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Abstract: Carbon dots (CDs) are a promising type of fluorophore with numerous advantages such as 

low toxicity, biocompatibility, good photostability, and ease of synthesis. However, their low quantum 

yields (QYs) have limited their applicability in many fields. Researchers have turned to doping CDs 

with nonmetallic and metallic atoms to address this issue. In this study, we synthesized citric acid/urea-

based CDs doped with boron and/or silver atoms in a single step using microwave irradiation. 

Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) were 

used to characterize the CDs. In contrast, UV-visible (UV-Vis) and fluorescence spectroscopy were 

used to examine their optical properties. We discovered that all synthesized CDs were transparent to 

visible light and emitted blue fluorescence when exposed to UV light. Our fluorescence analysis 

revealed that doping with both boron and silver atoms led to higher fluorescence compared to doping 

with only one of the atoms. Specifically, the quantum yields (QYs) of silver/boron-doped CDs were 

26%, which is higher than those of silver-doped CDs (19%), boron-doped CDs (9%), and undoped CDs 

(6%). These findings suggest that the silver/boron-doped CDs produced using our simple method could 

be promising materials for sensors and biomedical applications. 

Keywords: carbon dots; doping with heteroatom; doping with metal atom; quantum yields. 
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1. Introduction 

Carbon dots (CDs) are a type of fluorescent nanoparticle that was discovered in 2004 

by Xu's group while using electrophoresis to purify single-walled carbon nanotubes [1]. 

Generally, CDs have quasi-spherical shapes with sizes less than 10 nm and display multicolor 

emission [2-4]. Various methods have been used to synthesize CDs, such as microwave heating 

[5], hydrothermal synthesis [6], arc discharge [7], laser ablation [8] and electrochemical 

synthesis [9]. The precursor of CDs is critical to their fluorescence behavior due to the diverse 

chemical structures of the core and surface that arise from various carbon sources [10,11]. 

Chemicals and daily foods such as citric acid [12], glycerol [13], urea [14], coffee [15], 

pumpkin [16], orange juice [17], and others have been used as CD sources. CDs have gained 

popularity due to their ease of synthesis, low toxicity, excitation wavelength dependence, and 

ease of surface passivation [18]. These unique properties make them attractive candidates for 

sensing, bioimaging, drug delivery, and other fields [19]. However, their low quantum yields 
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(QYs) have hindered their widespread use. Researchers have been looking into ways to 

improve their QYs and functionality to address this issue. 

Doping, which involves introducing atomic impurities into the structure of carbon dots 

(CDs), is a commonly used method for improving their properties. Doping can change CDs' 

electronic structure, nanostructure, and chemical composition by overlapping the atomic 

orbitals of heteroatoms and carbon atoms [20, 21]. Several heteroatoms, such as B, N, F, P, S, 

and others, are now widely used as doping agents by researchers to improve CDs' QYs, 

solubility, and physicochemical properties [22-24]. Kiem et al., for example, synthesized N-

doped CDs using glucose and urea as precursors in a hydrothermal method, resulting in a 

significant improvement in fluorescence emission properties with QYs of 9.6% compared to 

pure glucose, and the resulting CDs were used as a chemical sensor for detecting carcinogenic, 

hemotoxic, and genotoxic chromium (VI) [25]. To enhance the quantum yields (QYs) of carbon 

dots (CDs), N and B dopings are frequently employed as heteroatoms. These dopings modify 

the conduction/valence band position of CDs by incorporating neighboring elements in the 

periodic table, which results in improved fluorescence characteristics [26-29]. In their study, 

Jiali et al. utilized a solvothermal method to produce N, B-doped carbon dots (CDs) by using 

p-phenylenediamine and boric acid as precursors. The resulting CDs demonstrated 

photoluminescence with a high quantum yield (QY) of 17%. The N, B-doped CDs proved to 

be promising nanoprobes for detecting Cu2+ and Co2+ due to their high sensitivity and 

selectivity [30]. The distinctive electronic structure of Co-doped CDs arises from the combined 

effect of the heteroatoms, which results in higher QYs compared to CDs doped with a single 

atom [31].   

