
 

 https://biointerfaceresearch.com/  1 of 27 

 

Review 

Volume 13, Issue 6, 2023, 559 

https://doi.org/10.33263/BRIAC136.559 

 

Drug Discovery in Glioblastoma: Current Status and 

Future Perspectives 

Adil Husain 1, Niharika Pandey 1, Dhananjay Singh 1, Firoz Ahmad 1, Rolee Sharma 3, Mohammed Haris 

Siddiqui 2,*  

1 Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India 
2 Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India 
3 Department of Life Sciences, Chatrapati Shahuji Maharaj University, Kanpur, Uttar Pradesh, India 

* Correspondence: mohdharis.siddiqui22@gmail.com (M.H.S.); 
Scopus Author ID 55194716500 

Received: 28.10.2022; Accepted: 11.01.2023; Published: 26.02.2023 

Abstract: Glioblastoma (GB) is the prevalent and malignant type of solid brain tumor, having 10,000 

novel incidents recorded each year in the United States. Even though rigorous multi-modal treatment, 

the overall survival after diagnosis is reported to be less than 15 months, the surgical excision of the 

tumor, observed by radiotherapy and chemotherapy, is a widely utilized treatment strategy for GB. 

However, contemporary advances exhibit that exosomes, dendrimers, liposomes, and certain metallic 

nanoparticles in the form of prodrugs advance the infiltration of the drugs into the blood-brain barriers, 

consequently contributing to novel chances of combating the GB confrontation with chemotherapeutics. 

The Food and Drug Administration of the United States (FDA) has accepted numerous medications, 

and significant initiatives have been adopted for advanced novel chemotherapeutic agents for GB. This 

overview provides new insights into developing a strong platform likely to be used for exploring certain 

novel drugs as well as means to treat GB clinically. 
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1. Introduction 

Glioblastoma (GB) is one of the most malignant brain tumors with an abysmal 

prognosis. GB shows low median survival (approximately 14-16 months) and a 5-year survival 

rate of less than 5%, classified as a grade IV astrocytoma, which attests to its lethality [1–6]. 

Even after following the recommended treatment procedure, the recurrence chance increases 

due to numerous physical and biological barriers in the GB microenvironment [7-9]. Despite 

numerous efforts to overcome these obstacles to precise diagnosis [10] and successful 

treatment of GB [11], much more development is needed. To achieve a complete cure [12,13]. 

Primary resection surgery, chemotherapy, and radiotherapy comprise conventional GB 

treatment.[9,14]. When compared to surgery alone, this combined therapy showed that the 

median survival increased by about three times [15]. However, treatment efficacy is restricted 

by the intrinsic malignant nature of GB [16], the brain’s vascular structure [17], and the brain’s 

radiation dose tolerance [18].  

 For instance, infiltrating tumor cells make it difficult to distinguish between the normal 

and tumoral parts of the brain; as a result, a number of residual tumor cells persist even after 

surgical excision [19]. The recurrence of GB is facilitated by these residual tumor cells. 

Furthermore, the blood-brain barrier (BBB) prevents anticancer medications from passing 
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through the brain's extracellular matrix, rendering conventional systemic delivery of 

chemotherapy medicines frequently ineffective. The effectiveness of radiotherapy is also 

restricted by the brain tissue's radiation tolerance. Alternative therapies, such as gene therapy 

[20,21], angiogenesis inhibition [22,23], and immunotherapy [24,25], have, to a limited extent, 

shown promise in the treatment of GB. The BBB reduces the effectiveness of the systemic 

delivery of the drug to the targeted brain tumor. Increasing medicine dosage would harm 

normal cells and raise the likelihood of side effects while maintaining therapeutic effectiveness. 

The same heightened risk of side effects restricts the use of several medications to treat people 

with GB because of their significant genetic heterogeneity. Considering the drawbacks of both 

the gold standard and alternative treatments, recent studies have dramatically improved drug 

delivery efficiency to brain tumors [26,27]. Many different drug delivery methods have been 

proposed, including systemic drug delivery that penetrates the BBB (such as nanostructure-

induced BBB penetration and external-stimulus-induced BBB temporal disruption) and local 

drug delivery that avoids the BBB (such as intranasal delivery, solid implant-based delivery, 

intratumoral delivery, and convection-enhanced delivery) (CED). Temozolomide (TMZ) with 

resection also confers a significant overall survival benefit in patients with resectable and 

recurrent GB [28]. Many studies suggest that biocompatible and eco-friendly polymeric 

particles can serve as inert carriers for anti-microbial agents and prospective stimulators of the 

innate microbicidal responses in macrophages [29]. Drug delivery efficiency by integration 

additionally, a number of methods have improved drug delivery effectiveness by combining 

the microscopic strategy of tailoring the drug to be easily absorbed by the tumor with the 

macroscopic strategy of boosting drug permeability through the BBB [30,31].  

In this review, we discuss treatment modalities currently in practice, drug delivery 

challenges, advancement in drug delivery systems and new modalities of drugs, and delivery 

strategies. We outline first-line treatments and the clinical difficulties they face as a result of 

GB's anatomical, cytologic, and genetic characteristics. Following a discussion of the most 

recent advancements in drug delivery technology for the treatment of GB, clinically available 

therapeutic techniques are covered, with a focus on relatively fresh approaches and full 

descriptions of their benefits and drawbacks. Their drug administration mode is classified into 

two categories: systemic drug delivery versus local drug delivery. Our focus is on macro-

micro/nanoscopic strategies to overcome obstacles in GB treatment and to overlook the 

unresolved issues in GB and the outlook of advanced drug delivery technology. 

2. Current Treatment Modalities for GB 

GB is one of the fatal malignancies with a dismal 5-year survival rate despite 

sophisticated treatment choices such as chemotherapy, immunotherapy, and radiation [32]. 

