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Abstract: In the literature, some studies suggest that some drugs can exert biological activities on heart 

failure through both phosphodiesterase-3 and guanylate cyclase enzyme activation. However, their 

interaction with the surface of these proteins is not very clear; perhaps this phenomenon is due to the 

different chemical structures of each drug. Based on this hypothesis, the aim of this research was to 

carry out a theoretical analysis on the possible interaction of some Imidazole derivatives (compounds 1 

to 20) with both phosphodiesterase-3 or guanylate cyclase enzymes using two 1soj or 4ni2 proteins and 

some drugs such as milrinone, anagleride, lamotrigine, sipatrigine, veriguat, nelociguat, and cinaciguat 

as theoretical tools in a docking model. The results showed that imidazole derivatives 1,3,4,10,13,18, 

and 19 could induce changes in the biological activity of phosphodiesterase-3 enzyme compared with 

milrinone and anagleride. Nevertheless, imidazole analogs such as 1-4, 10-13, and 18-20 could exert 

different changes on the biological activity produced by guanylate cyclase enzyme compared with 

lamotrigine, sipatrigine, veriguat, nelociguat, and cinaciguat. All these data suggest that these imidazole 

analogs could possibly produce changes in heart failure. 

Keywords: imidazole; phosphodiesterase; guanylate cyclase; docking. 

© 2023 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Heart failure is one of the main causes of death worldwide [1-3]. Various drugs such as 

captopril (Angiotensin-converting enzyme inhibitor) [4], spironolactone (aldosterone-receptor 

antagonist) [5], losartan (angiotensin II receptor inhibitor) [6], furosemide (NKCC2 cotransport 

blocker) [7], metoprolol (selective β1-receptor blocker [8], dobutamine (β1-receptor activator) 

[9], levosimendan (Ca2+-sensitizer) [10], milrinone (phosphodiesterase III) [11] have been 

used to treat heart failure. However, there are reports which indicate that some of these drugs 

can produce several secondary effects, such as arrhythmias [12], hyperkalemia [13], 

hyponatremia [14], and others. Therefore, new compounds to treat heart failure have been 

developed in the search for new therapeutic alternatives; for example, the synthesis of 

hydroxypyrimidinone as an apelin receptor activator for treating heart failure [15]. Another 

study showed the biological activity of mitiperstat drug (AZD4831) as a myeloperoxidase 
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antagonist for treating heart failure [16]. Furthermore, another report indicates that some 

naphthalene derivatives act as aldosterone synthase inhibitors using a rat liver microsomal 

model, suggesting that naphthalene derivatives may be used for heart failure [17]. In addition, 

an imidazole-pyrazine derivative was prepared from 2,6-di-chloro-3-nitropyridine as a positive 

inotropic agent through phosphodiesterase 3 inhibition using a papillary muscle model to treat 

heart failure [18]. Another study shows that compounds 2-imidazo[1, 2-a]pyrimidine and 

imidazo[1, 2-a]pyrazine can produce a  positive inotropic activity in an isolated papillary 

muscle [19]. Besides, other data suggest that compound a 4,5-Dihydro-6-[4-(1H-imidazol-1-

yl)phenyl]-3-(2H)-pyridazinone produces positive inotropic activity in an anesthetized dog 

through phosphodiesterase inhibition [20]. In addition, other data indicate that a series of 

imidazole-pyridazinones produce positive inotropic in a guinea pig's left ventricular tissue via 

phosphodiesterase inhibition [21].  
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1 = 1-(2-Hydroxyethyl)imidazole [25] 

2 = 1-(3-Aminopropyl)imidazole [26] 

3 = 1-(Diethoxymethyl)imidazole [27] 

4 = 1-(Dimethylsulfamoyl)imidazole [28] 

5 = 1-(Heptafluorobutyryl)imidazole [29] 

6 = 1-(p-Toluenesulfonyl)imidazole [30] 

7 = 1-(Trifluoroacetyl)imidazole [31] 

8 = 1-(Triphenylmethyl)imidazole [32] 

9 = 2-(4-Chloro-phenyl)-1H-imidazole [33] 

10 = 2-Bromo-1H-imidazole [34] 

 

11 = 2-Chloro-1H-imidazole [35] 

12 = 2-methylimidazole [36] 

13 = 4-(5)-(Hydroxymethyl)imidazole [37] 

14 = 4-(3-Nitro-phenyl)-1H-imidazole [38] 

15 = 4-(4-Bromophenyl)-1H-imidazole [39] 

16 = 4-(4-Chlorophenyl)-1H-imidazole [40] 

17 = 4-(4-Fluorophenyl)-1H-imidazole [41] 

18 = 4-Bromo-1H-imidazole [42] 

19 = Imidazole-2-carboxylic acid [43] 

20 = Isopropyl 1H-imidazole-1-carboxylate [44] 

 

Figure 1. Structure chemical of imidazole derivatives (1-20). 

