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Abstract: Concentration and temperature conservation laws (CL) for chemical reactions occurring in 

nonstationary regimes of a plate reactor with diffusion and convection are investigated. Two types of 

CL are distinguished − autonomous (independent) and non-autonomous (dependent) on time, length, 

and with of the reactor. The dependence of these laws on the rate of the reaction flow and the diffusion 

coefficients of reagents and thermal diffusion has been established. It is shown that the autonomous 

laws are fulfilled only with uniform diffusion of all reactants and convection. Examples of the use of 

these CL for checking the correspondence of experimental data to the supposed stepwise mechanisms 

of reactions proceeding according to arbitrary kinetic laws are given. 
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1. Introduction 

Conservation laws (CL) underlie physicochemical and biological processes and express 

the most important constant (invariant) connections between the substances and energy 

involved. The simplest by-shape CL is characteristic of closed spatially homogeneous (lumped) 

systems [1,2]. In open spatially inhomogeneous (distributed) systems, CL can be preserved, 

changed, partially and completely disturbed, or remain unknown. Chemical processes in 

distributed systems are described by models considering the diffusion of substances and the 

convection of heat [3-9]. These models are multidimensional systems of nonlinear partial 

differential equations of mathematical physics, which, as a rule, cannot be exactly solved [10]. 

For such equations, exact CL (exact invariants), which are strictly constant expressions based 

on the solutions of these equations, is rather difficult to construct, and developing methods for 

establishing them is an urgent problem. Currently, the literature describes only exact CL for 

chemical reactions with ideal kinetics based on the law of mass action (LMA) occurring in 

reactors of ideal mixing and displacement [11] or exact CL (full invariants) [12] for some types 

of incompletely mixed reactors without diffusion or with one-dimensional diffusion [13,14]. 

In this regard, this work aims to develop methods for establishing new concentration and 

concentration-temperature CL for chemical reactions proceeding unsteadily in an open 

nonisothermal plate reactor, taking into account the two-dimensional diffusion of reagents and 

the convection of heat in longitudinal and transverse directions. In practice, such CL can be 

used to increase the reliability of solving the inverse problem of chemical kinetics [15-27], 
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associated with the refinement of the stepwise mechanism of a chemical reaction proceeding 

according to unknowns, including nonideal (Marceline de Donde kinetics, etc.) kinetic laws. 

2. Theoretical Part 

Let the chemical reaction proceed through the elementary stages 

ai1A1 + ai2A2 +…+ ainAn  bi1A1 + bi2A2 +…+ binAn,, i = 1, …, s, (1) 

where i is the number of the stage; s is the number of stages; aij, bij are the stoichiometric 

coefficients of the reagents Aj; j = 1,…,n − reagent number; n is the number of reagents. The 

unsteady flow of such a reaction according to an arbitrary kinetic law in an open plate 

nonisothermal reactor with a nonuniform distribution of reagent concentrations and 

temperature over time, along the length and of the reactor, is described by a system of nonlinear 

partial differential equations that cannot be solved exactly [3-10]: 

Aj/t + q(Aj/x+ Aj/y) = i(bij − aij)ri + Dj(
2Aj/x2+ 2Aj/y2), j = 1,…,n (2) 

/t + q(/x+ /y) = iQiri + (x – ) + D(
2/x2+ 2/y2) (3) 

where Aj(x, y, t) are the current concentrations of reagents, mole fractions; x is the current length 

of the reactor, no size; y is the current with of the reactor, no size; t is the current time, s; q − 

rate of the reaction flow, 1/s (q = 0 − closed reactor); ri  = ri(ki, Aj, ) − the rates of the stages 

according to some arbitrary (including nonideal) kinetic law; ki − unknown stage rate 

constants; (x, y, t) is the current relative temperature (the ratio of the current temperature T(x, 

y, t)  to the initial T0, K), no size; Qi  − relative heat effects of stages, no size;  – coefficient of 

heat transfer through the reactor wall ( = 0 – adiabatic reactor,   0 − non-adiabatic reactor), 

1/s; x − reactor wall temperature, no size; Dj and D – coefficients of diffusion of reagents and 

thermal diffusion, 1/s.  

Let us define the initial conditions (i.c.) 

Aj(x, y, 0) = Aj
0, (x, y, 0) = 0 (4) 

where Aj
0, 0 are constants. Let us accept the boundary conditions (b.c.) 