GB's current standard of care is to do the maximum possible surgical resection, concurrent 

chemoradiotherapy followed by chemotherapy alone. After confirmation via medical imaging, 

the first step is maximal resection. For decades, radiotherapy has been used to treat residual 

cancer patients [33]. Radiation therapy induces death in tumor cells via double-strand breaks 

in the DNA [34]. However, amplification of the epidermal growth factor receptor (EGFR) gene 

is expressed in over 50% of GBs, and its truncated version III, known as EGFRvIII, is present 

in around 25% of GBs. EGFRvIII confers radiation resistance on GBs by promoting rapid 

repair of DNA double-strand breaks [35]. 

Additionally, radiotherapy for brain cancers may encourage tumor recurrence or 

develop secondary gliomas [36,37]. Recent research using both in vivo and in vitro models 
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suggested that the formation of high-grade gliomas may be triggered by radiation-induced 

DNA double-strand breaks in combination with preexisting tumor suppressor inactivation. 

[36]. Combining ionizing radiation and bio-active DNA repair inhibitors can improve GB 

therapy [38]. While new techniques for radiosurgery have been developed in recent years, 

stereotactic radiosurgery enables treatment to be focused on the desired tumor spot. Therefore, 

stereotactic radiosurgery in recurrent GB has been significantly associated with more 

progression-free as well as overall survival[39].  

The combination of radiotherapy and concurrent and adjuvant TMZ was initially 

described in 2005 [9]. It was found superior to radiotherapy alone in patients who underwent 

surgical resection [40,41] and those who received only a biopsy [40]. MGMT is a DNA repair 

protein that has been shown to be a response-predictor to alkylating chemicals [42]. 

Additionally, TMZ-induced DNA damage in healthy cells is a cause for concern. Given the 

drawbacks and problems associated with current standard GB care, especially concurrent 

chemotherapy following complete resection, innovative therapeutic approaches are urgently 

needed to increase treatment efficacy and specifically target GB tumor cells Table 1. 

Table 1. Summary of Characteristics and limitations of currently available treatment strategies for GB. 

Treatment Characteristics Limitation 

Surgery Mass removal of the tumor Hard to excise the infiltrative 

tumor 

Invasive in nature 

Radiation Therapy Non-invasive 
Treatment efficiency is high 

Issues of Radioresistence 
Have Side effects 

Chemotherapy TMZ (Gold Standard) 
Bevacizumab (Anti-angiogenic) 

Phenytoin/Dexamethasone (Symptomatic 

Treatment) 

Carmustine (Gliadel Wafer) 

No procedure 
Patient compliance 

Symptom mitigation 

 

Bypass of BBB 
Perisurgical administration 

High drug concentration at the target 

site 

Chemo-resistance 
Limited drug penetration in 

tumor 

Low therapeutic efficacy 

 
Mechanical mismatch 

Short drug delivery period 

Limited drug penetration 

Stimuli-Responsive Therapy Minimally invasive administration 

Bypass of BBB 

Programmable treatment 

Limited use 

Specialized instruments are 

required 

Low detectability of tumor 

progression 

Electrotherapy Non-invasive administration 

Tumor targetability 

Minimal side effect 

Less clinical verification 

Expensive 

Requirement for specialized 

instrument 

3. Drug Discovery Challenges in GB 

3.1. Brain barriers. 

The primary obstacle comes from the low permeability of the BBB, which makes the 

delivery of drugs to intracranial tumors very difficult [43]. Tight junction complexes in the 

BBB line the endothelial cells of brain capillaries, prevent pinocytosis and fenestrations and 

decrease anticancer drug permeability [44]. Additionally, active efflux transporters (AETs) 

carry medications back to the bloodstream, and the presence of metabolizing enzymes renders 

pharmaceuticals inert before their release to the tumor site [44]. To overcome the AETs 

clearance effects and boost anticancer agent trafficking across the BBB, the receptor-mediated 

transport pathway must be active by binding the medicines to a cell-surface receptor. 

GBs disrupt the BBB’s integrity, resulting in a highly heterogeneous vasculature with 

specific characteristics of non-uniform permeability and active molecular efflux. The blood-
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tumor barrier (BTB) is a term that refers to this occurrence  [45]. The BBB and the BTB 

preclude potentially effective chemotherapeutic drugs from reaching metastatic lesions. 

Numerous strategies have been investigated recently to overcome these barriers, including 

developing novel smaller molecules with permeability to the BBB, novel formulations of anti-

cancer agents, and various disruptive techniques [45,46]. A drug-loaded nanocarrier has been 

created to cross the BBB and BTB via improved affinity for an endocytic receptor expressed 

on the surface of endothelial cells, resulting in efficient delivery to tumor locations [47,48] 

(Figure 1). 

 
Figure 1. Structure of drug transport route of the blood-brain barrier; (I) penetration of the drug through tight 

junction; (II) passive diffusion across the endothelial cell; (III) carrier-medicated transport; (IV) adsorption-

mediated transcytosis or endocytosis; and (V) receptor-mediated transcytosis. 

3.2. GB stem cells. 

The most prevalent mechanism of GB resistance is the presence of stem-like glioma 

stem cells (GSCs) and the low permeability of the blood-brain barrier (BBB) for most 

chemotherapeutics. GSCs are functionally defined and separated from differentiated GB cells 

by their capability to initiate tumors following repeated transplantation, self-renewal, and 

recapitulate tumor heterogeneity [49]. Although the origin of GSCs is still debated, it is 

assumed that these progenitor cells either originate from neural stem cells or are transformed 

astrocytes that get access to stem-specific transcriptional programs [49–51]. Most therapeutic 

modalities targeting GSCs have failed in clinical trials because GSCs exhibit a variety of 

epigenetic and post-transcriptional regulatory mechanisms that can promote differentiation, 

invasive growth, and GSC maintenance [49,51,52]. GSCs have a high metabolic capacity, 

proliferating rapidly and adapting to adverse microenvironments [53]. 