The distinctive physicochemical characteristics of metal nanoparticles have made them 

a subject of great interest in various fields, including photovoltaics, catalysis, and biology [32]. 

Among various metals, less toxic and eco-friendly ones such as Ag, Au, Ga, and La have been 

explored as dopants for CDs [33]. Wang et al. conducted a study in which they used 

hydrothermal methods to synthesize CDs co-doped with Ag and N. They employed precursors 

such as silver nitrate, citric acid, and ammonia solution to achieve this. The resulting CDs 

displayed remarkable photoluminescence with QYs of 35% and effective antimicrobial activity 

against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria 

(Staphylococcus aureus) [34]. Metal doping is considered superior to heteroatom doping when 

it comes to enhancing the fluorescence properties of CDs. This is because metals function as 

electron donors, have more unoccupied orbitals, and have a larger atomic radius. As a result, 

they bring about changes in charge density and charge transition forms between metal ions and 

graphene matrix, which ultimately leads to improved fluorescence properties of CDs [35-38]. 

 In our study, we present a straightforward and low-toxicity approach to enhance 

the QYs of CDs by doping them with nonmetallic and/or metallic atoms. We synthesized boron 

and/or silver-doped citric acid/urea-based CDs using citric acid, urea, borax, and silver nitrate 

as precursors through a single-step microwave irradiation method. The synthesized CDs exhibit 

pH-dependent fluorescence, making them suitable for use as pH sensors, and we investigated 

the mechanisms underlying their pH sensitivity. Our findings indicate that the CDs doped with 

silver and/or boron using this simple method have the potential for use in biomedical 

applications and as sensor materials. 
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2. Materials and Methods 

 2.1. Materials. 

Citric acid, urea, and sodium tetraborate decahydrate were purchased from Carlo Erba.  

Silver nitrate was purchased from Fisher Chemical. All the chemicals were analytical grade 

and were used without further purification. 

 2.2. Synthesis of carbon dots. 

Citric acid/urea-based CDs and citric acid/urea-based carbon dots doped with silver 

were synthesized by cojoining two previously reported methods [39,40] with some 

modifications. In the first step, 3 g each of citric acid and urea were dissolved in 100 mL 

deionized water and stirred for 30 min. Then, 15 mL of distilled water or 1 mM AgNO3 was 

added to 20 mL of the solution. The resultant mixture was stirred for 15 minutes, following 

which it was placed in an 800W domestic microwave oven for 3 min. The crude product was 

dissolved in 20 mL of deionized water and filtered through a 0.2 μm syringe filter. Finally, the 

product was dried in an oven at 60°C for two days. The samples were labeled CU-CDs for 

undoped carbon dots and CU/Ag-CDs for silver-doped CDs. 

Boron-doped CDs were synthesized using the same process, with minor changes. 

Briefly, 3 g borax was added to the 100 mL citric/urea solution. After that, the following steps 

were carried out as mentioned above. The samples were labeled BCU-CDs for boron-doped 

carbon dots and BCU/Ag-CDs for boron/silver-doped carbon dots. 

2.3. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). 

The ATR-FTIR spectrometer (IRTracer-100, Shimadzu, Japan) was used to examine 

the functional groups present on the surface of carbon dots. The scanning range for the samples 

was from 500 to 4000 cm-1. 

2.4. X-ray photoelectron spectroscopy (XPS). 

An X-ray photoelectron spectrometer was used to characterize the element composition 

in the structure of carbon dots. (Shimadzu, Kratos Axis ultra DLD, Japan). 

2.5. UV-Visible Spectroscopy (UV-Vis). 

The characteristic absorbance of carbon dots was recorded using a UV-vis 

spectrophotometer (Lab Tech, BlueStar B, China). The samples were scanned over a range of 

200-500 nm. 