Aj(0, y, t) = Aj(x, 0, t) = Aj
0, (0, y, t) = (x, 0, t) = 0 (5) 

Aj(1, y, t) = Aj(x, 1, t) = 0, (1, y, t) = (x, 1, t) = 0  

In an isothermal plate reactor, equation (3) with the corresponding i.c. and b.c. are not 

used. Let us determine and compare the following from (1)-(5) spatial-temporal distributions 

of concentrations, temperatures, and corresponding CL for different values of the reactor 

parameters, diffusion, and convection coefficients. 

For a closed (q = 0) non-adiabatic (  0) reactor in the absence of diffusion and 

convection (Dj = D = 0), equations (2)-(3), taking into account the laws of mass conservation, 

take the form 

jmj Aj /t = 0, m = 1, 2, …, N (6) 

where mj are constants determined by the stoichiometry of the stages; N = n − P; P − the rank 

of the matrix of stoichiometric coefficients (bij − aij). For a closed adiabatic reactor ( = 0), 

taking into account the law of conservation of heat, one more equation is fulfilled 

(jj Aj + )/t = 0 (7) 

where j  are constants depending on the stoichiometry and thermal effects of the stages. System 

(6)-(7) qualitatively differs from the original (n+1)-dimensional nonlinear system of 

interdependent equations (2)-(3) in that it consists of a smaller number N+1 linear with respect 
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to algebraic sums (we call them complexes) concentrations and the temperature of independent 

(over complexes) equations, each of which is solved exactly. The solutions of these differential 

equations express autonomous (independent of time and space) independent stoichiometric 

concentration and concentration-temperature CL in the algebraic form [2, 8, 11]: 

Km(x, y, t)  jmjAj (x, y, t) = jmjAj
0, m = 1, 2, …, N 

L(x, y, t)  jj Aj (x, y, t) + (x, y, t) = jj Aj
0
 + 0 

(8) 

(9) 

For an open (q  0) plate reactor with uniform diffusion and convection (Dj = D  D), 

differential relations of the form (6)-(7) take the form 

Km/t + q(Km/x+ Km/y) = D(2Km/x2+ 2Km/y2), m = 1,2,…,N (10) 

L/t + q(L/x+L/y) = D(2L/x2 + 2L/y2) (11) 

In an isothermal plate reactor with uniform diffusion, only equalities (10) are satisfied. 

Each of these equations is also independent of the form of the kinetic law and is equivalent to 

a diffusion equation of the form zt+q(zx+zy) = zxx+Dzyy, where z is a complex. Such 

equations reduce to three ordinary differential equations [10] and have exact solutions of the 

form z(x,y,t) = [C1exp(1x)+C2exp(2x)][C3exp(3x)+C4exp(4x)]С5exp(−5t), 

which, taking into account (4)-(5), take the trivial form z(x,y,t) = z(0,0,0), where 1,2  

[q  (q2 − 4p1
2)1/2]/2, 3,4  [q(q

2−4p2
2)1/2]/2, 5

2  = p1
2 + p2

2, p1, p2  > 0, С1, 

C2, C3, C4, C5 are constants. 

As applied to equations (10)-(11), this means that their trivial solutions also coincide 

with autonomous CL (8)-(9), which are also valid for uniform diffusion (convection) and also 

do not depend on the form of the kinetic law. Because these CL depend only on the 

stoichiometry of the stages and i.c. reaction (1), then all linear-dependent reaction mechanisms 

with any number of stages are characterized by the same number of independent autonomous 

CL, which can be reduced to the same form. Consequently, only linearly independent 

mechanisms of reaction (1) can be unambiguously identified using autonomous CL with 

uniform diffusion (convection) and any kinetic law. 

In closed and open plate reactors with nonuniform diffusion and convection (Dj  D  

D). relations (6)-(9) are violated «in proportion» to the intensity of diffusion and convection. 