3.3. Choosing the right target. 

Preclinical target validation is essential before undertaking clinical development. It 

depends on the predictive quality of each cell-based and in vivo model to test a given 

hypothesis. However, these could bear no relation to the in vivo architecture of human tissues; 
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therefore, as Horvath et al. suggested, more effort must be put into developing more-predictive 

preclinical models. These can include models based on pluripotent stem cells, 3D co-culture, 

and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene 

editing technologies [54]. One practical example is Miller et al., who used RNA interference 

screening technology to demonstrate that gene expression in primary explanted GB cells 

significantly differs from that in xenograft models when human cells are transplanted into 

mouse brains [55]. 

3.4. Drug resistance. 

The primary reasons for poor prognosis in GB patients treated with the DNA alkylating 

agent TMZ are the emergence of acquired resistance to this drug and the outgrowth of 

malignant cells. TMZ methylates DNA at the O6 position in guanine, leading to impaired DNA 

repair and apoptosis. Resistance to TMZ therapy is mediated by removing the DNA adduct 

created by this alkylating drug by the O6-methylguanine DNA methyltransferase (MGMT), 

with DNA methylation on the MGMT promoter being a key predictor. [56]. Loss of function 

in the MutS homolog 6 (MSH6) mismatch repair gene is another resistance mechanism.[57]. 

In addition to resistance to TMZ, the drug is mutagenic and can introduce new driver mutations 

during the initial successful phase of treatment, thereby leading to malignant progression [58]. 

Therefore, interventions that target TMZ-resistant cells are desirable. Screening a range of GB 

cell lines with FDA-approved chemotherapeutic drugs identified compounds that overcome 

resistance to TMZ by interfering with specific resistance pathways [59,60]. 

3.5. Tumor heterogeneity. 

The variety of GBs complicates treatment even more. Recent sequencing techniques 

have revealed the whole genetic landscape of GBs and the remarkable tumor heterogeneity, 

even at a single-cell level [61]. For example, the EGFR genes have shown amplifications and 

mutations in more than half of GBs, frequently resulting in anti-EGFR therapies’ 

ineffectiveness [62]. Researchers have attempted to identify particular biomarkers for GSC 

populations to differentiate them from non-GSC populations to target GSCs and sensitize 

tumors to conventional treatment [63,64]. Cell membrane surface antigens are suitable 

biomarkers because they are quickly recognized by anti-tumor drugs, enhancing therapeutic 

efficacy [63]. On the other hand, the optimum markers for GSCs have not yet been found. 

CD133, CD15/SSEA-1, CD44, integrin-, and A2B5 are all possible biomarkers for GSCs. 

Certain biomarkers can also assess therapy response as a prognosis index for GBs [65]. 

4. Advances in Drug Delivery 

4.1. Nanocarriers. 

Drug delivery systems have major advantages, including progressive bioavailability, 

peculiarly for hydrophobic drugs, the prolonged half-life of the drug, and fewer wastage of 

drugs; along with these advancements, these drug delivery systems also face challenges like 

the problem of drug solubility, stability, harmfulness, and selective targeting [66]. Nanocarriers 

and nanotechnology-based drug delivery are colloidal-based particulate systems that have the 

potential to penetrate the BBB due to their sustained drug release, biosafety, increased 

solubility, enhanced drug bioactivity, BBB penetrability, and self-assembly [47,48]. 
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Chemotherapeutic chemicals are entrapped inside the matrix or bonded to the surface of 

nanoparticles, which can penetrate narrow capillaries due to their small size. The primary 

advantage of nanoparticles made of biodegradable materials is that they deliver drugs to the 

intended place in a controlled manner [67,68].  Through appropriately engineered ligands on 

the surface, drug-loaded nanoparticles can be non-toxic, non-immunogenic, and stable inside 

the blood circulation [69]. Nanoparticles with ligands on their surfaces can deliver the carrier 

system to particular receptor sites. [70,71]. Transferrin, apolipoprotein (Apo) E, B, and A, and 

some antibodies on the surface of nanoparticles are all possible ligands that enable the drug-

nanoparticle complex to pass efficiently through the BBB via receptor-mediated endocytosis 

[70–72]. The size and surface charge of nanoparticles contribute significantly to their ability to 

escape from the reticuloendothelial system (RES) [73]. Nanoparticles with a 5–500 nm size 

range and a positive charge are critical for improved cellular uptake. Particles with a diameter 

of 200 nm are particularly well suited for systemic injection [73,74]. Surface coatings and other 

modifications are required to make nanoparticles suitable for clinical medicine to increase the 

nanoparticles’ safety in the body. 

For more than a decade, researchers have researched surface modification of 

nanoparticles using various chemicals to decrease undesirable interactions between 

nanomaterials and normal tissues [75]. To improve the affinity and specificity of nanoparticles 

for the targeted tissue, chitosan PEGylated albumin-coated nanoparticles were later created for 

brain drug delivery via receptor-mediated transporter endocytosis [76,77]. Although numerous 

drug delivery systems to the central nervous system have been developed [78,79], newly 

developed nanoparticles made of poly (ethylene glycol)-poly(-pentadecalactone-co-p-

dioxanone) have a longer duration of sustained release and do not require repeated infusions, 

which improves safety and translatability [80] Table 2. 