On the other hand, it is noteworthy that other biomolecules also have been involved in 

the development of heart failure; in this way, a study showed that phosphodiesterase enzyme 

inhibition preferentially could promote guanylate cyclase enzyme signaling to reverse the 

development of heart failure [22]. In this way, some drugs have been evaluated; for example, 

a study showed the preparation of compound 4,40-((6-Nitroquinoxaline-2,3-

diyl)bis(azanediyl))diphenol as guanylate cyclase enzyme inhibitor [23]. Besides, a report 

showed the synthesis of soluble guanylate cyclase Stimulator Vericiguat (BAY 1021189) for 
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treating Heart Failure [24]. All these data indicate that various drugs have been used to treat 

heart failure; however, the interaction of some compounds with enzymes phosphodiesterase 

and guanylate cyclase is not very clear; perhaps this phenomenon is due to different functional 

groups involved in the chemical structure of each drug. Analyzing these data, a theoretical 

study was carried out in this investigation to evaluate the possible interaction of twenty 

imidazole derivatives with both enzymes phosphodiesterase and guanylate cyclase using a 

docking model. 

2. Materials and Methods 

2.1. General methodology. 

Twenty Imidazole derivatives (Figure 1) were used to evaluate the possible interaction 

with both phosphodiesterase 3 and guanylate cyclase enzymes as follows: 

2.2. Physicochemical parameters analysis. 

The following electronic parameters such as HOMO (Highest Occupied Molecular 

Orbital), LUMO (Lowest Unoccupied Molecular Orbital) energy, orbital coefficients 

distribution, molecular dipole moment and HBD (hydrogen bond donor groups) and HBA 

(hydrogen bond acceptor groups) and PSA (polar surface area) were evaluated using the 

Spartan'06 software [45, 46]. 

2.3. Pharmacophore model.  

3D pharmacophore model for Imidazole derivatives was evaluated using LigandScout 

software [47, 48]. 

2.4. Ligand-protein interaction.  

The interaction of imidazole derivatives with both phosphodiesterase-3 and guanylate 

cyclase enzymes surface was evaluated using both 1soj (PDB doi: 10.2210/pdb1SOJ/pdb) [49] 

and 4ni2 (PDB doi: 10.2210/pdb4NI2/pdb) [50] proteins as theoretical models [37]. In 

addition, to evaluate the types of binding energy involved in the interaction of imidazole 

derivatives with both 1soj and 4ni2 proteins surface, the DockingServer software was used [51-

53].  

3. Results and Discussion 

Several drugs have been synthesized with biological activity on phosphodiesterase and 

guanylate cyclase to treat heart failure [20-24]; however, the interaction with these enzymes is 

unclear. Analyzing these data, in this investigation, the coupling of twenty imidazole 

derivatives on either phosphodiesterase-3 or guanylate cyclase was evaluated as follows: 

3.1. First stage. 

3.1.1. Electronic parameters. 

Different electronic factors have been used to predict the reactivity of several imidazole 

derivatives [54-57]; it is noteworthy that data suggests that the orbitals HOMO and LUMO 

values could condition the chemical reactivity of some compounds [58].  
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Figure 2. The LUMO HOMO involved in the chemical structure of imidazole derivatives (1-7). 

 
Figure 3. The LUMO and HOMO of imidazole derivatives (8-14). 

 
Figure 4. The LUMO HOMO involved in the chemical structure of imidazole derivatives (15-20). 
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Therefore, the HOMO and LUMO involved in the chemical structure of either 

compounds 1 to 20 were evaluated using Spartant'06 software [34]. The results show that the 

HOMO-LUMO gap value for compound 1 was in a similar form to 2; however, these values 

were different compared with values for compounds 3 to 20 (Figure 2-4; Tables 1 and 2); 

possibly, these values could be conditioned by π orbitals, which is localized in both benzene 

and imidazole rings. 