In this case, the diffusion-homogeneous complexes Km and L in the right-hand sides of 

equations (10)-(11) are replaced by diffusion-inhomogeneous complexes: 

Km/t + q(Km/x+ Km/y) = 2Mm
/x2+ 2Mm/y2, m = 1,2,…,N (12) 

L/t + q(L/x+L/y) = 2P/x2 + 2P/y2 (13) 

where Mm(x, y, t)  jmjDjAj, P(x, y, t)  jjDjAj(x, y, t) + D(x, y, t) −  diffusion-

inhomogeneous complexes. In an isothermal plate reactor with nonuniform diffusion, only 

equalities (12) are satisfied. The system of equations (12)-(13) also does not depend on the 

form of the kinetic law and describes the evolution of the CL for the reaction proceeding 

according to the mechanism (1) in a nonisothermal open reactor with diffusion and convection 

of arbitrary intensity. However, the number of equations of this system N+1 is less than the 

number of unknowns n+1, and it has many solutions. To obtain an unambiguous solution, let 

us supplement it with n−N with any of the original equations (2)-(3), set any specific form of 

the kinetic law (for example, the law of mass action, LMA) and low stage velocities (ri  0). 

The analysis showed that, under such conditions, the solution found weakly depends on the 

form of the kinetic law and makes it possible to fairly accurately calculate non-autonomous 
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CL, which can be used to refine the reaction mechanisms taking into account possible 

nonuniform diffusion and convection. 

The CL cannot be fully plotted for a plate reactor with longitudinal and radial diffusion 

are hypersurfaces in four-dimensional space. On three-dimensional plots of the dependences 

of complexes, for example, on time and length (with a fixed width), autonomous CL looks like 

horizontal planes, and non-autonomous ones - like curved surfaces. On two-dimensional plots, 

for example, versus time (with fixed length and width), they respectively represent horizontal 

and curved lines touching the corresponding horizontal straight lines near i.c. 

We emphasize once again that an important difference between equations of the form 

(10)-(11) and (12)-(13), following from the original equations (2)-(3), is that they are valid for 

any kind of kinetic law, and, consequently, on the rate constants of the stages of the reaction 

mechanism (1). The solutions of such equations express various autonomous and non-

autonomous CL, which can be found exactly with uniform diffusion and convection. In the 

case of nonuniform diffusion and convection, these solutions are known exactly only in normal 

conditions but can be calculated numerically at any point (as described above). Autonomous 

CL, in contrast to non-autonomous CL, depends only on the stoichiometry of the stages and 

i.c. reaction, which is especially convenient for solving the inverse problem of choosing the 

most probable of several alternative mechanisms for the occurrence of chemical reactions with 

unknown kinetic laws and rate constants of the stages, which is often encountered in practice. 

Note that CL allows one to solve another type of inverse problem − to determine reagents with 

equal (taking into account measurement errors) diffusion coefficients according to the 

following rule (we shall call it invariant): «If a non-autonomous CL coincides with the 

corresponding autonomous CL, then the reagents included in it are characterized by practically 

equal diffusion coefficients». 

For experimental verification of the studied reaction mechanism, it is sufficient to 

measure the values of the concentrations of reagents and temperatures at different times in any 

section of the reactor (for example, at the outlet) and check the validity of equalities (8) and 

(12) in an isothermal reactor and additionally equalities (9) and (13) in a nonisothermal reactor 

(as described above). If all of them are fulfilled (taking into account measurement errors), then 

the proposed mechanism adequately describes the regularities of the reaction. If at least one of 

these relationships is violated (with excess measurement errors), the studied reaction 

mechanism does not correspond to the experimental data. To increase the solution's reliability 

to the inverse problem, it is recommended to check the found СL for different i.c. Let us apply 

the method described above to analyze the mechanisms of different reactions. 

3. Computational Experiment 

Example 1. The reaction of obtaining 4-tert-butylpyrocatechol (4-TBPC) by oxidation 

of 4-tert-butylphenol (4-TBP) with hydrogen peroxide in the presence of titanosilicate catalysts 

was experimentally studied in [28,29] in a nonstationary mode of a closed isothermal plate 

reactor. In these works, an ideal kinetic LMA was postulated, and the following two-stage 

reaction mechanism was proposed 

1) A + B  C + D,  2) 2B  2D + E (1.1) 

where A − 4-TBP (C10H14O), B − hydrogen peroxide (H2O2), C − 4-TBPC (C10H14O2), D − 

H2O, E − O2. However, theoretically, there are many alternative mechanisms of this reaction 
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involving the same reagents and the stage 2C  2A + E (2C10H14O2  2C10H14O + O2), for 

example: 

1) A + B  C + D,  2) 2C  2A + E (1.1*) 

Let us compare these mechanisms with the help of the CL for an arbitrary kinetic law. 

