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Abstract: In this work, the possibility of the electrochemical determination of salicylic acid on 

conducting polymer – CoO(OH) composite has been evaluated. The electrooxidation mechanism 

includes the gradual phenolization of the aromatic ring carbon atoms 3 and(or) 5 with further 

electrooxidation to the correspondent quinone. The analysis of the correspondent mathematical model 

utilizing linear stability theory and bifurcation analysis confirms the conducting polymer composite 

efficiency in salicylic acid determination in a wide concentration range. On the other hand, the 

oscillatory behavior in this system is possible, but its realization and feature strongly depend on the 

analyte nature and background electrolyte composition. 
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1. Introduction 

Salicylic acid (Figure 1 to the right) [1 – 5] is one of the most widespread antioxidants. 

It is one of the salicylic alcohol oxidation products, the glycosides of which are found in the 

willow tree (from Latin salix – willow, see also Portuguese "salgueiro" - willow). Also, 

salicylic acid is found in various esters, one of which is acetylsalicylate, found in apple tree 

blossom, giving it a pleasant scent.  

OH OH OH O OH O

OH

 
Figure 1. Salicylic alcohol, aldehyde, and acid. 

Salicylic alcohol and its oxidation products are important organic and inorganic 

synthesis reagents. For example, the salicylic aldehyde reaction with ethyl acetoacetate with 

further heterocyclization is a suitable way to afford coumarin derivatives by the Knoevenagel 

reaction [6,7]. Yet the ester of acetic and salicylic acids has been known since 1895 as aspirin 

[8]. Salicylic acid occurs naturally in beer, cider, and other alcoholic drinks, and its 

concentration is higher in craft alcoholic drinks [9 – 10].  

  On the other hand, the biological action of salicylic acid derivatives strongly depends 

on the dose and concentration, the reason why the development of an efficient method for its 

quantification is really actual[11 – 14], and the electrochemical sensing is one of the most 

effective solutions for this task.  

Salicylic acid and its derivatives are popular analytes for electrochemical sensors, due 

to their relatively widespread occurrence and use, low oxidation potential, and interesting 

oxidation mechanism, depending on the reaction conditions. Both anodic and cathodic 

processes may be applied to it. In the first case, due to its flexible electrochemical behavior, 

cobalt (III) oxyhydroxide may be a suitable electrode modifier for its quantification [14 – 18]. 

It may be used alone or in composite with conducting polymers, acting as mediators [19 – 25]. 

Besides stabilizing the metal oxyhydroxide nanoforms, the conducting polymers acts as 

electron transfer mediator. Therefore, the function of the composite's inorganic and organic 

phases is well-defined.  

Such hybrid materials have been used in anodic and cathodic electroanalytical 

processes [26 – 29]. 

Nevertheless, the possibility of electrochemical instabilities in the analogous electro-

organic reactions has been confirmed experimentally or theoretically [29 – 33]. The theoretical 

and experimental data analysis confirms that the electrochemical instabilities in such systems 

are caused by the influence of the electrochemical and chemical reactions on the double electric 

layer (DEL) ionic force, capacitance, and conductivity the electrode surface materials 

resistance.  

Those instabilities tend to pose difficulties for analytical signal interpretation, leading 

to failure in electrochemical equipment. Conversely, we may detect the presence of a certain 
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substance (analyte or interferent) by an instability accompanying its reduction, oxidation, or 

catalytic effect in the system.    

Therefore, a theoretical a priori investigation of the electroanalytical process behavior, 

capable of detecting the condition for the best sensor response, like the main instabilities 

conditions, is necessary. So, this work aims to investigate the salicylic acid electrochemical 

determination on CoO(OH) – conducting polymer composite-modified anode. Analyzing the 

correspondent mathematical model, we thereby compare the behavior of this system with that 

of similar systems [34 – 35].  

2. System and its Modeling 

Cobalt (III) oxyhydroxide is the most stable form of trivalent cobalt. It is seen as a 

substitute for titanium dioxide in material science, semiconductors, and sensors as an 

electroactive material. The oxidation state +3 for cobalt is the median. Therefore, depending 

on the conditions, cobalt (II) oxyhydroxide may be either oxidant, receiving electrons and 

losing a hydroxyl, or reducent, losing electrons and a proton. But suppose the CoO(OH)/CoO2 

redox-pair is generally used for the analytes with high oxidation potential, like some 

heterocyclic compounds with a pyridinic nitrogen atom. In that case, the СоО/СоО(ОН) redox 

pair is more popularly used in electroanalytic, like also in electrosynthesis (including the 

initiating of the pyrrole electropolymerization [34]). Therefore, to determine salicylic acid 

derivatives, the use of СоО/СоО(ОН) redox pair looks more reasonable.  

