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Abstract: In this work, a series of vanadate-substituted hydroxyapatite (HAP) was directly prepared 

using a simpler, cost-effective, and one-step method. This proposed method involves mixing various 

contents of hydrated anhydrous gypsum with phosphoric acid, vanadium pentoxide, and sodium 

hydroxide. The reaction was conducted at room temperature for 48 h without needing pH adjustment. 

This method can be used with various ratios of starting compounds to produce both phosphate and 

vanadate apatites with high purity and yield and further investigate the formation of Ca10(VO4) 

x(PO4)6−x(OH)2 (xi = 0, 1, 2, 3, 4, 5, and 6) structure. Indeed, two Moroccan solid wastes were used in 

this work: phosphorus gypsum (CaSO4) was used as a source of calcium, while vanadium pentoxide 

(V2O5) was used as a source of vanadate. The synthesized apatite samples were characterized by X-ray 

diffraction (XRD) and analyzed by Fourier Transform Infrared Spectroscopy (FT-IR) to study their 

chemical composition and crystallinity. The optical properties of the prepared catalysts are determined 

by ultraviolet-visible spectroscopy (UV-vis). The morphological structures were investigated by 

scanning electron microscopy (SEM). The XRD analysis obtained showed that three crystalline phases 

were obtained successfully: vanadate apatite (VAP), HAP, and VAP-HAP mixture. These results were 

supported by FT-IR spectra. Besides, nanostructured materials with porosity were obtained for all 

samples. The samples presented a broad optical bandgap, providing a unique ribbon array that could 

block photo holes. Furthermore, the present method could greatly interest harmful waste recovery to 

synthesize new nanomaterials with intrinsic physicochemical properties.   

Keywords: Vanadate hydroxyapatite, Hydroxyapatite, Nanomaterials, Catalyst, One-step method, 

Solid waste. 
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1. Introduction  

The source of vanadium pentoxide for apatite synthesis is the generated V2O5 waste for 

manufacturing sulfuric acid [1–3]. Vanadium has many industrial applications, and its 

contribution to environmental pollution continues to increase [4]. A three-step process 

involving oxidation and precipitation by acid leaching was used to recover vanadium pentoxide 

from a spent sulfuric acid catalyst [5]. Indeed, after precipitation with sulfuric acid, filtering, 

and drying, the fine and pointed sodium vanadate crystals appear very irritating to the nose, 

throat, and bronchi [1]. Because of its carcinogenicity, the International Programme on 

Chemical Safety (IPCS) states that vanadium pentoxide (V2O5) is a substance whose 

environmental emissions and concentrations may threaten human life, health, and the 

ecosystem. Furthermore, V2O5 meets the criteria for persistence but not for bioaccumulation 

[6,7]. 

The calcium source used for hydroxyapatite (HAP) synthesis is CaSO4 waste from 

Morocco phosphorus gypsum containing calcium compounds, such as CaSO4 anhydride or 

CaSO4 hydrate [8–10]. Indeed, phosphorus gypsum is a by-product of phosphoric acid 

production and is a fundamental ingredient in the production of modern fertilizers. Calcium 

sulfate makes up the majority of phosphogypsum [10]. HAP is considered promising for the 

long-term containment of toxicants thanks to its environmental friendliness, excellent 

dispersibility, excellent stability, and variable surface functional groups [6,7] 

On the other hand, catalysis has recently achieved a noteworthy development through many 

new applications. Catalysts are the main basis for the success and development of many new 

processes employed in several industrial fields [11]. Vanadium-based catalysts are the most 

used because they have suitable redox potential and Lewis’s acid properties. However, 

substituting vanadate for phosphate is expected to result in a highly active oxidation catalyst 

and a unique acid-base catalyst [12,13]. The toxicity of elemental vanadium and its salts is well 

known [14]. In the aspect of optical applications, vanadium-based materials are widely used as 

photoelectrode materials due to their narrow bandgap, convenient band edge position, stability, 

and electrical properties [15–17]. It has been demonstrated that vanadium contribution in 

material synthesis can significantly tune the optical, band edge, and electrical properties [18]. 

