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Abstract: Monosubstituted thioureas have found wide application in various fields of science and 

technology. They are widely used in organic synthesis to obtain various heterocyclic and acyclic 

compounds and are also of great interest in medicine, pharmacy, and agriculture as biologically active 

substances. In this work, we reported the synthesis of N-(2,2,2-trichloro-1-

thioureidoethyl)carboxamides obtained by hydrazinolysis of the starting acylated thioureas. Target 

products were obtained in 87-91% yields. The paper also reported on the synthesis of a series of 2-(1-

carboxamido-2,2,2-trichloroethyl)isothiouronium chlorides by S-amido alkylation of thiourea with N-

(1,2,2,2-tetrachloroethyl)carboxamides. Attempts to synthesize N-(2,2,2-trichloro-1-

thioureidoethyl)carboxamides based on the obtained isothiuronium salts by their dehydrochlorination 

with triethylamine were unsuccessful. The structure of all obtained compounds was confirmed by 1H, 
13C NMR, IR spectroscopy, and mass spectrometry data. 
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1. Introduction 

Monosubstituted thioureas are classical reagents for the synthesis of 2-amino-1,3-

thiazole derivatives [1,2], pyrimidine-2-thiones [3-5], imidazole-2-thione [6-8], and other 

heterocyclic and acyclic systems. In addition, the thiourea fragment is an active pharmacophore 

group and is a component of many drugs [9-12]. 

Amidoalkylated N,N'-substituted thioureas are fairly well described in the scientific 

literature. These compounds are obtained by adding amines 2 to N-(2,2,2-trichloro-1-

isothiocyanatoethyl)carboxamides (1) or N-(1-amino-2,2,2-trichloroethyl)carboxamides (3) to 

isothiocyanates 4 (Scheme 1) [13-19]. Due to the presence of several reaction centers in 

thioureas 5, they are successfully used for the synthesis of heterocyclic [13,16-19], acyclic [20], 

and complex [21] compounds. In addition, some thioureas 5 show high or moderate biological 

activity. Among these compounds, effective inhibitors of the GADD34:PP1 holoenzyme 

complex are known, for example, Salubrinal [22], Sal003 [23] and their structural analogs 

[14,15,24], as well as moderate inhibitors of the hERG potassium channel [25] and some 

enzymes of the CYP family [26]. 
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Scheme 1. Synthesis of amido alkylated N,N'-substituted thioureas. 

The attempts to synthesize monosubstituted N-amido alkylated thioureas were 

unsuccessful. Thus, in the interaction of N-(2,2,2-trichloro-1-

isothiocyanatoethyl)carboxamides (1) with ammonia, the formation of monosubstituted 

thioureas 6 was not observed, but symmetrical N,N′-diamido alkylated thioureas 7 were 

obtained [27] (Scheme 2). It is assumed that N-(1-amino-2,2,2-trichloroethyl)carboxamide (3) 

was formed at the first stage of this transformation, which was then added to the initial 

isothiocyanate 1. 

 
Scheme 2. The reaction of N-(2,2,2-trichloro-1-isothiocyanatoethyl)carboxamides (1) with ammonia. 

In this work, we reported the synthesis of N-(2,2,2-trichloro-1-

thioureidoethyl)carboxamides 6, which were obtained by hydrazinolysis of the starting 

acylated thioureas [28], as well as the synthesis of the 2-(1-carboxamido-2,2,2-

trichloroethyl)isothiouronium chlorides as the product of another unsuccessful attempt to 

synthesize monosubstituted N-amido alkylated thioureas 6. 

2. Materials and Methods 

IR spectra were recorded on KBr pellets using a Spectrum BX II spectrometer. The 

FAB mass spectra were recorded on a VG7070 instrument. Ions were desorbed from samples 

in meta-nitrobenzyl alcohol by an 8-keV argon beam. 1H NMR (400 MHz) and 13C NMR (100 

MHz) spectra were measured for solutions in DMSO-d6 using a Varian VXR-400 spectrometer. 