In this work, the simplest case, in which the electropolymerization scenarios, yet 

described in [14], aren't counted, is evaluated. The salicylic acid electrooxidation by cobalt(III) 

oxyhydroxide on the first stage occurs by a mechanism similar to the aromatic electrophylic 

substitution. Considering the "concordant orientation" of phenolic and carboxylic groups, the 

second hydroxyl enters position 3 or 5, yielding an α or γ-hydroquinonic system. Furtherly it 

is oxidized to the correspondent quinone. Supposing, in order to simplify the model, that the 

ortho-product is the major product due to the ortho-effect, we will describe the electrooxidation 

mechanism in Figure 2:  

OH O

OH

OH O

OHOH

O O

OHO

CoO(OH)
CoO  

Figure 2. The mechanism for the electroanalytical process 

Considering the gradual character of the electrochemical oxidation, like the similarity 

of the γ-hydroquinone behavior, we consider only one product in this model.  
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Therefore, taking some assumptions [34 – 35], we describe the behavior of this system 

by a trivariate balance equation-set (1): 

{
 
 

 
 
𝑑𝑠

𝑑𝑡
=

2

𝛿
(
𝛥

𝛿
(𝑠0 − 𝑠) − 𝑟1)

𝑑𝑝

𝑑𝑡
=

2

𝛿
(𝑟1 − 𝑟2)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟1 + 𝑟2 − 𝑟𝑂)

                                 (1) 

Herein, s is the salicylic acid derivative concentration in the pre-surface layer, p is the 

hydroquinonic oxidation product pre-surface concentration, c is the cobalt (II) oxide surface 

coverage degree, 𝛿 is the diffusion layer thickness, 𝛥 is the diffusion coefficient, 𝑠0 is the 

salicylic acid concentration in the pre-surface layer, C is CoO maximal coverage degree, and 

the parameters r stand for the correspondent reaction rates:  

𝑟1 = 𝑘1𝑠(1 − 𝑐)
2 exp(−𝑎𝑠)                       (2) 

𝑟2 = 𝑘2𝑝(1 − 𝑐)
2 exp(−𝑎𝑝)                       (3) 

𝑟𝑂 = 𝑘𝑜𝑐 exp (
𝐹𝜑0

𝑅𝑇
)                                 (4) 

Herein, the parameters k stand for the reaction rate constants, 𝑎 is the parameter 

describing the influence of ionic transformations on the DEL electrophysical properties, 𝐹 is 

the Faraday number, 𝜑0 is the zero-charge-related potential slope in DEL, 𝑅 is the universal 

gas constant, and Т is the absolute temperature. 

The same process may be applied not only to the proper salicylic acid but also to its 

derivatives. The oscillatory behavior probability in those cases will be dependent on the nature 

of the salicylic acid derivative and background electrolyte composition, including pH. Either 

way, the electroanalytical process will be efficient, as shown below.  

3. Results and Discussion 

In order to investigate the electrochemical behavior for salicylic acid determination on 

polymer electrodes modified by cobalt (III) oxyhydroxide, we analyze by linear stability theory 

the equation-set (1) and express the Jacobian matrix steady-state members as:  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                    (5) 

Where:  

𝑎11 =
2

𝛿
(−

𝛥

𝛿
− 𝑘1(1 − 𝑐)

2 exp(−𝑎𝑠) + 𝑎𝑘1𝑠(1 − 𝑐)
2 exp(−𝑎𝑐))       (6) 

𝑎12 = 0                                          (7) 

𝑎13 =
2

𝛿
(2𝑘1𝑠(1 − 𝑐) exp(−𝑎𝑠))              (8) 

𝑎21 =
2

𝛿
(𝑘1(1 − 𝑐)

2 exp(−𝑎𝑠) − 𝑎𝑘1𝑠(1 − 𝑐)
2 exp(−𝑎𝑐))       (9) 

𝑎22 =
2

𝛿
(−𝑘2(1 − 𝑐)

2 exp(−𝑎𝑝) + 𝑎𝑘2𝑝(1 − 𝑐)
2 exp(−𝑎𝑝)) (10) 

𝑎23 =
2

𝛿
(2𝑘2𝑝(1 − 𝑐) exp(−𝑎𝑝))                (11) 

𝑎31 =
1

𝐶
(𝑘1(1 − 𝑐)

2 exp(−𝑎𝑠) − 𝑎𝑘1𝑠(1 − 𝑐)
2 exp(−𝑎𝑐)) (12) 

𝑎32 =
1

𝐶
(𝑘2(1 − 𝑐)

2 exp(−𝑎𝑝) − 𝑎𝑘2𝑝(1 − 𝑐)
2 exp(−𝑎𝑝))  (13) 

𝑎33 =
1

𝐶
(−2𝑘1𝑠(1 − 𝑐) exp(−𝑎𝑠) − 2𝑘2𝑝(1 − 𝑐) exp(−𝑎𝑝) − 𝑘𝑜 exp (

𝐹𝜑0

𝑅𝑇
) +

𝑗𝑘𝑜𝑐 exp (
𝐹𝜑0

𝑅𝑇
))        (14) 
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Considering the main-diagonal elements (6), (10), and (14), we may conclude that, as 

this diagonal contains positive elements, a positive callback may be possible for this process. 