The mechanism of vanadium incorporation in the human skeletal system may be supposed to 

be based on the isomorphous substitution of (PO4)
3- by (VO4)

3- in calcium phosphate apatite, 

Cal0(PO4)6(OH)2, abbreviated HAP [19,20]. In most studies, calcium HAP incorporated with 

(VO4)
3- HAP solid solutions, including vanadium, were investigated as a catalyst or in C–C 

bond-forming reactions [21,22]. To date, phosphate-based materials have been used as a 

catalyst for the oxidation of propane [23] and propargylic alcohol [24] and as a base catalyst 

[22] for the Michael reaction and the aldol condensation HAP solid solutions, including 

vanadium. Besides, vanadium-incorporated HAP has been shown to be attractive in the 

oxidation of numerous alkanes and alcohols [24–29].  

Several traditional methods for HAP synthesis have been reported, including sol-gel 

[30,31], hydrothermal route [32], coprecipitation [33,34], and solid-state [35]. These methods 

are highly efficient in providing apatite materials of high purity, controlled size, and shape. 

Nonetheless, they are laborious, complex, and time-consuming, requiring skilled personnel and 

a high energy demand. Therefore, it is necessary to develop a simple synthesis method to 

overcome these limitations. In this context, the present study deals with substituting (PO4)
3- 

ions with (VO4)
3- ions using a one-step aqueous method. This synthesis method mainly 
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comprises two harmful wastes: phosphogypsum as a source of calcium and vanadium 

pentoxide as a source of vanadate. As far as we know, our proposed synthesis method was 

presented for the first time. It is based on mixing all reagents at one time at room temperature 

without any further aqueous additions and pH adjustment. Finally, it is worth noting that our 

method is straightforward, fast and cost-effective for providing HAP and VAP calcium 

nanoparticles in high yield. Furthermore, the present synthesis method could be promising in 

the valorisation of wastes (Phosphogypsum, vanadium pentoxide) which are harmful to the 

environment and human health.  

2. Materials and Methods 

2.1. Reagents and waste sources. 

Phosphogypsum waste, as a source of calcium, used in this study was obtained from 

phosphorus gypsum in the town of El Jadida, Morocco. It is a grey, moist (5%), fine powder, 

silty sand material. The major component elements present in Moroccan phosphate are Ca 

(23.05 wt.%), S (18.04 wt.%), P (0.40 wt.%), and Fe (0.58 wt.%). Phosphorus gypsum was 

treated with sulfuric acid (67%), and the resulting composite was washed with water and then 

acetone before being dried at 65°C. Thereafter, the final product was sieved to obtain 40 µm 

anhydrous gypsum [8]. Vanadium pentoxide waste V2O5 was collected after the oxidation 

reaction of sulfur dioxide (SO2) to sulfur trioxide (SO3) involved in sulfuric acid 

manufacturing. H3PO4 and NaOH were purchased from Sigma-Aldrich (USA). NaOH was 

dissolved into 150 mL double distilled water at room temperature. 

2.2. Preparation of vanadate-HAP Nanoparticles.  

Figure 1 illustrates a schematic representation of the main experimental process used 

for nanosized HAP/VAP synthesis using phosphogypsum and vanadium pentoxide wastes as 

the main reactants of the coprecipitation reaction.  

 
Figure 1. Schematic illustration of the main process followed for synthesizing nanosized HAP/VAP composite 

using phosphogypsum and vanadate waste. 
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A Serie of vanadate-HAP compositions Ca10(VO4)x(PO4) (6 − x)(OH)2with x equal to 

0, 1, 2, 3, 4, 5, 6 were synthesized by a simple coprecipitation method based on the following 

equation: 

𝑛1CaSO4 +
𝑥

2
V2O5 + (6 − x)H3PO4 + 𝑛2NaOH → Ca10(VO4)x(PO4) (6 − x)(OH)2 

(VO4)
3--incorporated calcium HAP was prepared using a mixture of different amounts 

of CaSO4, V2O5, H3PO4, and NaOH dissolved in 100 mL aqueous solution, as described in 

Table 1. Thereafter, the mixture was stirred using a mechanical shaker for 48 h at room 

temperature, as referred by our previously reported work [8]. The VAP/HAP produced was 

then removed from the solution by filtration, and the resulting powder was washed several 

times with water until a clear and neutral supernatant was obtained. Finally, solid samples were 

dried at 105 ° C for 24 h and calcined at 900 °C for 3 h [36]. 