Let us write for each of their equations (2)-(3) in a closed (q = 0) isothermal ( = 0) plate 

reactor, taking into account the diffusion of reagents 

A/t = −r1+DA(2A/dx2+2A/dy2), B/dt = −r1−2r2+DB(2B/dx2+2B/dy2) (1.2) 

C/t = r1+DC(2C/dx2+2C/dy2), D/t = r1+2r2+DD(2D/dx2+ 2D/dy2), 

E/t = r2 + DE(2E/dx2 + 2E/dy2), 

A/t = −r1+2r2+DA(2A/dx2+2A/dy2), B/dt = −r1+DB(2B/dx2+2B/dy2), 

C/t = r1−2r2+DC(2C/dx2+2C/dy2), D/t = r1+DD(2D/dx2+2D/dy2), 

E/t = r2 + DE(2E/dx2 + 2E/dy2) 

(1.2*) 

where A, B, С, D, and E are the concentration of reagents; r1, r2 – any kinetic functions. Hence, 

taking into account (6)-(9), it follows that for each of them under any kinetic law and uniform 

diffusion, the same three (P = 2, N = 5 – 2 = 3) autonomous independent concentration CL of 

the form (8), which are expressed through the same complexes 

K1(x, y, t)  A(x, y, t) + C(x, y, t) = A0 + C0 

K2(x, y, t)  B(x, y, t) + D(x, y, t) = B0 + D0, 

K3(x, y, t)  B(x, y, t) + C(x, y, t) + 2E(x, y, t) = B0 + C0+ 2E0. 

(1.3) 

For i.c. A0=1, B0=1, C0=D0=E0=0 and the right-hand sides of these CL coincide 

K1(x, y, t)  A + C = 1, K2(x, y, t)  B + D = 1, K3(x, y, t)  B + C + 2E = 1 (1.4) 

As noted above, this is due to the fact that these mechanisms consist of linearly 

dependent stages and cannot be unambiguously identified using autonomous CL with uniform 

diffusion and any kinetic law. 

In a plate reactor with nonuniform diffusion and convection, equalities (1.3)-(1.4) are 

violated, CL becomes non-autonomous and are described by equations of the form (12): 

K1/t + q(K1/x + K1/y) = 2M1/x2 +2M1A/y2 

K2/t + q(K2/x + K2/y) = 2M2/x2 +2M2A/y2 

K3/t + q(K3/x + K3/y) = 2M3/x2 +2M3A/y2 

(1.5) 

here M1(x, y, t)  DAA(x, y, t) + DСС(x, y, t), M2(x, y, t)  DBB(x, y, t) + DDD(x, y, t), M3(x, y, t) 

 DBB(x, y, t) + DCC(x, y, t) + 2DEE(x, y, t) − diffusion-inhomogeneous complexes. Let us 

estimate the influence of nonuniform diffusion on the CL according to the experimental data 

[28,29], according to which at the moments of time t = (0, 2, 5, 7, 10)  at T = 50°C the following 

values of the reagent concentrations A  (1.00, 0.90, 0.80, 0.75, 0.75), B  (1.00, 0.45, 0.30, 

0.25, 0.20), C  (0.00, 0.15, 0.25, 0.25, 0.30), D  (0.00, 0.50, 0.75, 0.80, 0.80), E = (0.00, 

0.20, 0.20, 0.30, 0.30). In [29], according to these data for the LMA at i.c. [A]0 = 0.12, [E]0 = 0 

[mol/l] with an error of RA < 10.4%, the rate constants of the stages were calculated k1  0.233, 

k2  0.535 [l/(mols)], which corresponds to k1  0.233  0.12 = 0.0280, k2  0.535  0.12 = 

0.0642, k−1  0, k−2  0 [1/s] at A0 = 1, E0 = 0. These constants correspond to low-stage 

velocities, and non-autonomous CL weakly depends on the kind of kinetic law. Under such 

https://doi.org/10.33263/BRIAC136.577
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC136.577  

 https://biointerfaceresearch.com/ 6 of 11 

 

conditions, as noted above, they can be calculated directly from the original equations (1.2) 

and (1.2*) (Figure 1). 

  
(a) (b) 

Figure 1. Time dependences of non-autonomous CL with nonuniform diffusion (DA = 0.03; DB = 0.02; DC = 0.01; 

DD = 0.02; DE = 0.05) for the LMA at k1 = 0.0280, k−1 = 0, k2 = 0.0642, k−2 = 0 at the reactor outlet for mechanisms: 

(a) (1.1) according to equations (1.2); (b) (1.1*) according to equations (1.2*).  

