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Abstract: Steroid 5α-reductase 2 (SRD5A2) is an enzyme that catalyzes the reduction of testosterone 

to dihydrotestosterone. Due to its influence on steroidogenesis, it has been proposed as an interesting 

pharmacological target for androgen-related diseases such as benign prostatic hyperplasia, androgenic 

alopecia, and prostate cancer. Nevertheless, current commercially available drugs lack specificity and 

cause side effects. This work aims to identify potential new commercially available drugs as SRD5A2 

inhibitors. Molecular docking using Glide was performed with SRD5A2 crystal structure and 9213 

compounds downloaded from the DrugBank database. Lipinksi, Ghose, and Veber's rules were applied, 

and energetic and spatial analyses were made. Eleven compounds fulfilled the criteria of being oral 

drugs and had better binding coupling energy than testosterone. From these, only four were positioned 

within the SRD5A2 binding site and interacted with its key residues E57 and R114: mestranol, 

lorcaserin, phenindamine, and stiripentol. However, it was found that only the last one could be a 

repositioned drug for the SRD5A2 target and, consequently, for androgen-related human diseases. 

Stiripentol could be a suitable candidate for SRD5A2 inhibition; nevertheless, it did not interact directly 

with the R114 side chain, and consequently, in vivo trials are required. The other drugs positioned in 

the SRD5A2 binding site should be studied deeply to evaluate their repositioning potential.  

Keywords: steroid 5α-reductase 2 inhibitors; molecular docking; drug repositioning; SRD5A2; 

DrugBank. 

List of Abbreviations: SRD5A2 = Human steroid 5α-reductase 2; T = Testosterone; DHT = 

Dihydrotestosterone; DTD = Dutasteride; FTD = Finasteride; PDB = Protein Data Bank; RSMD = 
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Defined Daily Dose; BCE = Binding Coupling Energy; FDA = Food and Drug Administration. 
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1. Introduction 

Human steroid 5α-reductase isoform 2 (SRD5A2) is a highly expressed protein in the 

male reproductive system. It catalyzes the reduction of the Δ4 bond of testosterone (T) to 

synthesize dihydrotestosterone (DHT), the main circulating androgen in humans [1,2]. Among 

all SRD5A2 isoforms, types 1 and 2 play important roles in DHT biosynthesis. Meanwhile, 

isoform 3 is implicated in the N-glycosylation of proteins via the formation of dolichol 
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phosphate [3,4]. Altered expression of steroid 5α-reductases, particularly overexpression of 

SRD5A2, has been related to the progression of several diseases such as benign prostatic 

hyperplasia [5-7], alopecia [8-10] and prostate cancer [11,12]. For the latter disease, it has been 

suggested that treatment with SRD5A2 inhibitors could benefit patients [13,14]. Due to the key 

role of SRD5A2 in developing serious medical illnesses, it has emerged as an important 

pharmacological target. Additionally, the scarce efficacy and adverse reactions of the SRD5A2 

inhibitors dutasteride (DTD) and finasteride (FTD) have been reported in multiple 

investigations [15-17]. These two drugs appear to show similar effects on sexual dysfunction. 

Adverse effects of FTD may be related to unspecific binding to phenylethanolamine-

N-methyltransferase and its action mechanism through SRD5A2 [18]. Because of this, there is 

a necessity for new selective drugs targeting SRD5A2. Conventionally, developing new drugs 

represents a costly and time-consuming process [19-21]. As a result, drug repositioning studies 

have successfully optimized the preclinical process of developing novel drugs [22,23]. The 

advantage of this scientific strategy is that these drugs have already been approved in clinical 

trials. Therefore, their side effects are usually known, resulting in reduced time and expense 

for their adoption in other therapeutic uses [24,25]. This study describes the identification of 

commercially available drugs as potential inhibitors of SRD5A2, thus suggesting that they 

could be of interest for the treatment of multiple SRD5A2-related diseases such as benign 

prostatic hyperplasia, alopecia, and prostate cancer. 