3.2. Physicochemical parameters analysis. 

Several physicochemical factors have been used to design new molecules with 

biological activity, such as molar volume (MV) and molar refraction (MR); it is noteworthy 

that MV and MR are related which different functional groups of each compound attached to 

a constant reaction center [59]. To evaluate this data, both MV and MR descriptors for 

compounds 1 to 20 were evaluated using a previous method reported [59].  

Table 1. Physicochemical parameters involved in the chemical structure of Imidazole derivatives (1 to 10). 

Compounds 
Parameter 1 2 3 4 5 6 7 8 9 10 

MR (cm3) 

MV (cm3) 

IR 
Density (g/ 

cm3) 

Pol. (cm3) 

PSA (Å2) 
cLogP 

HBD 

HBA 

HOMO (Ev) 
LUMO (Ev) 

HOMO-

LUMO Gap 

(Ev) 

30.89 

96.90 

1.55 
1.15 

12.24 

29.01 

-0.34 
1 

3 

-8.72 

5.01 
13.73 

36.56 

112.60 

1.56 
1.11 

14.49 

34.06 

-0.45 
0 

3 

-8.59 

5.13 
13.72 

46.28 

159.50 

1.49 
1.06 

18.34 

22.92 

1.31 
0 

4 

-8.63 

5.03 
13.66 

43.38 

129.20 

1.58 
1.35 

17.19 

46.00 

-1.13 
0 

6 

-9.49 

3.63 
13.12 

40.80 

166.00 

1.40 
1.59 

16.17 

22-48 

1.63 
0 

3 

-9.68 

1-17 
10.85 

60.10 

171.40 

1.61 
1.29 

23.82 

41.91 

1.01 
0 

5 

-9.32 

2.19 
11.51 

31.04 

111.20 

1.46 
1.47 

12.30 

23.31 

0.42 
0 

3 

-9.71 

1.30 
11.01 

101.28 

293.50 

1.60 
1.05 

40.15 

8.75 

5.23 
0 

2 

-8.36 

2.98 
11.34 

48.26 

138.20 

1.61 

1.29 

19.13 

2.55 

0 

1 

-8.04 

2.54 

11.02 

26.46 

77.10 

1.6 

1.90 

10.49 

20.33 

0 

1 

-8.76 

4.69 

13.45 

MR = Molar refraction 

MV = Molar volume 

IR = Index of refraction 

Pol = Polarizability 

TPSA = Polar surface area 

 

Table 2. Physicochemical parameters involved in the chemical structure of Imidazole derivatives (11 to 20). 

Compounds 
Parameter 11 12 13 14 15 16 17 18 19 20 
MR (cm3) 

MV (cm3) 

IR 
Density (g/ cm3) 

Pol. (cm3) 

PSA (Å2) 

cLogP 
HBD 

HBA 

HOMO (Ev) 

LUMO (Ev) 
HOMO-LUMO 

Gap (Ev) 

23.67 

72.90 

1.56 
1.40 

9.38 

20.43 

0.99 
0 

1 

-8.94 

4.70 
13.64 

23.60 

77.20 

1.52 
1.06 

9.35 

20.29 

0.09 
0 

1 

-8.40 

5.22 
13.62 

25.22 

74.70 

1.58 
1.31 

10.00 

 

1.40 
1 

2 

-8.77 

4.71 
13.48 

49.91 

138.10 

1.64 
1.36 

19.78 

60.44 

-0.86 
0 

4 

-8.62 

-0.09 
-8.53 

51.05 

142.40 

1.63 
1.56 

20.24 

19.81 

1.67 
0 

1 

-7.32 

3.07 
10.39 

48.26 

138.20 

1.61 
1.29 

19.13 

19.81 

1.40 
0 

1 

-7.68 

3.07 
10.75 

43.36 

130.40 

1.57 
1.24 

17.19 

19.81 

1.00 
0 

1 

-7.82 

3.37 
11.19 

26.46 

77.10 

1.60 
1.90 

10.49 

20.35 

6.81 
0 

1 

-8.77 

4.71 
13.48 

25.70 

73.50 

1.61 
1.52 

10.19 

52.31 

-0.13 
1 

2 

-9.78 

2.44 
12.22 

41.13 

134.10 

1.52 
1.14 

16.30 

28.81 

0.52 
0 

3 

-9.10 

3.21 
12.31 

MR = Molar refraction 

MV = Molar volume 

IR = Index of refraction 

Pol = Polarizability 

TPSA = Polar surface area 

 

The results in Tables 1 and 2 indicate that MV and MR were higher for compound 8 

than 1-7 and 9-20. These data indicate that some factors, such as steric hindrance and the 
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different types of conformations involved in the chemical structure of imidazole derivative, 

could produce changes in some biological models. 

