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Abstract: For the first time, sucralose cathodic electrochemical determination, assisted by the safranin-

modified electrode in acidic solutions, has been theoretically described. The correspondent 

mathematical model analysis has shown that the steady-state stability range is wider than in most 

systems of electrochemical determination over the pyridinic nitrogen-containing conducting polymer. 

Moreover, the oscillatory behavior is less probable than in similar systems in acidic media. 

Nevertheless, it is more probable than in neutral media. Nevertheless, poly(safranin) is an efficient 

electrode modifier for sucralose electrochemical determination. 

Keywords: sucralose; conducting polymers; safranin; electrochemical sensors; stable steady-state.  
© 2023 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 
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1. Introduction 

The chemically modified electrodes (CME) constitute one of the most modern and 

flexible tools in electroanalytical chemistry [1–4]. Compared to the bare electrodes, they have 
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some advantages, including efficiency and low cost. Still, the most important of them is the 

affinity to the electrode, using the principle of the key and lock. 

One of the interesting analytes for CME may be sucralose [5, 6], one of the most 

widespread sweeteners used worldwide, also known as the main constituent of splenda. Its E-

code in the European Union is E955, and it is much sweeter than aspartame, saccharin, and 

sucrose [7–8]. Being a carbohydrate derivative, it tastes more naturally than other sugar 

substitutes 

 

Figure 1. Sucralose structure. 

It has been approved for use in most developed countries [8]. Its chemical composition 

is very similar to that of typical carbohydrates, but containing three chlorine atoms, it may be 

toxic, presenting effects of mutagenesis, carcinogenesis, obesity, and growth of glycolysis 

levels [7 – 12]. Moreover, it yields environmentally toxic chloroorganic compounds (mainly 

dioxins) if inappropriately stored [13 - 14] or decomposed during baking [15]. Therefore, 

developing an efficient method for sucralose detection is important for human and 

environmental safety  [16 - 18], and electrochemical methods for it would be very interesting. 

The possibility of the electrochemical sensing of sucralose by anodic oxidation of the 

remaining hydroxyl groups has already been foreseen by us theoretically [19 – 21], being 

thereby confirmed experimentally in [22]. In work [19], sucralose immobilization on an 

acridine derivative capable of forming a quaternary salt has been suggested. The sucralose 

immobilization was foreseen to be followed by the electrochemical oxidation of hydroxyl 

groups of the sucralose units. Another opportunity could be an electrochemical reduction of 

sucralose salt with the correspondent pyridinic nitrogen compound, in which safranin polymer 

or any other polymer with piridinic nitrogen atom or free amino group may be used as a 

modifier [23 – 26]. 

Nevertheless, the analogous processes tend to be accompanied by electrochemical 

instabilities, negatively impacting the sensor stability and analytical signal interpretation [27 - 

28]. Taking this into account, it´s necessary to theoretically evaluate this system's behavior, 

especially in acidic media, where the concurrence between the protons and the sucralose 

molecules exists, influencing the reaction mechanism by a proton attack. 

So, this investigation, which also includes comparing the behavior of this system with 

that of similar ones, is the aim of the present study.  

2. Materials and Methods 

Generally, sucralose interacts with the safranin moiety follows the quaternization 

mechanism, yielding a quaternary salt, which will be thereby reduced, yielding a dibenzo-1,4-

dihydropyrazine fragment, which becomes more basic (Fig. 2):  
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Figure 2. Sucralose interaction with safranin moiety. 

In acidic media, it concurs with the proton attack (Fig. 3):  
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Figure 3. Proton attack of the safranin moiety. 