2. Materials and Methods 

2.1. Protein and drug database preparation. 

The crystal structure of the target in complex with NADPH and finasteride was obtained 

from RCSB Protein Databank [26] (PBD ID: 7BW1 [27]) and prepared as was previously 

reported [28] in Schrödinger suite [29]. The list of drugs was obtained from Drug Bank [30] 

containing 9213 molecular structures that were prepared in the Ligprep module [28,29]. The 

DTD and FDT were taken as endogen ligands references and are commercially available as 

SRD5A2 inhibitors [31]. 

2.2. Molecular docking. 

The molecular coupling was realized in Schrödinger glide [32] using a protocol 

previously reported [28], and shortly illustrated in figure 1. Redocking with FTD yielded an 

RSMD value of 0.998 Å. The 2D and 3D analyses were realized in Maestro [33], BIOVIA 

Discovery Studio [34], and Pymol [35].   

 
Figure 1. Diagram applied for drug repositioning for SRD5A2 inhibitors. 
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3. Results and Discussion 

3.1. Prediction of drug-similarity and ATC codes. 

After molecular docking was performed using Glide, and tautomeric, protonated forms 

and conformers were filtered, 2310 molecular structures remained. Lipinski, Ghose, and 

Veber's rules were applied, and structures with one or more violations of any of these rules 

were discarded for further analysis. Lipinski's rule of five was used to evaluate if a molecule 

could be orally active, taking into consideration four parameters: [36] (1) molecular weight 

must be less than 500, (2) octanol/water partition coefficient (log P) must be less than 5, (3) 

No more than 5 hydrogen bond donors should have a drug, and (4) A limit of 10 hydrogen 

bond acceptors is suitable. Furthermore, Ghose's rules evaluate drug-likeness considering other 

descriptors such as: (1) molecular weight range between 180-480, (2) calculated log P between 

-0.4-5.6, (3) molar refractivity value must be between 40-130, and (4) the total number of atoms 

must be between 20-70 [37]. After evaluating drugs according to Lipinski, Ghose, and Veber's 

rules, a total of 290 structures remained. Anatomical Therapeutic Chemical (ATC) 

Classification System codes were examined in the ATC/DDD index 2022 of the World Health 

Organization's Collaborative Center for Drug Statistics Methodology [38-40] and shown in 

Table 1 and the best drug for each group as an example. 

Table 1. Percentage of analyzed drugs and meaning of Anatomical Therapeutic Chemical (ATC) codes of 

analyzed drugs. 

Letter Bioactivity Analyzed 

drugs (%) 

Example 

A Alimentary tract and metabolism 12 (4) Ondansetron 

B Blood and blood-forming organs 5 (2) Menadione 

C Cardiovascular system 14 (5) Ephedrine 

D Dermatological 14 (5) Dimetindene 

G Genito-urinary system and sex hormones 18 (6) Norgestrel 

J Anti-infective for systemic use 4 (1) Efavirenz 

L Antineoplastic and immune-modulating agent 3 (1) 
Abiraterone 

M Musculoskeletal system 4 (1) Flurbiprofen 

N Nervous system 106 (37) Donepezil 

P Antiparasitic products, insecticides, and repellents 8 (3) Chloroquine 

R Respiratory system 33 (11) Azelastine 

S Sensory organs 4 (1) Aceclidine 

NA Not Assigned 65 (22) Mestranol 

 

Thirty-seven percent of structures correlate to classification N, meaning they have 

expected effects on the central nervous system. The second t-frequent classification was R  

(eleven percent), corresponding to drugs influencing the respiratory system. Twenty-two 

percent of the structures had no ATC category, meaning they could be discontinued drugs, 

tinction agents, or substances used as cosmetics. Only one percent could be classified as 

antineoplastic and immunomodulating agents. Drug repositioning in the same ATC 

classification is desired but considering different diseases. 