3.3. Pharmacophore model. 

For several years, various theoretical methods have been developed to design new drugs 

for treating different diseases.  

 

 
Figure 5. Pharmacophore was developed for Dibenzo derivatives  (compounds 1 to 10) using the LigandScout 

software. Hydrogen bond acceptors (HBA, red) and hydrogen bond donors (HBD, green). 

 
Figure 6. In the scheme is shown the pharmacophore to Dibenzo derivatives  (compounds 11 to 20) using the 

LigandScout software. Hydrogen bond acceptors (HBA, red), and hydrogen bond donors (HBD, green). 
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For example, the pharmacophore model provides a new perspective on the design of 

new compounds useful for the development of new drugs; in this way, pharmacophore involves 

different functional groups involved in the chemical structure of each compound which can be 

hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), cations, anions, aromatic rings 

and hydrophobic area [60].  

In the search, a pharmacophore model, in this study LigandScout software [47, 48] was 

used to characterize the functional groups involved in the chemical structure of imidazole 

derivatives (compounds 1 to 20). This pharmacophore involves different functional groups for 

each imidazole derivative which could interact through hydrophobic or hydrogen bonds with 

some biomolecules (Figures 5 and 6). 

3.4. Interaction theoretical evaluation. 

Some studies indicate that imidazole derivatives can exert biological activity on 

phosphodiesterase enzymes [21-24]; nevertheless, their interaction is unclear.  

Table 3. Aminoacid residues involved in the coupling of milrinone, anagleride, and imidazole derivatives 

(compounds 1-4) with 1soj protein surface. 
Milrinone Anagleride 1 2 3 4 

Tyr736 

His737 

Asp937 

Ile938 

Pro941 

Ile955 

Phe959 

Gln988 

Phe991 

Tyr736 

His737 

His741 

Asp937 

Ile938 

Pro941 

Ile955 

Gln988 

Phe991 

Tyr736 

Ile938 

Pro941 

His948 

Thr952 

Ile955 

Gln988 

Phe991 

Tyr736 

His737 

His741 

His821 

Asp822 

Thr893 

Asp937 

Ile938 

Tyr736 

His737 

Ile938 

Pro941 

Ile955 

Gln988 

Phe991 

Tyr736 

Ile938 

Pro941 

Ile955 

Phe959 

Gln988 

Phe991 

Table 4. Interaction of amino acid residues involved in 1soj protein surface with imidazole derivatives 

(compounds 5-10). 

5 6 7 8 9 10 

His737 

His825 

Thr829 

Asn830 

Leu850 

Glu851 

Asp894 

Leu895 

Phe959 

Tyr736 

His737 

Leu895 

Pro941 

His948 

Ile955 

Phe959 

Gln988 

Phe991 

 

Tyr736 

Gly940 

Pro941 

His948 

Trp951 

Thr952 

Ile955 

Gln988 

Phe991 

 

Leu895 

Ile955 

Phe959 

Phe976 

Met977 

Leu987 

Ser990 

Phe991 

Ile995 

 

Tyr736 

His741 

Asp744 

Val745 

Asp937 

Asn939 

Pro941 

Trp951 

Ile955 

Gln988 

Phe991 

Tyr736 

His741 

Asp744 

Asp937 

Asn939 

Trp951 

Ile955 

 

 

Table 5. Aminoacid residues involved in the coupling of imidazole derivatives (compounds 11-15) with 1soj 

protein surface. 