Figure 1 (a) it can be seen that for mechanism (1.1) K1  1  with an error of less than 

5%, K2 = 1 exactly, and K3  1 with an error of about 15%. Figure 1 (b) follows that for 

mechanism (1.1*) K1 deviates from 1 by about 15%, K2 = 1 exactly, and K3 deviates from 1 by 

about 25%. Therefore, taking into account measurement errors, the mechanism (1.1) of the 

reaction for the production of 4-tert-butylpyrocatechol by oxidation of 4-tert-butylphenol with 

hydrogen peroxide is in better agreement with all CL and more accurately describes the kinetics 

of this reaction than mechanism (1.1*). Note that since the non-autonomous CL K2 coincides 

with the corresponding autonomous CL, then, according to the invariant rule, one can conclude 

the equality of the diffusion coefficients DB  DD of the reactants B and D, which form the K2 

complex, and the difference in the diffusion coefficients DB ≠ DС ≠ DA ≠ 2DE, which form other 

complexes. 

Example 2. Consider a model reaction A = C + D, which can proceed according to three 

alternative mechanisms, including independent stages and the same reagents 

1) A  B,  2) B  C + D (2.1) 

1) A  B + С,  2) B  D (2.1*) 

1) A  2B,  2) B  С,  3) B  D (2.1**) 

Let us write down model (2)-(3) for the mechanism (2.1) of this reaction in a 

nonisothermal adiabatic ( = 0) plate reactor 

A/t + q (A/x + A/y) = − r1 + DA (
2A/x2+ 2A/y2) 

B/t + q (B/x + B/y) = r1 − r2 + DB (
2B/x2+ 2B/y2) 

C/t + q (C/x + C/y) = r2 + DC (
2C/x2+ 2C/y2) 

D/t + q (D/x + D/y) = r2 + DD (
2D/x2+ 2D/y2) 

(2.2) 

/t + q (/x + /y) = Q1r1 + Q2r2 + D (
2/x2+ 2/y2) (2.3) 

where A, B, С and D are the concentration of reagents; r1, r2 – any kinetic functions. From 

(2.2)-(2.3), taking into account (6)-(11), it follows that in closed (q = 0) and open (q ≠ 0) plate 

reactors with uniform diffusion and convection (and in their absence), for the mechanism (2.1) 

two (P = 2, N = 4 – 2 = 2)  autonomous independent concentration CL of the form (8) are 

fulfilled, which are expressed through the same complexes 
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K1(x, y, t)  A(x, y, t) + B(x, y, t) + C(x, y, t) = A0 + B0 + C0 

K2(x, y, t)  С(x, y, t) − D(x, y, t) = C0 − D0 

(2.4) 

At  = 0 another autonomous temperature CL of the form (9) is performed: 

L(x, y, t)  Q1A(x, y, t) − Q2C(x, y, t) + (x, y, t) = Q1A
0 − Q2C

0 + 0 (2.5) 

Under i.c. A0 = 1, B0 = 1, C0 = D0  = E0 = 0 they have different right-hand sides 

K1(l, t)  A + B + C = 1, K2(l, t)  C − D = 0, L(l, t)  Q1A − Q2C +  = 2 (2.6) 

In an open (q  0) or closed (q = 0) plate reactor with nonuniform diffusion and 

convection, CL become non-autonomous and are described by equations of the form (12)-(13): 

K1/t + q(K1/x + K1/y) = 2M1/x2 +2M1A/y2 

K2/t + q(K2/x + K2/y) = 2M2/x2 +2M2A/y2 

L/t + q(L/x + L/y) = 2P/x2 +2P/y2 

(2.7) 

where M1(x, y, t)  DAA(x, y, t) + DBB(x, y, t) + DCC(x, y, t), M2(x, y, t)  DСС(x, y, t) − DDD(x, 

y, t), P(x, y, t)  Q1DAA(x, y, t) − Q2DCC(x, y, t) + D( x, y, t) − diffusion-inhomogeneous 

complexes. 