Table 2. Summary of Advantages and disadvantages of drug delivery strategies for GB treatment 

Treatment Advantage Disadvantage 

Systemic delivery 

Nanocarriers Minimally invasive, simple administration 

Tunable material design 

Low efficiency from BBB 

Host reactions (e.g., protein corona) 

Cellular carriers Stealth against host reactions 

Spontaneous homing/surface interaction 

Potential side effect 

No consensus on delivery efficiency 

Transient disruption of BBB Minimally invasive 

Complementary to first-line therapy 

Specialized equipment required 

Nonspecific diffusion 

Local delivery 

Intranasal delivery Non-invasive, simple administration method 

Bypass the BBB 

Non-targeted Low delivery efficiency due to 

mucociliary 

Small administration volume 

Solid-based implant delivery Direct delivery from the brain surface 

A large amount of implantable drug reservoir 

Mechanical mismatch 

Hard to refill 

Intratumoral delivery The high-loading amount of drug 

Bypass the BBB 

Invasive administration 

Low penetration 

Convection-enhanced delivery Deep penetration 

Can deliver various types of drugs 

Invasive administration 

4.2. Applicable strategies to improve delivery. 

The major obstacle to GB treatment is the presence of BBB, the capture and clearance 

of anticancer agents by the RES, and the lack of a specific targeting mechanism by which the 

drugs can bind specifically to GSCs. Special designs and administration routes of nano-carrier-

based delivery systems are urgently needed to overcome these obstacles. A newly synthesized 
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nanoparticle from magnetotactic bacteria was injected in mice with intracranial glioma and 

followed by altering magnetic field or magnetic hyperthermia, which showed enhanced anti-

tumor efficacy with almost complete tumor disappearance [81,82]. This concept demonstrates 

an additional treatment option for invading malignancies such as glioma. It is challenging to 

acquire complete tumor coverage with nanoparticles. 

Another option is to administer anticancer medications by intranasal injection. For 

example, the potential for direct transport from the nose to the brain, which circumvents the 

BBB, was examined in GB mice employing miRNAs loaded in theranostic nanoparticles of 

Au-Fe Oxide [83]. Additionally, this nanoformulation enables the systemic delivery of GB 

cells to TMZ [83]. The intranasal route of drug administration via the nose to the brain may 

have various advantages over the standard IV route. However, this delivery strategy is 

primarily in the preclinical stage of development, and intranasal administration also has 

disadvantages [84]. Reduced peptide bioavailability, rapid evacuation from the nasal cavity, 

and other limits imposed by the nasal cavity’s structure are challenges that must be addressed 

[84]. 

MRI-guided targeted ultrasounds or injecting bradykinin can weaken or open the main 

barrier, allowing chemotherapeutic drugs to diffuse more efficiently through the BBB [85,86]. 

Cisplatin-loaded nanoparticles coated with PEG, which inhibit macrophage capture, have been 

shown to have a brain-penetrating ability following MR image-guided focused ultrasound 

[85,87]. The combination’s efficacy in animal models may pave the way for a new potent 

strategy to treat resistant GB and recurrence control [87]. 

Strategies targeting AET and tight junctions are critical for bypassing and modifying 

the BBB and BTB [88]. Historically, inhibitors of multidrug resistance efflux transporters are 

ineffective in most investigations. On the other hand, P-gp inhibitors encapsulated in 

surfactant-based nanoparticles have been designed to reverse multidrug resistance efflux 

transporters, which can be employed to enhance the therapeutic efficacy of the drug [89]. 

A magnetic field was used to initiate the diffusion of magnetic anti-GB medicines into 

GB cells [81,82]. Previously encountered obstacles included a lack of equipment capable of 

producing a sufficient and precise magnetic field and concerns about unintended effects on 

normal tissue [90,91]. However, direct intratumoral delivery of magnetic nanoparticles 

(MNPs) is now feasible for GB treatment due to the high accumulation of MNPs at the tumor 

site following the development of a magnetic platform driveable by an external magnetic field 

[92,93]. Another example is a novel design of lipid-based hybrid magnetic nano vectors and 

functionalized with angiopep2 to enhance GB cell death by combining lysosomal membrane 

permeabilization and chemotherapy [94,95]. 

4.3. Targeting the GB cells and GB stem cells. 

Active targeting for GB currently relies on compounds linked to the surface of 

nanoparticles that can precisely target the receptors or antigens on GB cells or GSCs [8,96]. 

GB cells contain a variety of receptors and proteins, including metalloproteinase-2, the IL-13 

receptor, Integrin 53, CD33, and CD133; nanoparticles may target them [93]. 

Since the existence of GSCs is a significant risk factor for GB recurrence, the critical 

targeting of GSCs has been explored in recent years [97]. GSCs express various receptors and 

indicators that specifically target nanocarrier-based drug delivery systems. GSCs express cell 

surface markers (e.g., CD15, CD133), transcription factors (e.g., OCT4), post-transcriptional 

factors, and cytoskeletal proteins (e.g., nestin) in accordance with their sites [98]. Most GSC-
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targeting therapies have failed in clinical trials, even though several theoretically available 

GSC-targeting treatments exist [99,100]. 

Recent GSC targeting by nanotechnology includes creating calf thymus DNA mixed 

with gold nanoparticles, which makes GSCs more susceptible to radiotherapy [101]. NFL-

TBS.40-63 and LinTT1 peptides are generated from neurofilaments with increased binding to 

target GSCs [102,103]. Gold nanorods functionalized with an engineered peptide can also be 

used to specifically detect nestin-positive GSCs, which has been demonstrated to be a 

promising approach for developing an efficient nanomedicine for treating recurrent GB [104]. 

The targeting peptide CBP4-coated gold nanoparticles were designed as a drug carrier for 

therapeutic methods against the cell surface marker CD133 in GSCs [93,105]. 

4.4. Current nanocarriers and associated strategies. 

Additionally, the new development of nanocarrier-based combination therapy for GBs 

has several advantages, including improved sequential drug exposure, accurate confirmation 

of the synergistic drug ratio, and improved localization of anti-cancer agents into the tumor site 

[106–108]. Depending on their preparation methods, nanocarriers can be classed as 

nanocapsules, nanoparticles, or nanospheres. Nanoparticles are the most often employed 

colloidal drug carriers in treating GBs and can be categorized as liposomes, polymeric 

nanoparticles, solid lipid nanoparticles, polymeric micelles, silica, or dendrimers [106]. 