11 12 13 14 15 

Tyr736 

Asp744 

Asp937 

Ile938 

Asn939 

Trp951 

 

His737 

His741 

His821 

Asp822 

Glu851 

Thr893 

Asp937 

 

Tyr736 

His741 

Asp744 

Asp937 

Asn939 

Trp951 

 

Tyr736 

Ile938 

Gly940 

Pro941 

His948 

Ile955 

Phe959 

Leu987 

Gln988 

Phe991 

Tyr736 

His741 

Asp744 

Asp937 

Asn939 

Trp951 

Ile955 

Gln988 

Phe991 

https://doi.org/10.33263/BRIAC136.536
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC136.536  

 https://biointerfaceresearch.com/ 8 of 14 

 

Analyzing these data, in this research, a theoretical evaluation of the interaction of 

twenty imidazole analogs with phosphodiesterase-3 enzyme was evaluated using 1soj protein 

[49] and either milrinone [11] or anagleride [61] theoretical tools in a DockingServer software 

[51-53]. The results (Tables 3-6) showed different amino acid residues involved in the 

interaction of Imidazol analogs with 1soj protein surface compared with milrinone and 

anagleride; this phenomenon could be due to differences in their chemical structure. 

Table 6. Interaction of aminoacid residues involved in 1soj protein surface with imidazole derivatives 

(compounds 16-20). 

16 17 18 19 20 

Tyr736 

Asp744 

Asn939 

Pro941 

Trp951 

Ile955 

Gln988 

Phe991 

 

Tyr736 

His741 

Asp744 

Asp937 

Asn939 

Pro941 

Trp951 

Ile955 

Gln988 

Phe991 

Tyr736 

Asp744 

Asp937 

Asn939 

Trp951 

Ile955 

 

Tyr736 

His741 

Asp744 

Asp937 

Asn939 

Trp951 

Ile955 

 

Tyr736 

Ile938 

Pro941 

His948 

Thr952 

Ile955 

Gln988 

Phe991 

 

 

Analyzing these data and another report indicates that phosphodiesterase inhibition 

preferentially can promote guanylate cyclase signaling to reverse the development of heart 

failure [22]. Based on this data, this study determines the interaction of imidazole derivatives 

with guanylate cyclase using 4n2i protein [50], lamotrigine [62], sipatrigine [23], verciguat 

[24] and cinaciguat [63] as theoretical tools in a DockingServer software. The results shown in 

tables 7-10 indicate different types of amino acid residues for each imidazole derivative which 

could be binding to the guanylate cyclase surface. However, these bindings may depend on 

several thermodynamic energies. 

Table 7. Aminoacid residues involved in the coupling of lamotrigine, sipatrigine, vericiguat, cinaciguat, and 

imidazole derivatives (compounds 1-4) with 4ni2 protein surface. 
Lamotrigine Sipatrigine Vericiguat Cinaciguat 1 2 3 

Phe484 

Glu526 

Ile528 

Cys595 

Leu596 

Asn605 

 

Asp486 

Glu526 

Ile528 

Ala531 

Leu596 

Asn605 

Glu608  

 

Phe484 

Val525 

Glu526 

Thr527 

Ile528 

Cys595 

Leu596 

Phe597 

Asn605 

Phe484 

Ile528 

Cys595 

Leu596 

Phe597 

Val601 

Thr602 

 

Phe484 

Val525 

Thr527 

Ile528 

Leu596 

Asn605 

 

Phe484 

Ser485 

Asp486 

Ala531 

Cys533 

Arg574 

Asn605 

Glu608  

Ser609 

Phe484 

Glu526 

Thr527 

Ile528 

Leu596 

Asn605 

 

 

 

Table 8. Aminoacid residues involved in the coupling of lamotrigine, sipatrigine, vericiguat, and imidazole 

derivatives (compounds 1-4) with 4ni2 protein surface. 
4 5 6 7 8 9 10 

Phe484 

Val525 

Glu526 

Thr527 

Leu596 

Val601 

Asn605 

 

Phe484 

Val525 

Glu526 

Thr527 

Leu596 

Val601 

Asn605 

Phe484 

Val525 

Glu526 

Thr527 

Leu596 

Phe597 

Val601 

Thr602 

Asn605 

Phe484 

Val525 

Glu526 

Thr527 

Ile528  

Leu596 

Val601 

 

Phe484 

Val525 

Glu526 

Thr527 

Ile528 

Leu596 

Val601 

Thr602 

Asn605 

Phe484 

Glu526 

Thr527 

Ile528 

Leu596 

Asn605 

 

 