For the second mechanism (2.1*), equations (2)-(3) take the form 

A/t + q (A/x + A/y) = − r1 + DA (
2A/x2+ 2A/y2) 

B/t + q (B/x + B/y) = r1 − r2 + DB (
2B/x2+ 2B/y2) 

C/t + q (C/x + C/y) = r1 + DC (
2C/x2+ 2C/y2) 

D/t + q (D/x + D/y) = r2 + DD (
2D/x2+ 2D/y2) 

(2.2*) 

/t + q (/x + /y) = Q1r1 + Q2r2 + D (
2/x2+ 2/y2) (2.3*) 

Let us write down independent autonomous CL of the form (8)-(9): 

K1(x, y, t)  A(x, y, t) + B(x, y, t) + D(x, y, t) = A0 + B0 + D0 

K2(x, y, t)  С(x, y, t) +A(x, y, t) = C0 + A0 

(2.4*) 

L(x, y, t)  Q1A(x, y, t) − Q2D(x, y, t) + ( x, y, t) = Q1A
0 − Q2D

0 + 0 (2.5*) 

These equalities with the same i.c. A0 =1, B0 = C0 = D0 = 0, 0 = 1 are written 

K1(x, y, t)  A+B+D = 1, K2(x, y, t)  C+A = 1, L(x, y, t)  Q1A−Q2D+ = 2 (2.6*) 

In an open (q  0) reactor with nonuniform diffusion and convection, these autonomous 

CL are violated and are found from equations of the form (12)-(13): 

K1/t + q(K1/x + K1/y) = 2M1*/x2 +2M1*A/y2 

K2/t + q(K2/x + K2/y) = 2M2*/x2 +2M2*A/y2 

L/t + q(L/x + L/y) = 2P*/x2 +2P*/y2 

where M1
*(x, y, t)  DAA(x, y, t) + DBB(x, y, t) + DDD(x, y, t), M2

*(x, y, t)  DСС(x, 

y, t) + DAA(x, y, t), P*(x, y, t)  Q1DA A(x, y, t) − Q2DD D(x, y, t) + D( x, y, t) 

(2.7*) 

For the third mechanism (2.1**), equations (2)-(3) will be written 

A/t + q (A/x + A/y) = − r1 + DA (
2A/x2+ 2A/y2) 

B/t + q (B/x + B/y) = 2r1 − r2 − r3 + DB (
2B/x2+ 2B/y2) 

(2.2**) 
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C/t + q (C/x + C/y) = r2 + DC (
2C/x2+ 2C/y2) 

D/t + q (D/x + D/y) = r3 + DD (
2D/x2+ 2D/y2) 

/t + q (/x + /y) = Q1r1 + Q2r2 + Q3r3 +D (
2/x2+2/y2) (2.3**) 

For this mechanism, there is only one (P = 3, N = 4 – 3 = 1) independent autonomous 

concentration CL of the form (8) and one independent temperature CL of the form (9): 

K(x, y, t)  2A(x, y, t) B(x, y, t) С(x, y, t) D(x, y, t) = 2A0+B0+С0+D0 (2.4**) 

L(x, y, t)  Q1A(x, y, t)−Q2C(x, y, t)−Q3D(x, y, t)+( x, y, t) =  Q1A
0−Q2С

0−Q3D
0+0 (2.5**) 

These equalities with the same i.c. A0 =1, B0 = C0 = D0 = 0, 0 = 1 are written 

K(x, y, t)  2A + B + С + D = 2, L(x, y, t)  Q1A − Q2C − Q3D +  = 2 (2.6**) 

In an open (q  0) or closed (q = 0) plate reactor with nonuniform diffusion and 

convection, these autonomous CL are violated and are found from equations of the form (12)-

(13): 

K/t + q(K/x + K/y) = 2M**/x2 +2M**A/y2 

L/t + q(L/x + L/y) = 2P**/x2 +2P**/y2 

where M**(x, y, t)  2DA A(x, y, t) + DB B(x, y, t) + DC C(x, y, t) + DD D(x, y, t), 

P**(x, y, t)  Q1DA A(x, y, t) − Q2DCC(x, y, t) − Q3DDD(x, y, t) + D(x, y, t) 

(2.7**) 

It can be seen from the obtained relationships that alternative mechanisms of the A = C 

+ D reaction, which includes only independent stages with the participation of the same 

reagents, are characterized by different sets of CL. Let us compare their theoretical values with 

the model (in the absence of real) experimental data obtained with an unknown kinetic law. 