 
Figure 2. Advantages of nano-based drugs for Glioblastoma. 
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4.4.1. Liposomes. 

Liposomal nanoparticles have several advantages, including ease of preparation, easy 

encapsulation of a broad range of anticancer drugs, favorable biocompatibility, efficacy, non-

immunogenicity, increased solubility of anticancer agents, and commercial availability 

[109,110]. Liposomes were initially developed to encapsulate radiosensitizers and 

chemotherapeutic drugs such as doxorubicin to treat refractory tumors over two decades ago 

[109]. Several liposomal formulations for treating GBs, like new conjugated medicines and 

receptor-mediated transcytosis, have been studied during the last decade to enable their 

transport across the BBB [110–112]. Polyethylene glycol (PEG) conjugation is a rapidly 

evolving strategy to overcome the hurdles of therapeutic delivery. PEG coating is a crucial 

factor in improving nanoparticle biophysical and chemical properties. It can increase the half-

life of liposomes in circulation by helping the nanoparticles evade RES capture [113,114]. 

Certain unique receptors or antigens overexpressed on GB cells may serve as novel 

nanotechnology targets. For example, interleukin (IL)-13-conjugated liposomes and 

doxorubicin liposomal doxorubicin targeting the IL-4 receptor has been studied in mice 

models, with indications of considerable tumor size reduction when compared to unconjugated 

liposomes [111,112]. This method does not increase toxicity in animals receiving receptor-

conjugated liposomes [111], indicating that it could be used as nanotechnology. Additionally, 

an antibody can mark liposomes to direct them to tumors. Anti-EGFR immuno-liposomes were 

developed over a decade ago to target GB cells overexpressing EGFR in an animal model and 

proved that they dramatically enhanced the efficacy of numerous anticancer treatments [115]. 

Despite the common use of liposomal nanoparticles in treating GB, several drawbacks 

exist. Liposomal nanoparticles exhibit non-uniform effects across all brain regions, and their 

permeability through the BBB varies according to the loaded drug or surface molecules 

[111,112]. 

4.4.2. Polymeric micelles. 

 A hydrophobic polymer core is encased in a hydrophilic shell to form polymeric 

micelles. The self-assembly of block copolymers generates this architecture, and the design 

can be used to control the efficiency of chemotherapeutic drug incorporation and release rate 

[116]. The distinctive core-shell structure and narrow size distribution of 10–100 nm shield the 

drug-loaded core from contact with the complement system and macrophage absorption, 

resulting in prolonged circulation and a more than 10-hour half-life [117,118]. Biodegradable 

polyesters such as poly (D, L-lactide), poly (caprolactone), poly (D, L-lactide-co-glycolide), 

and long-chain alkyl derivatives are frequently employed as the core-forming polymer [116]. 

PEG is the optimal shell-forming polymer since it does not interact with serum proteins 

[116,117]. 

After overcoming the earlier problem of insufficient drug circulation time, the primary 

impediment to implementing polymeric micelles-based GB therapy is a paucity of targeting 

moieties capable of enhancing GB-specific accumulation [116]. As a result, additional studies 

targeting receptors expressed on GB cells are being conducted to optimize the existing 

formulation’s potency. For example, polymeric mixed micelles composed of Pluronic P-123 

and F-127 and containing 17-Allylamino-17-demethoxy geldanamycin (17-AAG) may be an 

effective drug delivery carrier based on nanomaterials because 17-AAG is a potent inhibitor of 

heat-shock protein 90 (Hsp90) and can destabilize Hsp90-related client proteins in cancer cells 
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[118,119]. The design of 17-AAG-loaded Pluronic P-123 and F-127 mixed micelles is 

attractive, and 17-AAG’s targeting ability, regulated release rate, and high drug loading have 

been demonstrated as a promising delivery system for GB treatment [118]. The transferrin 

receptor (TfR) is an attractive target location due to its overexpression in BBB and GB cells. 

Sun et al. created TfR-PEG polymeric micelles rapidly absorbed by tumor cells and effectively 

crossed the BBB [120]. TfR-PEG polymeric micelles loaded with paclitaxel have successfully 

limited the growth of U87 GB cells in vitro and significantly lengthened the median survival 

of nude mice with GBs [120]. 

4.4.3. Dendrimers. 

Dendrimers are the tiniest molecules, measuring less than 12 nm in diameter, and 

possess a highly branching and compact scaffold design ideal for transporting and preserving 

short interfering RNA (siRNA) from degradation in circulation [121,122]. Additionally, 

dendrimers loaded with methotrexate have a higher pharmacological potency and a high 

efficiency in bridging the BBB [123]. However, dendrimers have some drawbacks, including 

quick RES clearance, toxicity to normal tissue due to membrane contact, and relatively poor 

regulated release behavior [121,124]. As a result, several functionalized procedures have been 

employed to modify dendrimers, including the attachment of a lipid, amino acid, peptide, or 

aptamer [122,125]. 

Recently, two distinct siRNA for oncogene silencing were compacted using poly 

(amidoamine) (PAMAM) dendrimer-entrapped gold (Au) nanoparticles. The newly developed 

technique coats the PAMAM-Au dendrimers with beta-cyclodextrin (-CD), a carrier that is an 

excellent carrier for siRNA delivery to glioma cells [124,125]. Endogenous amino acids 

improve the biocompatibility and endosomal escape of amino acid-functionalized dendrimers., 

whereas phosphate dendrimers with a hydrophobic backbone and a hydrophilic surface can 

penetrate the BBB more effectively [126]. Another example is the arginine-glycine-aspartic-

functionalized dendrimer-entrapped gold nanoparticles, which exhibit excellent 

cytocompatibility and high transfection efficiency and are potentially effective as gene therapy 

for GBs [126]. Dendrimers composed of polyether-copolyester (PEPE) and d-glucosamine 

have improved drug delivery across the BBB and tumor targeting [123]. The in vitro model 

demonstrated that glycosylation of the PEPE dendrimers accelerates their accumulation around 

tumor spheroids and overcomes MTX resistance since methotrexate-loaded glucosylated PEPE 

dendrimers were able to kill even MTX-resistant cells [123]. 