Two possibilities of theoretical description for this system involve a bivariant and a 

trivariant system. In the last case, taking some assumptions, we describe the behavior of this 

system by a balance equation-set (1): 

{
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(
𝛴

𝛿
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𝛿
(
𝐻
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𝑑𝑡
=

1

𝑃
(𝑟𝑆 + 𝑟𝐻 − 𝑟𝑟)

                                         (1) 

 Herein, s, h, and p are sucralose and proton pre-surface layer concentrations and 

quaternized poly(safranin) coverage degree, 𝛿 is the diffusion layer thickness, Σ, and H are the 

sucralose and protons diffusion coefficients, s0 and h0 are their bulk concentrations, P is the 

quaternized poly(safranin) maximal surface concentration, and the parameters r are the 

correspondent reaction rates, calculated as:  

𝑟𝑟 = 𝑘𝑟𝑝
𝑙 exp (−

𝑛𝐹𝜑0

𝑅𝑇
)                                            (2) 

𝑟𝑠 = 𝑘𝑠(1 − 𝑝)𝑠
𝑚 exp(−𝑎𝑠)                                        (3) 

𝑟ℎ = 𝑘ℎ(1 − 𝑝)ℎ
𝑛 exp(−𝑏ℎ)                                        (4) 

Herein, the parameters k are the correspondent reaction rates l, m and n are the 

numbers of safranin moieties capable of reacting, a and b is the parameter describing the DEL 

influence of the chemical stages, F is the Faraday number, 𝜑0  is the potential slope, related to 

the zero-charge potential, R is the universal gas constant and T is the solution temperature.  

Compared to the neutral media, the steady-state stability zone will be narrower, and 

the realization of instabilities is more probable as the behavior becomes more dynamic. 

Nevertheless, in relation to other acidic media electroanalytical processes, this will be more 

stable, as shown below.  

3. Results and Discussion 

The steady-state Jacobian matrix members for the equation-set (1), considering the 

algebraic relations (2 – 4) for this system, will be described as (5):  
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(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                                                        (5) 

 

 Where:  

 

𝑎11 =
2

𝛿
(−

𝛴

𝛿
−𝑚𝑘𝑠(1 − 𝑝)𝑠

𝑚−1 exp(−𝑎𝑠) + 𝑎𝑘𝑠(1 − 𝑝)𝑠
𝑚 exp(−𝑎𝑠))     (6) 

𝑎12 = 0                                               (7) 

𝑎13 =
2

𝛿
(𝑘𝑠𝑠

𝑚 exp(−𝑎𝑠))                           (8) 

𝑎21 = 0                                               (9) 

𝑎22 =
2

𝛿
(−

𝐻

𝛿
− 𝑛𝑘ℎ(1 − 𝑝)ℎ

𝑛−1 exp(−𝑏ℎ) + 𝑏𝑘ℎ(1 − 𝑝)ℎ
𝑛 exp(−𝑏ℎ))     (10) 

𝑎23 =
2

𝛿
(𝑘ℎℎ

𝑛 exp(−𝑏ℎ))                           (11) 

𝑎31 =
1

𝑃
(𝑚𝑘𝑠(1 − 𝑝)𝑠

𝑚−1 exp(−𝑎𝑠) − 𝑎𝑘𝑠(1 − 𝑝)𝑠
𝑚 exp(−𝑎𝑠))     (12) 

𝑎32 =
1

𝑃
(𝑛𝑘ℎ(1 − 𝑝)ℎ

𝑛−1 exp(−𝑏ℎ) − 𝑏𝑘ℎ(1 − 𝑝)ℎ
𝑛 exp(−𝑏ℎ))     (13) 

𝑎33 =
1

𝑃
(−𝑘𝑠𝑠

𝑚 exp(−𝑎𝑠) + 𝑘ℎℎ
𝑛 exp(−𝑏ℎ) − 𝑙𝑘𝑟𝑝

𝑙−1 exp (−
𝑛𝐹𝜑0

𝑅𝑇
) +

𝑗𝑘𝑟𝑝
𝑙 exp (−

𝑛𝐹𝜑0

𝑅𝑇
)) (14) 

Taking into account the main-diagonal elements (6), (10), and (14), we may observe 

that the main diagonal elements contain the addendums, capable of being possible, being 

thereby capable of describing the positive callback. They are 𝑎𝑘𝑠(1 − 𝑝)𝑠
𝑛 exp(−𝑎𝑠) > 0, if 

a>0, 𝑏𝑘ℎ(1 − 𝑝)ℎ
𝑛 exp(−𝑏ℎ) > 0, if b>0 and 𝑗𝑘𝑟𝑝

𝑛 exp (−
𝑛𝐹𝜑0

𝑅𝑇
) > 0, if j>0, correspondent 

to the DEL influences of two chemical and electrochemical stages correspondently.  