Phe484 

Glu526 

Thr527 

Ile528 

 

 

 

 

 

https://doi.org/10.33263/BRIAC136.536
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC136.536  

 https://biointerfaceresearch.com/ 9 of 14 

 

Table 9. Aminoacid residues involved in the coupling of imidazole derivatives (compounds 11-15) with 4ni2 

protein surface. 
11 12 13 14 15 

Phe484 

Val525 

Glu526 

Thr527 

Leu596 

 

 

Asp486 

Ile487 

Phe490 

Leu506 

Tyr510 

Gly529 

Ala531 

Phe597 

Val601 

Thr602 

Asn605 

 

Phe484 

Thr527 

Ile528 

Cys595  

Asn605 

 

Glu526 

Val601 

Thr602 

Asn605 

 

 

Table 10. Interaction of amino acid residues involved in 4ni2 protein surface with imidazole derivatives 

(compounds 16-20). 
16 17 18 19 20 

Phe484 

Thr527 

Ile528 

Leu596 

Asn605 

 

 

Phe484 

Val525 

Glu526 

Thr527 

Ile528  

Leu596 

 

Leu596 

Val601 

Thr602 

Asn605 

 

Phe484 

Val525 

Glu526 

Thr527 

Leu596 

 

Phe484 

Val525 

Glu526 

Thr527 

Ile528 

Cys595 

Leu596 

3.5. Bond energies. 

Some studies in the literature suggest that several types of energies involved in the 

interaction of ligand-protein surface must be taken into account to assess the possibility of 

protein-ligand complex formation. For example, i) free energy of binding determines the 

energy value that requires a molecule to interact with a protein in a water environment; ii). 

Electrostatic energy that is the product of electrical charge and electrostatic potential, which 

are involved in the ligand-protein system; iii) total intermolecular energy; and iv) van der Waals 

(vdW) + hydrogen bond (Hbond) + desolvation energy (which have an influence on the 

movement of water molecules into or out of the ligand-protein system) [47]. This way, a 

theoretical thermodynamic study was carried out on the interaction of imidazole derivatives 

with 1soj protein surface using milrinone and anagrelide in DockingServer software. The 

results (Table 11) showed that inhibition constant (ki) for imidazole analogs 1, 3, 4, 10, 13, 18, 

and 19 was lower compared with milrinone, anagrelide, and compounds 2, 5-9, 11, 12, 14-17 

and 20. Besides, also was determined the energies involved in the interaction of imidazole 

derivatives with guanylate cyclase using 4n2i protein [50], lamotrigine [62], sipatrigine [23], 

verciguat [24] and cinaciguat [63] as theoretical tools in a DockingServer software.  

On the other hand, other results on the interaction of imidazole derivatives with 4ni2-

protein surface, shown in table 12, indicate that inhibition constant (ki) for imidazole analogs 

such as 1-4, 10-13, and 18-20 was lower compared with lamotrigine, sipatrigine, verciguat and 

cinaciguat and compounds 5-9 and 14-17. All these data suggest that 1, 3, 4, 10, 13, 18, and 19 

could change the biological activity of phosphodiesterase-3 enzyme. However, the compounds 

1-4, 10-13, and 18-20 may exert different changes in guanylate cyclase protein.   

Table 11. Thermodynamic parameters involved the interaction of milrinone, anagrelide, and imidazole 

derivatives (1-20) with 1soj-protein surface. 
Compound A B C D E F 

Milrinone -6.55 15.90 -7.14 -0.14 -7.28 585.96 

Anagrelide -9.27 160.76 -7.66 -1.61 -9.27 612.64 

1 -3.34 3.55 -4.04 -0.07 -4.10 322.72 

2 -6.34 22.46 -3.88 -3.66 -7.54 408.20 

3 -3.29 3.87 -4.69 +0.01 -4.69 521.76 

4 -3.50 2.71 -4.06 -0.04 -4.10 488.03 
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Compound A B C D E F 