Residual solvent signals were used as standards. Elemental analysis was performed on a LECO 

CHNS-900 instrument. The reaction and purity of the compounds were monitored by TLC on 

Silufol UV-254 plates. A mixture of chloroform/acetone (3:1) was used as an eluent for 

thioureas 6a-d, and a mixture of chloroform/acetone/methanol (3:1:1) was used for 

isothiuronium salts 12a-d. 

2.1. Synthesis of 2-(1-carboxamido-2,2,2-trichloroethyl)isothiouronium chlorides (12a-d).  

SOCl2 (12 mmol) was added to 10 mmol of the corresponding N-(2,2,2-trichloro-1-

hydroxyethyl)carboxamide (8) [29] in 25 mL of CCl4. The mixture was refluxed for 1.5-2 

hours, then the reaction mass was cooled, and the solvent was evaporated on a rotary 

evaporator. Dry residue 9 was washed with 10 mL of hexane, filtered, and dried for 10-15 

minutes. Then, chlorine derivative 9 was dissolved in 15 mL of dry acetonitrile, and 10 mmol 
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(0.76 g) of thiourea (11) was added to the resulting solution. The mixture was left for 2 hours. 

The precipitated isothiuronium salt 12 was filtered and purified by recrystallization from 

acetonitrile. 

2.2. 2-(1-Acetamido-2,2,2-trichloroethyl)isothiouronium chloride (12a). 

White crystals; yield 84% (2.53 g); mp 124-126 °C (MeCN); Rf = 0.33. IR: νmax 3331, 

3287, 3042 (NH), 2874, 2774 (CH), 1664 (C=O), 1652 (C=N) cm-1. 1H NMR: δ 8.58 (br. s, 

1H, NH), 6.57 (br. s, 4H, NH), 5.73 (d, J = 9.3 Hz, 1H, CH), 1.92 (s, 3H, CH3). 13C NMR: δ 

167.9 (C=O), 164.6 (H2N−C=NH2
+), 102.1 (CCl3), 72.6 (CH), 23.4 (CH3). FAB-MS: m/z 300 

[M+H]+. Anal. Calcd (%) for C5H9Cl4N3OS (301.01): C, 19.95; H, 3.01; N, 13.96; S, 10.65. 

Found: C, 19.90; H, 2.98; N, 13.99; S, 10.69. 

2.3. 2-(2,2,2-Trichloro-1-cinnamamidoethyl)isothiouronium chloride (12b). 

White crystals; yield 86% (3.35 g); mp 172-174 °C (MeCN); Rf = 0.24. IR: νmax 3292, 

3108, 3058 (NH), 2858, 2728 (CH), 1659 (C=O), 1551 (C=N) cm-1. 1H NMR: δ 9.87 (d, J = 

8.8 Hz, 1H, NH), 8.92 (br. s, 4H, NH), 7.58-7.56 (m, 2H, Harom.), 7.51 (d, J = 15.8 Hz, 1H, 

=CH-cis), 7.40-7.36 (m, 3H, Harom.), 6.80 (d, J = 15.8 Hz, 1H, =CH-trans), 6.42 (d, J = 8.8 Hz, 

1H, CH). 13C NMR: δ 168.1 (C=O), 165.4 (H2N−C=NH2
+), 141.2 (C6H5CH=CH), 135.8, 

129.9, 129.6, 127.9 (Carom.), 121.0 (C6H5CH=CH), 101.9 (CCl3), 72.8 (CH). FAB-MS: m/z 388 

[M+H]+. Anal. Calcd (%) for C12H13Cl4N3OS (389.12): C, 37.04; H, 3.37; N, 10.80; S, 8.24. 

Found: C, 37.00; H, 3.33; N, 10.84; S, 8.29. 

2.4. 2-(1-Benzamido-2,2,2-trichloroethyl)isothiouronium chloride (12c). 

White crystals; yield 89% (2.34 g); mp 146-148 °C (MeCN); Rf = 0.40. IR: νmax 3336, 

3183, 3151, 3030, 2982 (NH), 2858, 2765 (CH), 1673 (C=O), 1651 (C=N) cm-1. 1H NMR: δ 

10.04 (d, J = 9.3 Hz, 1H, NH), 9.70 (br. s, 4H, NH), 7.91-7.89 (m, 2H, Harom.), 7.55-7.53 (m, 

3H, Harom.), 7.06 (d, J = 9.3 Hz, 1H, CH). 13C NMR: δ 168.8 (C=O), 165.9 (H2N−C=NH2
+), 

135.7, 131.8, 131.5, 129.9 (Carom.), 101.9 (CCl3), 74.5 (CH). FAB-MS: m/z 362 [M+H]+. Anal. 