2.6. Fluorescent spectroscopy. 

Carbon dots' fluorescence spectra and optimum excitation-emission wavelength were 

characterized using a fluorescence spectrofluorometer (RF-6000, Shimadzu, Japan). 

2.7. Quantum yield measurement. 

The quantum yield (∅) for each of the CDs was determined by utilizing the following 

formula, with quinine sulfate in 0.1 M H2SO4 serving as the reference. 

https://doi.org/10.33263/BRIAC142.044
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC142.044  

 https://biointerfaceresearch.com/ 4 of 14 

 

 

 

where ∅ is the quantum yield, ∅s is the quantum yield of the standard sample, F is the 

peak area of the unknown sample, Fs is the peak area of the standard sample, A is the 

absorbance of the unknown sample at the excitation wavelength, As is the absorbance of the 

standard sample at the excitation wavelength, η is the refractive index of the unknown sample, 

ηs is the refractive index of the unknown sample, D is the dilution factor of the unknown 

sample, and Ds is the dilution factor of the standard sample. 

2.8. Transmission electron microscopy (TEM). 

The morphology and size distribution of CDs were characterized using a transmission 

electron microscope (HRTEM, JEM-2100Plus, JEOL, USA) with lanthanum hexaborate 

(LaB6) as the electron source and the accelerating voltage 200 kV. 

2.9. pH-responsive carbon dots 

The pH values were modified to evaluate the impact of pH on the emission intensity of 

CDs while the excitation was held constant at 350 nm. A standard experiment involved 

combining 1 mL of a 1%w/v CDs solution with buffer pHs ranging from 2 to 12. Additionally, 

a digital camera captured visual images under daylight and UV light. The emission intensity 

was characterized using a spectrofluorometer [41]. 

3. Results and Discussion 

3.1. Synthesis of carbon dots. 

The carbon dots with a citric acid/urea base were synthesized using domestic 

microwave irradiation in a one-step process. Citric acid was employed as the carbon source, 

while urea, borax, and silver nitrate were utilized as the sources of nitrogen, boron, and metal, 

respectively.  

 

Figure 1. Carbon dots synthetic scheme. 

The synthesis steps are depicted in Figure 1. The fluorescence intensity of the CDs 

increased with microwave irradiation time, reaching a maximum of 3 minutes, as shown in 

Figure 2. However, when the microwave irradiation time increased to 4 min, the fluorescence 
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intensity of CDs decreased because the surface structure of CDs was destroyed, leading to a 

decrease in emission intensity [42]. 

Furthermore, at 4 min of microwave irradiation, the emission wavelength shifted to a 

higher wavelength, indicating that CDs contain a mixture of green and blue colors. Based on 

the fluorescence spectra, it can be observed that CDs synthesized at 3 min exhibited the highest 

emission due to the synergistic effect of the surface and carbogenic core [43]. As mentioned 

previously, the optimal time to synthesize all CDs was found to be 3 min. 

 

Figure 2. Microwave pyrolysis time of (a) CU-CDs; (b) CU/Ag-CDs; (c) BCU-CDs; (d) BCU/Ag-CDs. 

3.2. ATR-FTIR spectroscopy. 

To determine the functional groups, present on the surface of the CDs, the FTIR spectra 

presented in Figure 3 were examined. All synthesized CDs demonstrated peaks at 3392-3197, 

2980, 1666, and 1620 cm−1, corresponding to the stretching vibration of O-H/N-H, C=C, C-

H, and C=O, respectively. The presence of nitrogen atoms in the CDs structure was indicated 

by the stretching of C-N and N-H bonds at 1307 cm−1 and 3405-3500 cm−1. Additionally, the 

peaks at 1382 and 1031 cm−1 were attributed to the B-O and B-O-C vibrations, respectively, 

indicating the successful doping of boron atoms into BCU-CDs and BCU/Ag-CDs. However, 

the vibration of silver atoms was not noticeable due to the small quantity added, and there was 
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an overlap of the peak. The results indicated that the CDs contain plenty of carboxyl and 

hydroxyl groups, resulting in their hydrophilic behavior [44,45]. 