3.2. Molecular docking. 

The binding coupling energy (BCE, kcal/mol) of the 288 structures were compared to 

those of the reference ligands: DTD (-7.338 kcal/mol), FTD (-6.799 kcal/mol), and T (-6.756 

kcal/mol). These results are consistent with their reported inhibitor activity as their BCE is 
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more important than that offered by T, meaning that the ligand-protein complex with inhibitors 

is thermodynamically more favored than that produced by  T. 

 
Figure 2. (A) BCE distribution. (B) Expanded region from -8.0 to -6.6 kcal/mol. Reference ligands: testosterone 

(red); finasteride (yellow), and dutasteride (green). 

Figure 2 shows the BCE dispersion values. According to BCE, the following 

classification was established: 

Structures having higher BCE than T but lower than FTD. 

Structures showing higher BCE than FTD but lower than DTD. 

Structures with higher BCE than DTD. 

For the first group, only progesterone (-6.789 kcal/mol) is selected as an endogenous 

ligand, but it can also be used as a drug in hormone replacement therapy. The second group 

includes 22 drugs, described in Table 2. For many therapeutic purposes, oral drugs are desirable 

since oral administration is non-invasive, painless, easy to apply, and accepted by all patients. 

From this group, only 18 drugs met these criteria; they are commercially available and do not 

act as endogenous ligands. 

Table 2. Description of drugs in the second group. 

Name BCE (kcal/mol) Name BCE (kcal/mol) 

Efavirenz -7.326 Pregnenolone □ -6.913 

Pentazocine -7.283 Brexanolone -6.890 

Mesoridazine -7.165 Palonosetron ▲ -6.861 

Mestranol -7.096 Phenindamine -6.857 

Norethynodrel -7.088 Flibanserin -6.850 

Vortioxetine -7.034 Perphenazine -6.849 

Lorpiprazole -7.031 Amitriptylinoxide -6.838 

Stiripentol -6.977 Nomifensive ■ -6.836 

Lynestrenol -6.965 Duloxetine -6.830 

Fluoxetine -6.960 Pergolide -6.817 

Lorcaserin -6.930 Rotigotine Δ -6.801 

Endogenous substrates □; intravenous drugs ▲; drugs removed from the market ■ and transdermal drugs Δ. 
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Finally, group three comprises four structures: ondansetron, norgestrel, donepezil, and 

azelastine. No further analysis was made for the latter because its pharmaceutical presentation 

is as a spray. The last step before 2D and 3D analysis was to eliminate those drugs that attack 

targets related to the central nervous system. Consequently, the remaining structures were 

ondansetron, norgestrel, efavirenz, pentazocine, mestranol, norethynodrel, stiripentol, 

lynestrenol, lorcaserin, phenindamine, and flibanserin.  

The next step was to analyze the protein-ligand complex interactions since BCE is 

closely related to these interactions. Figure 3 shows the noncovalent protein-ligand interactions 

between SRD5A2 and DTD or FTD. In both cases, residues E57 and R114 play an important 

role in stabilizing protein-ligand complexes by establishing hydrogen bonds and hydrophobic 

interactions. 

 
Figure 3. Molecular interactions of FTD and DTD at the SRD5A2 binding site. 

The lactam N-H acts in both structures as a hydrogen bond donor showing a hydrogen 

bond length of  2.2 Å for DTD and 2.3 Å for FTD. According to our results, the carbonyl group 

of N-tert-butoxycarbonyl moiety of FTD serves twice as a hydrogen bond acceptor with R114; 

meanwhile, in DTD, this same residue establishes just one hydrogen bond with the amide 

carbonyl group. It is useful to determine if an SRD5A2 inhibitor is embedded in a hydrophobic 

pocket in proximity with helices 2, 4, and 5 and interacting with residues W53, F118, L111, 

and F223 in the case of DTD, and W53, F118, F223, and L111 for FTD. On the other hand, 

side chains are next to helix 1. 