Calcd (%) for C10H11Cl4N3OS (363.08): C, 33.08; H, 3.05; N, 11.57; S, 8.83. Found: C, 33.02; 

H, 3.02; N, 11.61; S, 8.87. 

2.5. 2-(2,2,2-Trichloro-1-(4-methylbenzamido)ethyl)isothiouronium chloride (12d). 

White crystals; yield 88% (3.32 g); mp 114-116 °C (MeCN); Rf = 0.38. IR: νmax 3352, 

3109 (NH), 2973, 2871, (CH), 1662 (C=O), 1652 (C=N) cm-1. 1H NMR: δ 10.02 (d, J = 9.1 

Hz, 1H, NH), 9.67 (br. s, 4H, NH), 7.76-7.74 (d, J = 7.8 Hz, 2H, Harom.), 7.34-7.31 (m, J = 7.8 

Hz, 2H, Harom.), 6.84 (d, J = 9.1 Hz, 1H, CH). 13C NMR: δ 168.2 (C=O), 165.7 (H2N−C=NH2
+), 

141.6, 131.4, 128.7, 127.9 (Carom.), 102.1 (CCl3), 74.4 (CH), 21.8 (CH3). FAB-MS: m/z 376 

[M+H]+. Anal. Calcd (%) for C11H13Cl4N3OS (377.11): C, 35.04; H, 3.47; N, 11.14; S, 8.50. 

Found: C, 35.00; H, 3.44; N, 11.19; S, 8.54. 

2.6. Synthesis of N-((1-carboxamido-2,2,2-trichloroethyl)carbamothioyl)benzamides (13a-d).  

Acylated thioureas 13a-d were obtained by the addition of amino derivatives 6a-d to 

benzoyl isothiocyanate in acetonitrile, as described in [30]. Compounds 13a-d had been 

described before [14,30]. 
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2.7.Synthesis of N-(2,2,2-trichloro-1-thioureidoethyl)acetamides (6a-e). 

1.5 mL of hydrazine hydrate was added to 10 mmol of one of the acylthioureas 13. The 

mixture was heated to 25 °C for 10-15 minutes with vigorous stirring. The resulting pasty mass 

was left for 2 hours at room temperature, then treated with 40 mL of water and filtered. The 

product was dried and purified by recrystallization from ethanol. 

2.8. N-(2,2,2-Trichloro-1-thioureidoethyl)acetamide (6a). 

White solid; yield 89% (2.35 g); mp 231-233 °C (EtOH); Rf = 0.22. IR: νmax 3331, 3048 

(NH), 2927, 2869 (CH), 1668 (C=O) cm-1. 1H NMR: δ 8.74 (d, J = 8.8 Hz, 1H, NH), 8.00-7.93 

(m, 2H, NH), 7.56 (br. s, 1H, NH), 7.10 (br. s, 1H, CH), 1.92 (s, 3H, CH3). 13C NMR: δ 182.1 

(C=S), 167.9 (C=O), 102.1 (CCl3), 75.6 (CH), 23.7 (CH3). FAB-MS: m/z 264 [M+H]+. Anal. 

Calcd (%) for C5H8Cl3N3OS (264.55): C, 22.70; H, 3.05; N, 15.88; S, 12.12. Found: C, 22.73; 

H, 3.01; N, 15.92; S, 12.18. 