 

Figure 3. FTIR-spectrum of each carbon dot. 

3.3. X-ray photoelectron spectroscopy. 

To verify the surface composition and the doping of nitrogen, boron, and silver atoms 

in the carbon dots (CDs) structure, X-ray photoelectron spectroscopy (XPS) was used to 

analyze BCU/Ag-CDs. The XPS survey spectra displayed in Figure 4a exhibited characteristic 

peaks, including O1s (530.00 eV), N1s (397.00 eV), C1s (283.00 eV), B1s (190.00 eV), and 

Ag3d (367.00 eV).   

The C1s spectrum in Figure 4b showed characteristic peaks corresponding to C-C 

(284.86 eV), C=O (286.05 eV), C-N (286.85 eV), and C-O (288.75 eV), while the N1s 

spectrum in Figure 4c revealed peaks corresponding to C=N-C (399.15 eV), N-(C)3 (399.85 

eV), and N-H (401.25 eV). The O1s spectrum in Figure 4d displayed peaks that can be assigned 

to C=O (531.65 eV) and C-O (532.65 eV). The high-resolution B1s spectrum in Figure 4e 

showed peaks attributed to B-C (192.49 eV) and B-O (193.19 eV), while the high-resolution 

Ag3d spectrum in Figure 4f showed peaks corresponding to Ag (367.35 eV) and Ag2O (368.25 

eV) in Ag3d3/2 (372.95 eV) and Ag3d5/2 (373.65 eV). The FTIR and XPS spectra results suggest 

that nitrogen, boron, and silver atoms were successfully doped into BCU/Ag-CDs. 

3.3. UV-Vis spectroscopy. 

The UV-Vis spectra of the CDs are displayed in Figure 4 and indicate two separate 

bands. The first band, located at approximately 200 nm, can be attributed to the π-π* transition 

of -C=C- and -C-C- bonds in the sp2 hybridized graphitic core. The second band, located around 

300 nm, corresponds to the n-π* transition of -C=O, C-N, or -C-OH bonds in the sp3 hybridized 

area of the surface carboxyl (-COOH) or amine (-NH2) groups of the CDs [52]. When an 
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electron is excited to higher energy levels and subsequently returns to the ground state, 

releasing photon energy, fluorescence occurs [53].  

 

Figure 4. XPS analysis of BCU/Ag-CDs at high resolution, including survey spectra (a) and detailed spectra of 

C1s (b), N1s (c), O1s (d), B1s (e), and Ag3d (f) orbitals. 

Moreover, it can be observed that BCU/Ag-CDs exhibit the highest absorbance 

intensity in both the π-π* and n-π* transition regions. The doping of electron-rich atoms (boron 

and silver) into the carbon network results in the transfer of more electrons to the π system, 

increasing the absorbance intensity [54]. 
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Figure 4. UV-Vis spectra of each CDs. 

3.4. Fluorescent spectroscopy  

The optimum excitation-emission wavelength and quantum yield of each CD were 

characterized using a fluorescence spectrometer. The results demonstrated that each CD had a 

different excitation wavelength to achieve maximum emission, as shown in Figure 5. 

 

 

Figure 5. 3D emission-excitation intensity spectra (excitation (y-axis), emission (x-axis)) of (a) CU-CDs; (b) 
CU/Ag-CDs; (c) BCU-CDs; (d) BCU/Ag-CDs. 