4.4.5. Metal particles. 

Metal particles can improve GB tumor cells’ radiosensitization, and considerable DNA 

damage to tumor cells has been reported in animal models treated with metal particles before 

radiation therapy [127,128]. Due to their high X-ray absorption, synthetic adaptability, and 

unique electrical properties, metal particles are excellent candidates for use as radiosensitizers 

[129]. One of the ideal nanomedicine materials for GB therapy is gold nanoparticles (AuNPs), 

which are simple to manipulate, have tunable diameters, and have a high surface-to-volume 

ratio. [130]. Although AuNPs’ regulated size enables them to cross the BBB easily, their 

clinical utility is hampered by their lack of targeting ability [130,131]. 

A DNA aptamer targeting EGFRvIII in GBs was recently produced using a huge 

random single-stranded DNA library [131]. The aptamer’s targeting efficiency is further 
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increased by entrapment in AuNPs via a gold-sulfur covalent link [131]. Aptamer-AuNP 

complexes have been identified as a novel class of pharmacological candidates for GB therapy 

due to their efficacy in vivo and in vitro tumor proliferation inhibition [131]. Appropriately 

sized AuNPs overcome aptamer’s limited transmembrane penetration. Additionally, 

nanoparticles can facilitate the delivery of therapeutic gene targets. Recently, a new 

polyfunctional gold-iron oxide nanoparticle was created and demonstrated to improve the 

sensitization of GMB cells to systemically administered TMZ in mice [83]. 

Metal particles have previously been associated with cytotoxicity and physical damage 

to normal tissue following long-term accumulation in the blood [132]. Metal particle toxicity 

is mediated via the production of oxidative stress, the release of pro-inflammatory cytokines, 

lysosome degradation, and DNA damage [132,133]. However, the American Food and Drug 

Administration (FDA) has already cleared several gold and silver nano formulations entrapped 

with chemotherapeutic drugs for clinical studies. Their biodistribution and clearance method 

are now well recognized [134]. 

4.4.6. Silica. 

Silica nanoparticles (SiNPs) have many advantages that make them a popular choice 

for medicinal applications, including their high biocompatibility, large surface area for drug 

loading, stability, and low cost [135,136]. Concerning their cytotoxicity, DNA damage and the 

formation of reactive oxygen species have precluded SiNPs from being used clinically as 

biomarkers, cancer treatments, or drug delivery systems [114,135]. Later SiNPs were examined 

for their clinical safety and prospective applications in various research areas. Because the 

toxicity of SiNPs can be regulated by adjusting the particle size, dosage, and cell type 

[114,137], researchers may experiment with multi-modal adjustments to make SiNPs 

therapeutically beneficial. Smaller-sized SiNPs have higher toxicity, which can be changed 

synthetically [138]. 

Transferrin-modified porous silica nanoparticles are the most often used formulation 

for GB treatment because they have high biocompatibility, degradability, and drug-loaded 

capacity [139–141]. Because the transferrin receptor is frequently overexpressed on the BBB 

and the surface of the GB cell, the transferrin-functionalized pSiNPs can provide a prolonged 

release of the drug (like doxorubicin) at the targeted region. A multicomponent nanoparticle 

with an iron oxide core and a mesoporous silica shell that contains fibronectin-targeting ligands 

has been developed.. When exposed to an external low-power radiofrequency field, this 

nanoparticle can efficiently be delivered widespread drugs into GBs [142]. 

4.4.7. Nanoparticle-induced hyperthermia. 

The combination of hyperthermia and contemporary radiation and chemotherapy has 

been used for nearly half a century. The mechanisms through which hyperthermia induces 

radiosensitization and chemosensitization include enhanced apoptotic pathways, defective 

DNA repair, heat-induced inhibition of AKT-pathway, and disruption of BBB [143–146]. In a 

mouse animal model, local temperatures as high as 45°C trigger apoptosis in GMB cells [144]. 

However, various techniques have been used to induce hyperthermia in tumors, including 

radiofrequency, ultrasonic waves, water baths or heat blankets, microwaves, laser-induced 

interstitial thermotherapy, and magnetic nanoparticles (MNPs). MNPs have the advantages of 
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direct intratumoral administration, high localized accumulation to generate sufficient heat in 

tumors, and high efficacy [144]. 

MNPs are excellent candidates for CED treatment of GBs. Researchers have examined 

real-time MRI-guided MNP delivery into the brain for decades using CED [147,148]. Due to 

their high heating capacity, iron oxide MNPs are chosen for magnetic hyperthermia and have 

been engineered therapeutically to target cancer cells [147]. Iron-oxide nanoparticles linked 

with the EGFR inhibitor cetuximab were recently shown to have a considerable anti-tumor 

effect in GSCs expressing EGFRvIII [147]. Fan et al. demonstrated a novel theranostic 

complex of super-paramagnetic iron-oxide-loaded microbubbles for brain medication delivery 

and correctly estimated the distribution of agents and quantified deposition. [149]. 

While an accurate and reliable treatment plan can validate the safety and effectiveness 

of MNPs, the diverse response to magnetic hyperthermia within the GB mass limits their 

clinical utility. For example, in a recent xenograft model, a transitory increase in the growth of 

the CD133 subtype of gliomas was observed following hyperthermic preconditioning [150]. 