The docking scores are shown in Table 3 for the selected drugs and ranged from -7.807 

to -6.850 kcal/mol. All structures fit well at the binding site and share a rigid and flat carbon 

skeleton containing aromatic rings, a structural feature that seems to be important to facilitate 

that binding. 
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Table 3. List of interactions between SRD5A2 and evaluated drugs. 

Name BCE 

kcal/mol 

Interactions 

Ondansetron -7.807 H-bond: E57, S31; Charged (positive): E57; Pi-Pi Stacked: F118; Alkyl, Pi-Alkyl: 

F118, L20, F219, A24. 

Norgestrel -7.359 H-bond: E57, S31, Y91; Alkyl, Pi-Alkyl: F118, F223, F216, F219, L224. 

Efavirenz -7.326 H-bond: E57, S220, Y91, C119; Alkyl, Pi-Alkyl: F194, W53, L224, F223, L:118, 

P219; Halogen: E197; Pi-anion: E197. 

Pentazocine -7.283 H-bond: E57, Y91; Pi-cation: F223, F118; Alkyl, Pi-Alkyl: A24, L20, F219, W53, 

Y33, F118, F223. 

Mestranol -7.096 H-bond: E57, Y91; Pi-Pi stacked: Y33, F223; Alkyl, Pi-Alkyl: R114, L111, W53, 

C119, F118, L224. 

Norethynodrel -7.088 H-bond: E57, Y:91; Alkyl, Pi-Alkyl: F223, P118, L224, F219, C119, W53. 

Stiripentol -6.977 H-bond: E57, Y91, Q56; Amide-Pi Stacked: R114 

Lynestrenol -6.965 H-bond: E57, Y91; Alkyl, Pi-Alkyl: Y33, L111, F223, L224, F216, F118, C119 

Lorcaserin -6.930 Salt bridge: E57; Alkyl, Pi-Alkyl: L20, F118, F223; Amide-Pi Stacked: R114, 

F118 

Phenindamine -6.857 Salt bridge: E57; Pi-Alkyl: L20; Amide-Pi Stacked: R114, F118; Pi-Pi T-shaped: 

F219; Pi-Sigma: F118 

Flibanserin -6.850 H-bond: S31, Y91, E197; Pi-Pi Stacked: F223, W53; Alkyl, Pi-Alkyl: A24, F223, 

L20, F118, L224 

Finasteride -6.850 H-bond: E57, R114; Alkyl, Pi-Alkyl: L111, F223, F118, W53, R114 

Dutasteride -6.850 H-bond: E57, R114; Alkyl, Pi-Alkyl: L23, F223, A24, L111, F118, W53 

Testosterone -6.756 H-bond: E197, Y91; Alkyl, Pi-Alkyl: F223, F118, F219, Y33 

Flibanserin produced an H-bond with E57, like the one established by FDT and DTD. 

Mestranol, stiripentol, lorcaserin, and phenindamine presented interactions with R114, but no 

H-bond with this residue was found. In the case of mestranol, as shown in Figure 4a, the 

hydroxyl group at C-17 serves as both donor and acceptor of hydrogen bonds with Y91 and 

E57, favoring a ligand-protein complex. The disposition of the aromatic ring A of mestranol in 

the binding site allows residues P223 and Y33 to be oriented towards a Pi-Pi stacked 

interaction. As shown in Figures 4b and 4c, mestranol is superimposed with DTD; the steroid 

nucleus is in the hydrophobic region of the binding site. 

 
Figure 4. Mestranol drug in the binding site of SRD5A2. (A) Interactions with important residues in the binding 

site; (B) Mestranol superimposed with DTD; (C) Hydrophobic residues surrounding mestranol drug. 

In contrast, the trimethyl moiety of stiripentol is surrounded by hydrophobic residues 

such as F118, F219, F216, F223, and L224, as shown in Figure 5. The hydroxyl group 

establishes a hydrogen bond with Y91. 
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Figure 5. Stiripentol in the binding site of SRD5A2. (A) interactions with important residues in the binding site; 

(B) superposition with DTD; (C) residues surrounding stiripentol drug. 