The positive callback is tightly related to the Hopf bifurcation, which is responsible 

for the oscillatory behavior. Its probability of the oscillatory behavior is more expressed than 

in the simplest cases due to the transformation of ionic forms in the polymer phases. Even 

though it is less manifested than in some similar systems [21], all of the mentioned elements 

are dependent on background electrolyte composition, and so are the amplitude and frequency 

of the oscillations.   

Yet, if the mentioned elements are negative, the steady state will be stable, which may 

be shown by applying the Routh-Hurwitz criterion to the equation set (1). To simplify the 

analysis, we rewrite the Jacobiant determinant as (15):  

  

4

𝛿2𝑆
|
−𝜅 − 𝛯 0 𝛵
0 −𝜂 − 𝛴 𝛷
𝛯 𝛴 −𝛵 − 𝛷 − 𝛺

|                                      (15) 

avoiding cumbersome expressions. 
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Opening the brackets and applying the Det J<0 statement, salient from the criterion 

and changing the signs to the opposite, we obtain the steady-state stability condition, 

described as (16): 

𝜅(𝜂𝛵 + 𝜂𝛷 + 𝜂𝛺 + 𝛴𝛶 + 𝛴𝛺)»𝛯(2𝜂𝛵 + 𝛴𝛵 + 𝜂𝛷 + 𝜂𝛺 + 𝛴𝛶 + 𝛴𝛺) > 0       (16) 

Describing a stable diffusion-controlled system in which the steady-state stability 

topological region is a bit less wide than in the neutral media but slightly wider than in some 

electroanalytical and electro-converting systems [21].  

As for electroanalytical efficiency, it will be strongly dependent on solution pH, as 

protons block the active sites for the sucralose binding to the polymer (Fig. 3). By this, in 

strongly acidic media, correspondent to low pH values, the electroanalytical process will be 

inefficient, although the electroanalytical process remains stable. By this, the electroanalytical 

efficiency of this system will be given in mildly acidic media, close to neutral. If this condition 

is satisfied, the dependence between the electrochemical parameter (current) and sucralose 

concentration will be linear, providing an efficient analytical signal interpretation.  

The monotonic instability, correspondent to the detection limit, separates the steady 

stable states from unstable states. Its condition is mathematically exposed as (17): 

𝜅(𝜂𝛵 + 𝜂𝛷 + 𝜂𝛺 + 𝛴𝛶 + 𝛴𝛺)»𝛯(2𝜂𝛵 + 𝛴𝛵 + 𝜂𝛷 + 𝜂𝛺 + 𝛴𝛶 + 𝛴𝛺) = 0      (17) 

In the case of the bivariant system, we may consider the excess of protons. By this, 

the variable h will be excluded from the equation set and included in the correspondent reaction 

rate constants.  

4. Conclusions 

From the theoretical description of sucralose electrochemical determination over 

poly(safranin), it has been possible to conclude that the polymer may serve as an excellent 

modifier for sucralose quantification, providing a diffusion-controlled electroanalytical 

efficient process. The stable, steady state is maintained easily. The process mechanism consists 

of the chemical and electrochemical stages, leading to the appearance of a determined, 

analytical signal. The electroanalytical efficiency of stable steady-state augments with the 

growth of pH up to neutral media due to the influences of pH on the availability of the polymer's 

active site. The oscillatory behavior in this system is possible, being caused by DEL influences 

of both chemical processes, like the electrochemical stage. 
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