Additionally, the issue of MNP toxicity warrants further investigation because it depends on 

the chemical composition, surface coatings, physical properties, and local concentration of 

MNPs. MNPs containing iron oxide and titanium, for example, are less harmful than those 

containing gold, silver, cobalt, zinc, and cadmium. Recent research has proven that coating 

MNPs with dextran and bovine serum albumin reduces toxicity and prevents intravascular 

coagulation [144,151]. 

4.4.8. Nanoparticles as carriers of antitumor antibiotics. 

Numerous chemotherapeutic agents, including doxorubicin, bleomycin, epirubicin, 

daunorubicin, and actinomycin D, are classified as anti-tumor anti-biotics because they are 

produced by bacteria (Streptomyces) and induce cell death in GB cells by interfering with DNA 

replication and damaging DNA[152]. These anti-tumor drugs are highly effective in vitro 

against GB cells but are unsuccessful in vivo due to their failure to pass the BBB [43]. The 

approach encapsulates these chemotherapeutic drugs in PEGylated liposomes and distributes 

them effectively [79]. For instance, putting doxorubicin into poly (lactide-co-glycolide) 

nanoparticles coated with poloxamer 188 (Dox-PLGA) enhances doxorubicin delivery to the 

brain [79,153]. Another example is ultrasound-induced microbubbles which successfully carry 

medicines into the brain via a transitory opening of BBB in a rat glioma model [154]. 

4.5. Prodrugs. 

Due to the BBB’s existence, only a limited amount of medicine delivered reaches the 

brain. While nanoparticles are a potential option for addressing this issue, another appealing 

chemical modification-based strategy, the prodrug, has been developed to boost BBB 

permeability [155]. 

A prodrug combines a drug and a chemical component that improves the drug’s 

solubility or permeability to cells [156]. Active medicine is released and controlled depending 

on each organ or tissue's unique biological circumstances, such as pH, enzyme distribution, 

and transporter expression [157,158]. Prodrugs are intended to overcome various 

physicochemical and biological barriers, including limited solubility in water or lipid 

membranes, low target selectivity, chemical instability, and toxicity [159]. Numerous prodrug 

techniques have facilitated drug delivery into the central nervous system Table 3. 
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Table 3. Prodrug strategies for the transport of drugs into the CNS. 

Strategy  Prodrugs Mode of Action Reference (s) 

Lipidization Heroin Acetylation of the hydroxyl group alters heroin's physicochemical characteristics, 

favoring brain absorption. 

[160] 

Chemical 

delivery system 

Estradiol-CDS  After oxidation and hydrolysis, the concentration of estradiol CDS in rat brains was 

elevated four to five times longer than after estradiol treatment. 

[161] 

Carrier-drug 

conjugates 

LAT1  

 

GLUT1 

SVCT2  

The conversion of dopamine into its α-amino acid, L-dopa, enables the brain to 

uptake dopamine via LAT1. 

Dopamine linked to the C6 position of glucose had the best affinity for GLUT1. 

When nipecotic, kynurenic, and diclophenamic acids were conjugated to ascorbic 

acid, interaction with SVCT2 transporters improved. 

[162] 

[160] 

[163] 

 

Ligand-drug 

conjugates 

Insulin/transferrin  CNS accumulation of methotrexate is improved by conjugating it to an antibody 

(OX-26), which is recognized by the transferrin receptor. 

[164–166] 

Targeting 

moiety-drug 

conjugates 

N, N-dimethyl 

amino  

Conjugation with N and N-dimethyl amino significantly enhanced the brain-uptake 

efficiency of dexibuprofen, naproxen, 5-fluorouracil, and dopamine. 

Chlorambucil-scopine prodrug significantly improved the cellular uptake both in 

vitro and in vivo. 

[167] 

GLUT1, glucose transporter; LAT, large neutral amino acid transporter; SVCT2, sodium-dependent vitamin C 

transporters. 

4.6. Ultra sound focused drug delivery. 

Focused ultra sound (FUS) is an image-guided, non-invasive technique for transiently 

opening the blood barrier and thereby increasing the efficacy of medicinal administration to 

GB. FUS can disrupt the BBB reversibly without causing irreversible tissue damage [168,169]. 

In combination with circulating microbubbles, FUS disrupts the BBB transiently [170]. 

Besides the cavitation and thermal ablation effects, FUS may also exert an immunomodulatory 

effect [171]. The prospect of future use of non-invasive FUS in conjunction with other forms 

of therapeutic drug administration in GB seems encouraging. 

FUS can improve the delivery of various therapeutic medicines to the tumor by 

enhancing BBB permeability. For example, disruption of the BBB by FUS boosted the local 

delivery of temozolomide to tumors and increased overall survival in rats harboring artificially 

generated gliomas [172,173]. In rats, FUS treatment followed by BCNU administration 

resulted in a decreased rate of tumor growth and increased survival [174]. 

Low-intensity fluorescence ultrasound (LIFU) was used to deliver a liposomal O6-(4-

bromothenyl) guanine (O6BTG) derivative that inhibits MGMT in a mouse model with 

temozolomide-resistant glioma [175]. Since MGMT promotes DNA repair in tumor cells, 

suppressing MGMT has been associated with improved outcomes following temozolomide 

treatment [56]. 

The combination of imaging methods and FUS accelerates the delivery of drugs to 

specifically identified tumor tissues [176]. MRI-guided FUS (MRgFUS) was employed in rats 

to increase tissue delivery of liposome-encapsulated doxorubicin, temozolomide, and cisplatin-

conjugated gold nanoparticles [172]. In another study, MRgFUS was utilized to safely deliver 

the monoclonal antibody trastuzumab to Her2-positive brain metastases in breast cancer 

patients [177]. 