In Figure 6a, the amide-pi stacked interaction with R114 is not with the guanidine group 

but with a pi system of the carbonyl group in the peptide bond. This must be considered since 

direct interaction with the guanidine group seems important to inhibit SRD5A2. Lorcaserin and 

stiripentol interact with R114 via amide-pi stacked interaction and not with the side chain 

(Figure 6b). In the binding pocket, the ring system is superimposed with the steroid nucleus of 

DTD.  

 
Figure 6. π-electron interactions between residue R114 of SRD5A2, and (A) stiripentol, and (B) lorcaserin. 

 

Meanwhile, E57 establishes a salt bridge with the N-H of the seven-membered ring of 

lorcaserin, as shown in figure 7. In comparison to the previous two drugs, fewer hydrophobic 

interactions are observed, indicating that these are important to stabilize the ligand-protein 

complex. The drug with these interactions had the greater BCE. 
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Figure 7. Lorcaserin in the binding site of SRD5A2. (A) Interactions with key residues in binding site; (B) 

Overlap of lorcaserin with DTD; (C) Residues surrounding lorcaserin drug. 

Lastly, phenindamine also interacts with the carbonyl group in the peptide bond of 

R114. Its former positive charge in the six-membered ring allows interaction with E57 (Figure 

8). These interactions are different from those established by DTD and FTD, and no inhibitory 

activity is expected for this drug. Only mestranol interacts with the R114 side chain and with 

E57 via H-bond. Nevertheless, stiripentol and lorcaserin should not be discarded since they 

occupy the binding site and are located near R114 and E57. Therefore, an inhibitory activity 

could be expected from these drugs, but in vitro assays are necessary. 

 
Figure 8. Phenindamine in the binding site of SRD5A2. (A) interactions with important residues in the binding 

site; (B) superposition with DTD;(C) residues surrounding stiripentol drug. 

As shown in Table 4, mestranol is a drug used as an oral contraceptive and for 

dysmenorrhea, and its use in patients with hormone-dependent cancers has not been 

recommended yet. On the other hand, in February 2020, the FDA reported a higher incidence 

of cancer in patients treated with lorcaserin compared with those with no treatment. However, 

more trials are necessary [41]. Only stiripentol lacks restrictions for use in patients with cancer. 
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Table 4. Side and adverse effects of mestranol, stiripentol, and lorcaserin. 

Name Current use Side and adverse effects References 
Mestranol Contraceptive Proliferative atypia, hypertension, intrahepatic cholestasis, 

cerebrovascular occlusion. 
[42-45] 

Stiripentol Treating 
seizures 

Bone structure abnormalities, sedation, anorexia, weight loss, 
unsteadiness and tiredness, somnolence. 

[46-49] 

Lorcaserin Treatment of 
obesity 

Hypoglycemia and headache, nausea, vomiting, dizziness, and an 
increase in heart rate. 

[50-53] 

 

Although drugs like ondansetron, norgestrel, efavirenz, and pentazocine did not meet 

the criteria for interacting with R114, a biological action should not be discarded due to their 

high BCE towards the enzyme. These drugs could inhibit SRD5A2 by displacing T from the 

binding site because, according to this in silico analysis, the produced protein-ligand complex 

is thermodynamically more favorable. 

4. Conclusions 

This study evaluated 9213 molecular structures from the Drugbank database as 

inhibitors of SRD5A2. Molecular coupling studies and interactional analysis of the 

physiological conditions of the ligands and the enzyme allow us to propose 11 candidates for 

repositioning. Considering the dosage and adverse effects of the candidates, only stiripentol 

turned out to be a potential drug that could be used to treat benign prostatic hyperplasia, 

alopecia, and prostate cancer. Stiripentol does not directly interact with the side chain of the 

enzyme R114 but establishes a hydrogen bond with E57, which is essential for the inhibition 

of SRD5A2. In addition, it shows the mildest known side effects compared to the other tested 

drugs. However, to corroborate this in silico analysis, in vivo tests must be performed. 
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