5 -5.26 138.88 -6.41 +0.08 -6.33 456.63 

6 -5.34 121.64 -5.92 +0.00 -5.92 565.03 

7 -4.69 363.04 -4.99 -0.00 -4.99 368.13 

8 -6.36 21.69 -7.76 +0.00 -7.76 684.81 

9 -6.25 26.28 -6.52 -0.03 -6.55 436.37 

10 -3.62 2.22 -3.51 -0.11 -3.62 218.00 

11 -4.19 842.64 -4.08 -0.11 -4.19 287.53 

12 -5.36 111.44 -1.91 -3.45 -5.36 310.96 

13 -3.63 2.18 -3.76 +0.03 -3.73 280.65 

14 -6.08 34.74 -6.70 +0.03 -6.67 478.34 

15 -5.64 73.77 -5.88 -0.06 -5.94 406.66 

16 -5.97 41.77 -6.29 +0.02 -6.27 453.68 

17 -6.72 11.90 -6.90 -0.12 -7.02 397.36 

18 -3.99 1.20 -3.85 -0.13 -3.99 216.29 

19 -3.05 5.78 -3.83 +0.48 -3.35 288.12 

20 -4.15 906.12 -4.70 -0.03 -4.73 478.65 
A = Est: Free Energy of Binding (kcal/mol) 

B = Inhibition Constant, Ki (mM) 

C = vdW + Hbond + desolv Energy (kcal/mol) 

D = Electrostatic Energy (kcal/mol) 

E = Total Intermolec. Energy (kcal/mol) 

F = Interact. Surface 

Table 12. Thermodynamic factors involved in the interaction of sipatrigine, lamotrigine, vericiguat, nelociguat, 

cinaciguat and imidazole derivatives (1-20) with 4ni2-protein surface. 

Compound A B C D E F 

Sipatrigine -6.90 8.71 -5.76 -1.94 -7.70 710.19 

Lamotrigine -6.24 26.62 -6.56 -0-09 -6.65 534.60 

Vericiguat  -6.15 31.19 -6.92 -0.09 -7.01 689.92 

Nelociguat -5.77 58.78 -6.67 -0.08 -6.76 634.17 

Cinaciguat  -5.47 97.88 -7.12 -0.21 -7.34 811.13 

1 -2.87 7.88 -3.62 -0.11 -3.74 344.81 

2 -3.94 1.30 -2.92 -2.10 -5.02 337.77 

3 -3.00 6.27 -4.45 +0.01 -4.44 476.30 

4 -3.82 1.57 -4.36 -0.04 -4.40 421.50 

5 -4.62 412.57 -5.43 -0.05 -5.49 407.87 

6 -5.14 170.96 -5.69 -0.04 -5.73 501.37 

7 -4.83 288.49 -5.08 -0.05 -5.13 362.72 

8 -6.45 18.64 -8.37 -0.01 -8.38 684.77 

9 -4.58 441.46 -4.84 -0.03 -4.88 449.53 

10 -2.98 6.56 -2.94 -0.04 -2.98 272.52 

11 -3.41 3.17 -3.38 -0.03 -3.41 303.04 

12 -3.83 1.56 -2.92 -0.91 -3.83 289.26 

13 -3.60 2.30 -3.56 -0.11 -3.68 262.04 

14 -4.69 365.69 -5.29 +0.00 -5.29 483.81 

16 -4.88 262.85 -5.17 -0.01 -5.18 500.94 

17 -4.81 296.60 -5.04 -0.07 -5.11 424.39 

18 -2.99 6.48 -2.94 -0.05 -2.99 221.26 

19 -2.85 8.12 -3.05 0.10 -3.15 311.55 

20 -3.51 2.67 -4.13 -0.04 -4.17 415.17 
A = Est: Free Energy of Binding (kcal/mol) 

B = Est. Inhibition Constant, Ki (mM) 

C = vdW + Hbond + desolv Energy (kcal/mol) 

D = Electrostatic Energy (kcal/mol) 

E = Total Intermolec. Energy (kcal/mol) 

F = Interact. Surface 

4. Conclusions 

This research, a theoretical evaluation of the interaction of imidazole derivatives with 

phosphodiesterase-3 and guanylate cyclase, is reported using DockingServer software. The 

results showed that some imidazole derivatives, such as compounds 1, 3, 4, 10, 13, 18, and 19, 
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could exert changes in the biological activity of the phosphodiesterase-3 enzyme. Nevertheless, 

different imidazole analogs, such as compounds 1-4, 10-13, and 18-20, could produce changes 

in the cardiovascular system's biological activity of the guanylate cyclase enzyme. All these 

data suggest that some imidazole derivatives could produce some changes in heart failure. 
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