2.9. N-(2,2,2-Trichloro-1-thioureidoethyl)cinnamamide (6b). 

White solid; yield 87% (3.07 g); mp 228-230 °C (EtOH); Rf = 0.19. IR: νmax 3329, 3054 

(NH), 2918, 2871 (CH), 1664 (C=O) cm-1. 1H NMR: 9.22 (d, J = 6.8 Hz, 1H, NH), 8.08-7.96 

(m, 5H, 3NH+2Harom.), 7.64-7.61 (m, 3H, Harom.), 7.46 (d, J = 14.7 Hz, 1H, =CH-cis), 7.35 (br. 

s, 1H, CH), 6.78 (d, J = 14.7 Hz, 1H, =CH-trans). 13C NMR: δ 182.4 (C=S), 168.2 (C=O), 

140.8 (C6H5CH=CH), 135.5, 129.7, 129.4, 128.4 (Carom.), 120.4 (C6H5CH=CH), 103.0 (CCl3), 

74.8 (CH). FAB-MS: m/z 352 [M+H]+. Anal. Calcd (%) for C12H12Cl3N3OS (352.66): C, 

40.87; H, 3.43; N, 11.92; S, 9.09. Found: C, 40.83; H, 3.40; N, 11.95; S, 9.12. 

2.10. N-(2,2,2-Trichloro-1-thioureidoethyl)benzamide (6c). 

 White solid; yield 91% (2.97 g); mp 214-216 °C (EtOH); Rf = 0.18. IR: νmax 3341, 

3052 (NH), 2929, 2882 (CH), 1667 (C=O) cm-1. 1H NMR: δ 9.21 (d, J = 6.8 Hz, 1H, NH), 

8.00-7.86 (m, 5H, 3NH+2Harom.), 7.61-7.57 (m, 1H, Harom.), 7.53-7.50 (m, 2H, Harom.), 7.37 (br. 

s, 1H, CH). 13C NMR: δ 181.8 (C=S), 168.6 (C=O), 135.6, 132.0, 131.4, 130.3 (Carom.), 102.8 

(CCl3), 77.6 (CH). FAB-MS: m/z 326 [M+H]+. Anal. Calcd (%) for C10H10Cl3N3OS (326.62): 

C, 36.77; H, 3.09; N, 12.87; S, 9.82. Found: C, 36.74; H, 3.05; N, 12.92; S, 9.88. 

2.11. 4-Methyl-N-(2,2,2-trichloro-1-thioureidoethyl)benzamide (6d). 

White solid; yield 90% (3.07 g); mp 211-213 °C (EtOH); Rf = 0.27. IR: νmax 3334, 3108, 

3047 (NH), 2958, 2881 (CH), 1665 (C=O) cm-1. 1H NMR: δ 9.02 (br. s, 1H, NH), 7.84-7.78 

(m, 5H, 3NH+2Harom.), 7.33-7.31 (m, 3H, 2Harom.+CH). 13C NMR: δ 184.1 (C=S), 165.6 (C=O), 

141.7, 131.7, 128.9, 128.2 (Carom.), 102.7 (CCl3), 75.0 (CH), 21.6 (CH3). FAB-MS: m/z 340 

[M+H]+. Anal. Calcd (%) for C11H12Cl3N3OS (340.65): C, 38.79; H, 3.55; N, 12.34; S, 9.41. 

Found: C, 38.82; H, 3.51; N, 12.37; S, 9.47. 

3. Results and Discussion 

Monosubstituted N-amidoalkylated thioureas, N-(2,2,2-trichloro-1-thioureidoethyl) 

carboxamides (6) are of great interest for organic and coordination chemistry due to the 

presence of several reaction centers in their molecule. We made several attempts to synthesize 

these compounds in this investigation. The first approach was based on the interaction of N-
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(1,2,2,2-tetrachloroethyl)carboxamides 9a-d with thiourea with or without triethylamine 

(Scheme 3). The interaction of chlorine derivatives 9a-d with triethylamine in anhydrous 

acetonitrile or dioxane led to the formation of acylimines 10a-d [31,32]. After the addition of 

thiourea (11) to the resulting acylimines, the reaction mass was strongly resinified, and 

monosubstituted thioureas 6 or any other products could not be isolated. In turn, the interaction 

of N-(1,2,2,2-tetrachloroethyl)carboxamides 9a-d with thiourea in dry acetonitrile led to the 

formation of S-amidoalkylation products corresponding to 2-(1-carboxamido-2,2,2-

trichloroethyl)isothiouronium chlorides (12a-d). Further interaction of isothiuronium salts 

12a-d with triethylamine in acetonitrile or 1,4-dioxane also led to resinification of the reaction 

mixture and thiourea 6 [33], and no other products were isolated. 