Therefore, the Hopf bifurcation and the oscillatory behavior become possible.  

In this system, the oscillatory behavior will be defined by a (co)action of two factors 

[34 - 35].  

The effect of the chemical stage on DEL ionic force and surface conductivity may lead 

to the oscillatory behavior, described by the positive behavior of 𝑎𝑘1𝑠(1 − 𝑐)
2 exp(−𝑎𝑐) and 

𝑎𝑘2𝑝(1 − 𝑐)
2 exp(−𝑎𝑝). As the ionic forms are cyclically transformed during the 

electroanalytical process, the DEL and surface conductivity are also changed correspondently, 

leading to the oscillatory behavior;  

It's important to mention that this factor acts only in the systems in which the carboxyl 

is in ionic form, capable of significantly impacting the DEL ionic force. In the case of the 

electroanalytical process realization in mildly acidic or neutral media, or even in the mildly 

basic media, in the case of less ionized derivative, in which the phenolate ionization may be 

neglected, the parameter a will be reset to zero, the exponential value, containing it, will be put 

equal to one, erasing the factor.  

In strongly alkaline media, either carboxylate or phenolate is strongly ionized. 

Therefore, the oscillatory behavior probability enhances with increasing pH. As the beer has a 

lightly acidic pH, this process will be compatible with salicylic acid derivatives determination 

in this drink. 

The main factor of the oscillatory behavior for all of the similar systems [27 – 28] is 

the influence of the electrochemical stage on DEL structure, ionic force, impedance, and 

conductivity, described by the positivity of 𝑗𝑘𝑜𝑐 exp (
𝐹𝜑0

𝑅𝑇
). Considering the (co)action of two 

of the mentioned factors, the oscillatory behavior becomes highly probable. The frequency and 

amplitude depend strongly on the background electrolyte composition and analyte nature.  

To investigate the steady-state stability by applying the Routh-Hurwitz criterion to the 

differential equation-set (1), we rewrite the Jacobian determinant as (15):  

 

4

𝛿2𝐶
|
−𝜅 − 𝛯 0 𝛬
𝛯 −𝛴 𝛵
𝛯 𝛴 −𝛬 − 𝛵 − 𝛺

|                   (15), 

And, adding the second and the third line, according to the determinant properties, as 

(16) 

 

4

𝛿2𝐶
|
−𝜅 − 𝛯 0 𝛬
𝛯 −𝛴 𝛵
2𝛯 0 −𝛬 − 𝛺

|                   (16), 

avoiding thereby the cumbersome expressions.  

Opening the straight brackets and resolving the inequation Det J<0, salient from the 

criterion and changing the signs, we obtain the steady-state stability requirement as (17): 

𝛴(𝜅𝛬 − 𝛯𝛬 + 𝜅𝛺 + 𝛯𝛺) > 0                              (17) 

This inequation described an efficient kinetically-controlled electroanalytical process.  

Considering that no side reactions that compromise the analyte and(or) modifier 

stability are realized in this case, we conclude that the steady-state stability will correspond to 

the linear dependence between the salicylic derivative and current. 
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As for the detection limit, it is realized by the monotonic instability, delimiting the 

margin between the stable steady-states and unstable states. Its main condition may be 

expressed as Det J=0  or(18): 

𝛴(𝜅𝛬 − 𝛯𝛬 + 𝜅𝛺 + 𝛯𝛺) = 0                  (18) 

The electropolymerization scenario for salicylic acid is realized at higher potentials. 

The low-molecular oxidation products will also participate in the electropolymerization 

scenario. Moreover, they will be electropolymerized at lower potentials than the salicylic acid,  

constituting a case of assisted monomer electrosynthesis.  

This will occur if the CoO(OH)/CoO2 redox pair is used. This system will be evaluated 

in one of our next works.  

4. Conclusions 

From the analysis of the salicylic acid and derivatives determination in beer on 

CP/CoO(OH) composite modified electrode, it was possible to conclude that this composite is 

an effective electrode modifier for salicylic acid determination. The electroanalytical process 

is kinetically controlled, being the analytical signal easy to interpret in a wide concentration 

range. As for the oscillatory behavior, its realization depends on the analyte nature and 

background solution composition.  
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