This non-invasive method allows therapeutic drugs to be administered at very low 

systemic concentrations, hence minimizing systemic adverse effects [178]. Transient FUS 

application results in a transient BBB opening and does not result in long-term BBB problems 

[179]. FUS can potentially improve the efficacy of therapeutic drugs against GB due to its non-

invasive nature and consistent enhancements in drug delivery in early investigative 

investigations. FUS-based clinical trials in GB are underway [168]. However, FUS is not 

https://doi.org/10.33263/BRIAC136.559
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC136.559  

 https://biointerfaceresearch.com/ 14 of 27 

30 

 

without complications, including edema, intracerebral hemorrhage, and uncontrolled thermal 

harm to the brain [88]. 

 
Figure 3. An illustration of BBB modification with focused ultrasound and intravenous microtubule injection. 

Microtubules in motion and contracting in the acoustic field strain capillary walls and exert stresses on 

endothelial cells, causing the BBB to become more permeable. The ultrasonic field's frequency, which with a 

clinical system is 220,000 times/s, drives the expansion and contraction. 

4.7. Exosomes. 

Exosomes from various sources can passively or actively target cancer cells to deliver 

therapeutic agents such as small molecule medicines, nucleic acids, and proteins[180]. These 

exosomes can encapsulate medications, prolonging their half-life and enhancing the stability 

of their release. Exosomes are endogenous and biocompatible, so they can be employed as 

nanocarriers for tissue-specific targeted distribution [181]. 

4.8. Vaccine therapy. 

Novel treatment options are being investigated, and some progress has been made, 

particularly in tumor immunotherapy, particularly vaccine therapy[182]. Vaccine therapy is 

predicated on the tumor-specific immune response to foreign antigens injected into the patient. 

Foreign antigens introduced into antigen-presenting cells induce and improve host immunity 

[183]. Vaccinations against GB are currently being tested in clinical studies, largely using 

peptide-based vaccines and cells from Phytophthora seedlings. 

Because the protein/peptide variations generated by the mutant gene are particular to 

tumor cells and are not found in normal cells, they can be exploited as specific antigens to 

trigger immune responses against tumor cells. These antigens are known as tumor-specific 

antigens (TSAs) and were formerly referred to as “neo-antigens.” Only a few mutations are 

processed into new epitopes; when these epitopes are given by antigen-presenting cells in the 

form of the human leukocyte antigen (human leukocyte antigen, HLA), they result in T cell-

mediated immunity. Numerous possible tumor antigens are not the result of mutations but an 
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erroneous or excessive expression of normal proteins found in other organs. In some instances, 

targeting the antigen may result in autoimmunity, manifesting as non-target consequences such 

as brain inflammation [184]. The lack of selectivity and high epitope expression in GB impedes 

the development of peptide vaccine-based methods. 

Clinical trials for treating the GB vaccine are presently underway, making it the most 

clinically available DC vaccination trial. In humans, DCs are the most effective antigen-

presenting cells; they promote innate and acquired immunity and the conversion of immunity. 

Additionally, they affect lymphocyte immunological responses, differentiation, and antigen 

presentation [185]. Steinman identified DCs in 1973; nevertheless, it was not until the early 

1990s that their critical involvement in the immune response was recognized [186]. This DC 

vaccine production procedure is a reasonable anti-tumor strategy because it is the primary 

component of silence-T, the first FDA-approved cancer vaccine. Sepulture-T has improved 

prostate cancer patients’ median overall survival time by four months [187]. DCs are extracted 

from peripheral blood CD-14 positive monocytes to treat GB with the DC vaccination, and 

immature DCs are differentiated using GM-CSF and IL-4 [188]. The tumor antigens 

(polypeptides, RNA, DNA, and tumor lysates) are loaded into immature DCs, which are then 

presented on MHCs and matured by the various cytokines (GM-CSF, IL-4, TNF-, and IL-6) 

[188,189]. 

Like antiviral vaccinations, tumor cell vaccines are frequently used to kill or inactivated 

tumor cells. Due to the poor success rate, gene editing of tumor cells was undertaken in the late 

1980s to produce certain immune-stimulating cytokines; granulocyte-macrophage colony-

stimulating factor (GM-CSF) was the most often employed. Tumor cells that secrete GM-CSF 

are being examined for use in the treatment of GB [190]. Clinical trials in phase I are conducted 

employing the current generation of autologous and allogeneic tumor cell lines secreting GM-

CSF (K-562). Vaccination success depends on T cell activation and anti-tumor immunity [191]. 

Additionally, direct injection of formalin-fixed GB as an antigen is being investigated to treat 

GB [192,193]. Overall survival was 22.2 months in a clinical trial assessing DC vaccinations 

in 24 GB patients [193]. 

5. Conclusions and Future Directions 

Even though recent pharmacologic handling options in GBs are meager, the drug 

expansion channel is gradually rising. In particular, the surge of designated immunotherapies 

detected in the last years raises the hope that elaborate combination possibilities between 

classical therapeutic backbones (radiotherapy and chemotherapy) and currently experimental 

therapeutics may help to provide better prospects for this deadly disease in the future. Clinical 

cure for glioma is difficult due to the shielding effect of the blood-brain barrier; therapies 

directed to deliver a drug directly to the brain in a controlled and secure are gaining attention. 

The complex interaction of drug and target is usually limited by the characteristics of the drug 

delivery system as well as the pathological structure of the body. To cope with such complex 

interactions, biomimetic drugs/materials with homologous binding and immune escape 

functions have been an ideal alternative—autologous human body tissues as carriers help the 

drug reach the target without destruction. The future direction of nanotechnology and clinical 

applications may consider monoclonal antibodies, combining GSC-targeting SGT-53 with 

traditional TMZ, or novel nanoformulations loaded with therapeutic miRNAs to improve 

immunotherapy and anti-angiogenic processes. Micronanoparticles are hopeful nanoparticles 

that can treat intratumoral hyperthermic patients suffering from GB. However, due to the 
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unpredictable heterogeneous nature of tumors, the same could not be replicated in clinical 

trials. 
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