Table 1. Reagent quantities used to synthesize a nanosized HAP and VAP at different (VO4)
3-/(PO4)

3- molar 

ratios according to the formula  Ca10(VO4)x(PO4) (6 − x)(OH)2. 

2.3. Physico-chemical techniques. 

Different physicochemical techniques were used for the characterization of VAP/HAP 

nanocomposite. The prepared HAP/VAP nanocomposites were first characterized by the X-ray 

diffraction technique (X-ray Diffractometer (X-Pert Pro PAN analytical)). The Structural data 

obtained by X-ray diffraction analysis were characterized using INEL CPS (Curved Position 

Sensitive Detector) 120, operating with CuKα radiation (Kα=1.54 Å) at 40 kV and 30 mA. The 

analyzed sample was dried at room temperature (25 ⁰C) for a period of 3 h. Besides, the surface 

morphology of all obtained solid samples was investigated using Scanning Electron 

Microscopy (Scanning Electron 103 Microscopy (SEM) (FEI Quanta 200 ESEM)). On the 

other hand, the chemical groups at the surface of the obtained HAP/VAP nanocomposites were 

identified by FT-IR (Nicolet 380 Fourier Transform Spectrometer). All solid samples were 

characterized according to Attenuated Total Reflectance (ATR) mode. Briefly, the procedure 

is to deposit a few grains on the diamond crystal of the ATR, and the analysis was carried out 

by using a Nicolet 380 Fourier Transform Spectrometer in a range of 4000 to 400 cm-1 wave-

number with a resolution of 4 cm-1. The optical measurements were performed using a UV–

vis-NIR double-beam spectrophotometer SHIMADZU 3101 in the 300–1100 nm wavelength 

range. 

 

 

 

 

 

  CaSO4 H3PO4 V2O5 NaOH Xi 

 

 

 

Quantity (mol) 

0.073 0 0.022 0.001 X6 

0.073 0.007 0.018 0.022 X5 

0.073 0.014 0.014 0.044 X4 

0.073 0.021 0.010 0.066 X3 

0.073 0.029 0.007 0.087 X2 

0.073 0.036 0.003 0.109 X1 

0.073 0.043 0 0.131 X0 
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3. Results and Discussion 

3.1. XRD analysis. 

The as-prepared nanocomposite samples, after being calcined at 900 °C for 3 h, the 

precipitate's XRD patterns were depicted in Figure 2. Seven samples of 

Ca10(VO4)x(PO4) (6 − x)(OH)2 (x= 0, 1, 2, 3, 4, 5, and 6) were set up for the current study. In 

the absence of vanadate groups, the XRD patterns of calcium HAP (Figure 2, x=0) matched 

the reference data for Ca10(PO4) 6 (OH)2 (JCPDS 9-0423). For all samples, diffraction peaks 

appeared at nearly the same angle (2θ) values. When the x value changes from 0 to 6, the 

position of the XRD diffraction peaks continuously shifts to a tiny angular direction, and apatite 

phases with low vanadate content display broad peaks at higher diffraction angles. This could 

be attributed to the (VO4)
3- polyhedra's larger volume when compared to (PO4)

3-, which was 

consistent with Boechat et al. [37], suggesting the formation of solid solutions of vanadate-

HAP. As can be seen, each Ca10(VO4)x(PO4) (6 − x)(OH)2 XRD pattern (xi= 0, 1, 2, 3, 4, 5, 

and 6) could be related to a specific crystallographic phase of an apatite structure [38–40]. The 

peaks also increase for intermediate x values at x=3, indicating the presence of both phosphate 

and vanadate ions in the lattice. Since there is no hydroxyl group, the diffraction peaks 

systematically decrease as xi increases, which might be discussed as a sign of the absence of a 

hydroxyl group, suggesting the development of Ca10(VO4)x(PO4) (6 − x)(OH)2 nano-apatite. 

From XRD analysis, the final products exhibited good purity and characteristics that were 

coherent with other conventionally synthesized apatite materials.  

 

Figure 2. XRD spectra of Ca10(VO4)x(PO4) (6 − x)(OH)2 of (x=0; 1; 2; 3; 4; 5; 6) nano apatite after calcination 

at 900 °C for 3 h. The peaks labeled by  belong to (PO4)
3- and those marked by   to (VO4)

3-. 