The quantum yields (QYs) of the CDs were determined using quinine sulfate as a 

reference in the study. According to the findings, the QYs of undoped CDs was 6%., silver-

doped CDs (CU/Ag-CDs) was 9%, boron-doped CDs (BCU -CDs) was 19%, and silver/boron-

doped CDs (BCU/Ag-CDs) was 26%. Figure 6 depicts the fluorescent spectra of CDs. The 

results demonstrated that the BCU/Ag-CDs had the highest intensity compared to the other 

https://doi.org/10.33263/BRIAC142.044
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC142.044  

 https://biointerfaceresearch.com/ 9 of 14 

 

CDs, corresponding to their QYs. These results implied that the effect of doping CDs with a 

heteroatom (boron atom) and metal atom (silver atom) caused a synergistic effect, leading to 

high QYs [55]. Under visible light, all of the synthesized CDs were transparent, but under UV 

light, they fluoresced blue, as depicted in Figure 6 inset. Therefore, BCU/Ag-CDs with the 

highest fluorescence were selected for further experiments. 

 

Figure 6. Fluorescent spectra of CDs. 

3.5. Transmission electron microscopy (TEM) 

The morphology and size distribution of the CDs were examined using transmission 

electron microscopy (TEM). The TEM image in Figure 7a illustrates that BCU/Ag-CDs were 

nearly spherical and well-dispersed with an average diameter of 5.9 ± 1 nm. To validate the 

crystalline nature of the CDs, high-resolution transmission electron microscopy (HRTEM) was 

employed. The interplanar spacing was measured to be 0.22 nm in Figure 7b, which is 

equivalent to 100 lattice planes of graphitic carbon. This finding confirms the crystalline nature 

of BCU/Ag-CDs [56]. 

 
Figure 7. (a) TEM image and size distribution histogram (inset); (b) HRTEM image 

of BCU/Ag-CDs. 
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3.6. pH-responsive carbon dots 

The fluorescence intensity of BCU/Ag-CDs under different pH conditions was 

investigated using a spectrofluorometer. The results, presented in Figure 8a, indicated that the 

fluorescence intensity of BCU/Ag-CDs was low in acidic conditions but increased significantly 

in alkaline conditions. Figure 8b shows the emission peaks of BCU/Ag-CDs at an excitation 

wavelength of 350 nm for different pH values. The findings revealed that as the pH increased 

from 2 to 13, the fluorescence intensity of BCU/Ag-CDs increased gradually. This 

phenomenon was attributed to the protonation of the carboxyl groups on the surface of CDs 

under acidic conditions, leading to non-covalent molecular interactions, such as hydrogen 

bonds, that caused the aggregation of CDs, and, thus, fluorescence quenching. Moreover, the 

results indicated that BCU/Ag-CDs remained stable within the pH range of 6 to 9. To explain 

the aggregation of CDs, the zeta (ζ) potential was used and depicted in Figure 8c. As the pH 

varied from 2 to 13, the zeta potential exhibited a significant change from 8.15 to -15.17 mV, 

indicating that the surface functional groups of CDs were deprotonated, resulting in a lesser 

aggregation of CDs [58]. 

Figure 8. (a) Optical image with pH values ranging from 2-13 under visible and UV light; (b) Fluorescent 

spectra at 350 nm excitation; (c) Zeta (ζ) potential at pH 2-13 of BCU/Ag-CDs. 
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4. Conclusions 

In summary, boron and silver-doped citric acid/urea-based carbon dots (BCU/Ag-CDs) 

were synthesized via microwave irradiation in a single step, which was transparent in visible 

light and exhibited blue fluorescence under UV light. The BCU/Ag-CDs showed the highest 

quantum yield of 26% among all the synthesized CDs, attributed to their structure's synergistic 

effect of boron and silver. The BCU/Ag-CDs were spherical with an average size of 5.9 ± 1 

nm and well-dispersed. Moreover, the fluorescent intensity of BCU/Ag-CDs was pH-sensitive, 

showing low emission at acidic pH values and strong emission at alkaline pH values. The 

findings indicate the potential of these CDs as a material for biomedical applications and 

sensors. 
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