at 0 eV. It should be noted that with an increase in the concentration of 

doped iodine ions, the absorption capacity of CsPbBr3 increases accordingly. A shift of the 

absorption peaks towards low energies is also observed. The absorption edge of iodine-doped 

CsPbBr3 is observed towards lower energies (0.2 eV). The increase in absorption can be 

explained by a decrease in the band gap, as can be seen in Figure 7. 

Figure 10 (a) shows that the value of ε1(ω) of CsPbBr3-xClx increases in the range of 0–

3 eV and reaches its maximum value in the region of 3 eV. Then it decreases and becomes 

negative at high energies (12 eV and above). The imaginary part ε2(ω) is related to the band 

gap energy. Figure 10(b) shows that CsPbBr3 has the highest peaks in the visible and infrared 

regions due to the smaller band gap compared to other compounds. 

Given the values of the real ε1(ω) and imaginary ε2(ω) parts of the permittivity, optical 

properties such as absorption coefficient α(ω), optical conductivity spectra σ(ω), refractive 

index n(ω) and reflection coefficient R(ω), which characterizes the interaction of light with 

matter, is determined by equations (1-4). Figure 11 shows the dependence of the absorption 

coefficient spectra, optical conductivity spectra, and refractive and reflection indices on the 

energy of CsPbBr3-xIx. 

 

Figure 11. Calculated (a) absorption coefficient spectra α(ω), (b) optical conductivity spectra (ω), (c) 

refractive index n(ω), (d) reflection coefficient R(ω) of CsPbBr3-xIx perovskite using the GGA potential. 
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As can be seen from Figure 11(a), the influence of doping changes the absorption 

spectra. The absorption threshold increases at 1.8, 1.4, 1.2, and 0.95 eV and reaches a maximum 

value of 1.39, 1.52, 1.62, and 1.53 at 4.34, 4.14, 3 .95 and 3.76 eV for CsPbBr3, CsPbBr2.5I0.5, 

CsPbBr2I1, and CsPbBr1.5I1.5, respectively. 

The optical conductivity spectrum σ(ω) is shown in Figure 11(b), which gives an idea 

of the conductivity of a perovskite compound under optical excitation caused by penetrating 

photon energy beams. Figure 11(d) shows that the optical conductivity has a zero value in the 

visible region up to about 2 eV and tends to increase in the limit up to 4 eV and reaches higher 

values in the UV range. The optical conductivity increases accordingly with an increase in the 

concentration of I in the CsPbBr3 structure. The minimum σ(ω) in the low energy region and 

the corresponding zero values in the emitted region show that the incident light in this energy 

region cannot cause optical excitations for these compounds. 

The calculated refractive index (n) for CsPbBr3, CsPbBr2.5I0.5, CsPbBr2I1, and 

CsPbBr1.5I1.5 is 2.07, 2.14, 2.20, and 2.24, respectively. As shown in Figure 11(c), the refractive 

index increases in the range of 0-3 eV and reaches its maximum value in the vicinity of 3 eV. 

Then it decreases and tends to zero at high energies for all compounds. The n(ω) spectrum is 

very similar to the spectrum of ε1(ω). 

 

Figure 12. Calculated (a) absorption coefficient spectra α(ω), (b) optical conductivity spectra  (ω), (c) 

refractive index n(ω), (d) reflection coefficient R(ω) of CsPbBr3–xClx perovskite using the GGA potential. 

Figure 12(a) shows the absorption spectra of CsPbBr3-xClx (x = 0, 0.25, 1, 1.25, 1.5). 

CsPbBr2.75Cl0.25 has better absorption characteristics and great potential as a photovoltaic 
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increases and reaches a maximum at 4.77 eV, and then sharply drops to 1.36, after 6 eV it again 

tends to increase. Optical conductivity for other compounds of the CsPbBr3-xClx system has a 

similar trend. 

Figure 12(c) shows the calculated refractive index versus energy. For CsPbBr3-xClx (x 

= 0, 0.25, 1, 1.25, 1.5), in the framework of GGA calculations, the refractive index rises to the 

maximum values of 2.65, 2.62, 2.48, 2.44,  and 2.40 at 3.03, 3.11, 3.19, 3.19, and 3.22 eV, 

respectively. The figure shows that at energies greater than 12.96 eV for all compounds, the 

refractive index tends to 0.  

As can be seen from Figure 12(d), the reflectance for CsPbBr3 starts to increase from 

R(0)=0.6226 to 0.90 at 4.77 eV and then decreases to 0.60 at about 6.35 eV. The reflection 

coefficient again starts to increase from 6.4 eV. A similar trend has a reflection coefficient for 

other compounds of the CsPbBr3-xClx system 

4. Conclusions 

Structural, electronic, and optical properties of CsPbBr3–xYx (Y=I, Cl) have been 

studied using quantum mechanical calculations. The results obtained showed that the band gap 

of CsPbBr3 decreases with increasing concentration of I; however, as the concentration of 

doped Cl atoms increases, the band gap increases. The calculated optical properties, consisting 

of the dielectric function, absorption coefficient spectra, optical conductivity spectra, refractive 

index, and reflectance, showed that I doped with CsPbBr3, compared to undoped CsPbBr3, has 

a high absorption coefficient. The high absorption power and direct band gap over a wide range 

show that CsPbBr3–xYx (Y=I, Cl) is suitable for use in solar cells. The calculated optical 

constants of CsPbBr3–xYx (Y=I, Cl) perovskites show that they are good materials for use in 

optoelectronics. Notably, CsPbBr3–xYx (Y=I) exhibits the strongest absorption in the visible 

light range, the highest number of absorbing photons, and a suitable band gap. Our study 

provides a theoretical justification for creating highly efficient photovoltaic devices based on 

CsPbBr3–xYx (Y=I, Cl) and synthesizing photovoltaic materials with improved characteristics. 

The application of DFT to study the optoelectronic properties of functional materials 

proves that this method is an important computational tool for studying fundamental principles 

of materials and plays a decisive role in clarifying their functionality [35-46]. 
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