 

Using X-ray diffraction, the Scherrer formula has been frequently employed to 

calculate the dimensions of crystallites [41]. 
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The full width at half maximum (FWHM) of samples calcined at 900 °C was evaluated. 

This parameter was frequently correlated with crystallite size, as demonstrated in Figure 3.  

 
Figure 3.  The width at half maximum of the high intense peak of nanosized HAP-VAP for (a) x=0, (b) x=3, (c) 

x=6  Ca10(VO4)x(PO4) (6 − x)(OH)2. 

Table 2 summarizes crystalline parameter values obtained by applying the Scherrer 

formula, with k=0.9 and λ=1.54056 for Ca10(VO4)x(PO4) (6 − x)(OH)2. Indeed, the more 

vanadium content was incorporated into the apatite lattice, the less line width (β) will be, 

whereas the crystal size (D) increases. Furthermore, the crystallites found were on the 

nanometre scale. This lower crystallinity size is comparable to that shown for biological apatite 

in bone or dentin, which must not be overlooked. Hence, the proposed synthesis method in this 

work allows synthetic nanocrystalline apatite to be considered as a "model" that might replace 

biological apatite (e.g., for prosthesis application) [42].  

Table 2. Values of crystal size of  Ca10(VO4)x(PO4) (6 − x)(OH)2 nanocomposite based on the Scherrer formula. 

3.2. FT-IR analysis. 

Figure 4 exhibits FT-IR spectra of HAP/VAP, Ca10(VO4)x(PO4) (6 − x)(OH)2, 

nanocomposite prepared at different contents of vanadate and phosphate (x = 0, 1, 2, 3, 4, 5, 

6). The FT-IR spectra show characteristic bands of (PO4)
3-, (VO4)

3- and OH- anions. It should 

be noted that absorption bands, located at around 1000 cm-1, are all relatively sharp, which 

indicates that the final products were obtained with good crystallinity. Basically, two O-H 

stretching bands could appear in each spectrum; the first one, at approximately 3500–3600 cm-

1, and the second located at around 610–630 cm-1 [32,43]. However, in the present study, it can 

be observed that no absorption bands corresponding to O-H vibration were observed in all 

infrared spectra in the wave number range located at around 3500–3600 cm-1. This behavior 

could be attributed to ATR mode [44–47]. Meanwhile, the O-H stretching band appeared with 

only one peak and slightly shifted from 630 to 637 cm-1 with increasing the vanadate content. 

This slight change in terms of wave number could probably be due to vanadate substitution 

and/or incorporation in the apatite. In addition, this behavior, which corresponds to the OH 

group's hydrogen rotation, does not change appreciably with the vanadium content and is 

consistent with previously reported studies [19]. This vibration mode did not appear clearly for 

samples with x=2, 3, 4, 5, and 6. The symmetric v1 and asymmetric v3 phosphate bands in the 

region of 895-1207 cm-1 and v4 absorption bands in the region of 559-606 cm-1 were observed 

Xi θ (rad) cos(θ) β (rad) D (nm) 

X6 0.225 0.974 0.003 46.914 

X4 0.225 0.975 0.005 26.147 

X3 0.281 0.961 0.008 17.305 

X0 0.280 0.961 0.008 16.138 

https://doi.org/10.33263/BRIAC142.040
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC142.040  

 https://biointerfaceresearch.com/ 7 of 12 

 

and were typical for the apatite structure (Figure 4). It has been reported that groups located at 

around 889-981 cm-1 can be attributed to V=O bonds. The groups around 806-889 cm-1 referred 

to the v3 (VO4) modes, the band around 665-752 cm-1 due to the v3 (O=V=O) vibration mode, 

and groups around 554-608 cm-1 attributed to v1 (O=V=O) modes. Furthermore, it should be 

noted that v4 absorption bands related to phosphate were deformed with vanadate 

incorporation.  

 
Figure 4. FTIR spectra of Ca10(VO4)x(PO4) (6 − x)(OH)2 of (x=0, 1, 2, 3, 4, 5, 6) nanoapatite after 

calcination at 900°C for 3h. The peaks labeled by (*) belong to (PO4)
3- and those marked by ( ) to (VO4)

3- and 

( ) to (OH). 