 
Scheme 3. The reaction of N-(1,2,2,2-tetrachloroethyl)carboxamides 9 with thiourea. 

Isothiuronium salts 12a-d were colorless crystalline substances that were easily isolated 

from the reaction mixture. Their structure was reliably proven by complex spectral 

investigations. In the 1H NMR spectra of compounds 12a-d, the signals of the amide NH proton 

were characteristic and appeared at 10.0-8.6 ppm as a doublet or broadened singlet, a doublet 

signal appeared at 7.1-5.7 ppm of the CH proton, as well as a broadened singlet signal of four 

protons appeared at 9.7-6.6 ppm corresponding to isothiuronium group [34-36]. In the 13С 

NMR spectra of compounds 12a-d, the signals of the C=O group were characteristic at 168.8-

167.9 ppm, the signals of the carbon H2N−C=NH2
+ group – at 165.9-164.6 ppm, and the signals 

of the CCl3 group and carbon CH – at 102.1-101.8 ppm and 74.5-70.8 ppm, respectively. In 

the IR spectra of the obtained isothiuronium salts, broad, intense absorption bands of NH bonds 

were observed at 3330-3040 cm-1, absorption bands corresponding to the C=O group – at 1670-

1660 cm-1 and absorption bands of the C=N bond of isothiuronium fragment – at 1655-1650 

cm-1 [35,36]. Mass spectrometry data confirmed the molecular weight of compounds 12a-d. 

N-(2,2,2-Trichloro-1-thioureidoethyl)carboxamides 6a-d were prepared using a 

different approach. We took N-((1-carboxamido-2,2,2-

trichloroethyl)carbamothioyl)benzamides 13a-d as initial reagents. At room temperature and 

without solvent, hydrazinolysis of these compounds led to the formation of target products 6a-

d. In contrast, the formation of amido alkylated derivatives of 2-amino-1,3,5-triazole 14a-d 

[37] did not occur (Scheme 4). 
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Scheme 4. Synthesis of N-(2,2,2-trichloro-1-thioureidoethyl)carboxamides 6a-d. 

The structure of thioureas 6a-d was proven by complex spectral investigations. In the 

1H NMR spectra of compounds 6a-d, the signals of four NH protons were characteristic. The 

amide proton appeared as a doublet or a broadened singlet at 9.2-8.7 ppm; the signals of the 

remaining NH protons shifted to the aromatic region and were mainly part of the multiplet 

signals with aromatic hydrogens. The exception was compound 6a, which had no aromatic ring 

in its structure. In this case, the NH2 group appeared as a multiplet, and the third NH proton of 

the thioureide fragment appeared as a broadened singlet (Figure 1). 

 
(a) 

 
(b) 

Figure 1. Comparison of the NH proton signals positions of compounds 6a (a) and 6d (b) in the 1Н NMR 

spectra. 

In the 13C NMR spectra of compounds 6a-d, the C=S and C=O carbon signals appeared 

at 184.1-181.8 ppm and 168.6-165.6 ppm, respectively. The signals of the CCl3 group and CH 

carbon appeared at 103.0-102.1 ppm and 77.6-75.0 ppm, respectively. In the IR spectra of the 

obtained thioureas, absorption bands of NH bonds were observed at 3340-3050 cm-1, and 

absorption bands corresponding to the C=O group were observed at 1670-1665 cm-1. Mass 

spectrometry data confirmed the molecular weight of compounds 6a-d. 

4. Conclusions 

In this work, we have proposed a method for the synthesis of monosubstituted N-amido 

alkylated thioureas – N-(2,2,2-trichloro-1-thioureidoethyl)carboxamides. The method for 

preparing these compounds is based on the hydrazinolysis of N-((1-carboxamido-2,2,2-

trichloroethyl)carbamothioyl)benzamides in the absence of a solvent. It has also been shown 

that the interaction of N-(1,2,2,2-tetrachloroethyl)carboxamides with thiourea in dry 

acetonitrile leads to the formation of S-amido alkylation products corresponding to 2-(1-
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carboxamido-2,2,2-trichloroethyl) isothiouronium chlorides. The complex spectral 

investigation data confirmed the synthesized compounds' structure. 
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