  

(а) (b) 

 

 

(c)  

Figure 2. Time dependences of non-autonomous CL with nonuniform diffusion (DA = 0.1; DB = 0.2; DC = 0.3; DD 

= 0.3; DE = 0.2) for the LMA at k1 = 0.01; k−1 = 0.02; k2 = 0.03; k−2 = 0.04; k3 = 0.05; k−3 = 0.06 и q = 0.1, Q1 = 1, Q2 

= 2, Q3 = 3 at the reactor outlet for the mechanisms: a - (2.1) according to equations (2.2)-(2.3); b - (2.1*) 

according to equations (2.2*)-(2.3 *); c - (2.1**) by equations (2.2 **)-(2.3 **).  
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Let at the moments of time t = (0, 3, 5) the concentrations of the reagents are measured 

at the reactor outlet A  (1.00, 0.95, 0.90), B  (0.00, 0.05, 0.10), C  (0.00, 0.05, 0.05), D  

(0.00, 0.05, 0.05) and temperatures   (1.00, 1.10, 1.05) with an error of 5%. Let us first 

substitute these values into expressions for autonomous CL of different mechanisms. For 

mechanism (2.1) from (2.7), we find K1= (1.00, 1.05, 1.05), K2 = (0.00, 0.00, 0.00), L= (2.00, 

1.95, 1.85) and the average deviation is (5 + 0 + 7.5)/3  4.66%. For the mechanism (2.1*) 

from (2.7*), we find K1= (1.00, 1.05, 1.05), K2 = (1.00, 1.00, 0.95), L= (2.00, 1.95, 1.85) and 

the average deviation is (5 + 5 + 7.5)/3  5.66%. For the mechanism (2.1**) from (2.7**) we 

find K= (2.00, 2.05, 2.00), L= (2.00, 1.80, 1.70), and the average deviation (2.5 + 15)/2  

8.75%. Consequently, for autonomous CL, the mechanism (2.1) better agrees with 

experimental data. Let us further calculate the non-autonomous CL by solving the initial 

equations at a low stage rate (Figure 2). 

Let us compare non-autonomous CL with the corresponding autonomous CL. Figure 2 

(a), it can be seen that for mechanism (2.1), the non-autonomous CL K1  1, K2  0 and  L  2  

deviate from the autonomous ones by less than 5%. Figure 2 (b) it follows that for mechanism 

(2.1*), the non-autonomous K1  K2  1 and  L  2 deviate from the autonomous also ones by 

less than 5%. Figure 2 (c) it can be seen that for the mechanism (2.1**), the non-autonomous 

CL K  2 and L  2 deviate from the corresponding autonomous CL by more than 10%. 

Consequently, for non-autonomous CL, the mechanisms (2.1) and (2.1*) of the reaction А = С 

+ D agree equally well with the experimental data. Thus, based on verifying autonomous and 

non-autonomous CL, we can assume that mechanism (2.1) is more likely for this reaction. In 

addition, taking into account that the non-autonomous CL K2 coincides with the corresponding 

autonomous CL, according to the invariant rule, one can draw conclusions about the equality 

of the diffusion coefficients DС  DD of the reactants C and D that form this complex, and the 

difference in the diffusion and convection coefficients that form other complexes. 

4. Conclusions 

The evolution of concentration and concentration-temperature conservation laws for 

chemical reactions proceeding unsteadily in a nonisothermal plate reactor with two-

dimensional diffusion of reagents and heat convection is investigated. Relationships are found 

for determining autonomous (uniformly distributed in time and space of the reactor) and non-

autonomous (non-uniformly distributed) conservation laws under different assumptions about 

diffusion and convection. It is shown that these laws depend on the stoichiometry of the 

reaction stages and the relationship between the intensities of diffusion of reagents and the 

convection of heat. With a uniform intensity of diffusion and convection, they are autonomous 

and do not depend on the form of the kinetic law of stages, but with an uneven intensity of 

diffusion and convection, they become non-autonomous. It was found that different 

mechanisms of the same reaction, consisting of independent stages, are characterized by 

different conservation laws. This makes it possible to identify the mechanisms of such reactions 

from experimental data by measuring concentrations and temperatures at different times in any 

cross-sections of the reactor. Such measurements also make it possible to identify reagents with 

close values of the diffusion coefficients. Thus, the established conservation laws can be 

considered as a kind of "imprints" of the detailed reaction mechanism, which can be used to 

solve the inverse problem of nonstationary chemical kinetics by choosing the most probable 

reaction mechanism even with an unknown kinetic law (including a nonideal one). 
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