3.3. Optical properties. 

The optical bandgap of the samples was calculated using the relation (αhυ) 2 = A(hυ - 

Eg) [48–50], where A is a constant, υ is the frequency of radiation, Eg is the bandgap, and α is 

the absorption coefficient. Figure 5 shows the extrapolation of the graph plotted between (αhυ) 

2 and energy (hυ). The UV-vis spectroscopic technique was used by performing linear range 

extrapolation to empirically determine the energy bandgap (Eg). As a complement to the 

energy bandgap determination, the calculated optical bandgap values were obtained to be 3.21, 

3.16, and 3.05 eV for samples with x = 0, x = 3, and x = 6, respectively. 

 
Figure 5. Absorbance spectra versus wavelength and energy bandgap of Ca10(VO4)x(PO4)6-x(OH)2 apatite: (a) 

x= 0, (b) x=3, (c) x=6. 
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The optical bandgap value corresponding to the highest one (3.21 eV) was assigned to 

the fundamental bandgap of HAP. This was consistent with previous studies that found the 

energy bandgap of hydroxyapatite to be between 2.63 and 3.95 eV [51,52], which was also 

compatible with the value of HAP obtained. The values from direct gap calculations of Eg 

decrease with increasing vanadium content. The bandgap values of the samples obtained, as 

depicted in Figure 5, show that the vanadium ratio in the bandgap decreases with increasing 

vanadium content, which was generally related to the hydroxyapatite particle size. The XRD 

data analysis showed that the higher of the HAP composition, the larger the particle size will 

be. Furthermore, it was shown that the bandgap decreases with increasing grain size. 

3.4. Morphological characterization. 

Figure 6 shows morphological structures of the as-synthesized solid solutions, 

Ca10(VO4)x(PO4)6-x(OH)2 (x= 0, 1, 2, 3, 4, 5, and 6), with various vanadate/phosphate molar 

ratios at 900 °C. It should be observed that the agglomeration and porosity were highly evident 

with increasing phosphate content and were probably attributed to Ostwald ripening and 

particle-particle repulsion [53]. On the other hand, an inhomogeneous structure of 

agglomerates was obtained when both phosphate and vanadate were present. This can probably 

be due to the non-uniformity in size and load between both species (phosphate and vanadate). 

Besides, the large crystals not homogeneously distributed might be due to the effect of the 

phosphate substitution with vanadate under synthesis conditions [54]. However, the sample 

Ca10(VO4)6(OH)2 obtained at x=6 shows a highly homogeneous composition due to the 

uniform size of vanadate. The low porosity obtained could be due to the adaptability of our 

developed synthesis method to vanadate rather than phosphate synthesis.  

 
Figure 6. SEM images of Ca10(VO4) x(PO4)6-x(OH)2 apatite: (a) x= 0, (b) x=3, (c) x=4, (d) x=6. 
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4. Conclusions 

In conclusion, a series of vanadate-substituted phosphate into the hydroxyapatite 

structure was successfully carried out by using a simple, cost-effective, and one-step 

coprecipitation synthesis method according to the following formula: Ca10(VO4)x(PO4)6 - 

x(OH)2. Moroccan phosphorus gypsum and vanadium pentoxide, two harmful solid wastes, 

were used as the main sources of calcium and vanadate, respectively. Hence, homogenous solid 

solutions of nanosized vanadate/phosphate hydroxyapatite were achieved at room temperature 

using this new proposed synthesis method, which did not require any further pH adjustment. 

Despite these advantages, the stability and size control of HAP/VAP particles still need to be 

investigated to determine which parameters are significantly related. Hence, surfactants would 

control the stability and size of the HAP/VAP particles. The crystallinity, homogeneity, and 

size findings were obtained using X-ray diffraction, SEM, and the Scherrer formula. In turn, 

the vibrational investigation exhibited that the VAP-HAP sample had an optical bandgap of 

3eV. The prepared hydroxyapatite nanoparticles in this work have a big potential for further 

application (e.g., energy storage, semiconductors, etc.). In addition, the HAP/VAP 

nanocomposite could be used as an effective catalyst and/or adsorbent for pollutant removal 

from water samples (e.g., wastewater). Consequently, this method could be of great interest 

relative to other traditional synthesis methods for valorizing solid vanadium pentoxide wastes 

that cause serious environmental and human health problems.  
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