
 

 https://biointerfaceresearch.com/  1 of 26 

 

Article 

Volume 14, Issue 2, 2024, 47 

https://doi.org/10.33263/BRIAC142.047 

 

Exploring the Potential of Natural-like Compounds as TNF-

α Inhibitors: An In-silico Approach  

Vipul Agarwal.1 , Mujeeba Rehman.1 , Rishabh Chaudhary.1 , Arjun Singh Kaushik.1 , Mohd Usman 

Mohd Siddique.2 , Siddhi Srivastava.1 , Sukriti Srivastava.1 , Vikas Mishra.1,*  

1 Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-

226025, (U.P.), India 
2 Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule Maharashtra, 

424001, (U.P.), India 

* Correspondence: vikasmishra12@gmail.com(V.M); 

Scopus Author ID 56085576900 

Received: 12.04.2023; Accepted: 24.06.2023; Published: 4.02.2024 

Abstract: Tumor necrosis factor-α (TNF-α) regulates immune cells. Excessive production of TNF-α is 

associated with various diseases. TNF-α inhibition by antibodies or proteins directed against TNF-α is an 

accepted therapy for autoimmune diseases. However, the treatment above is expensive, with serious adverse 

effects. Moreover, no reported chemical inhibitors of TNF-α had been therapeutically successful. Thus, 

there is a need to explore cheap chemical compounds possessing anti-TNF-α activity with fewer side 

effects. This study aimed to identify novel natural-like compounds with TNF-α inhibitory activity using in-

silico techniques. A library of 210 natural-like compounds was docked against TNF-α (PDB ID-2AZ5) 

using Glide. Based on the docking scores, the top 20 natural-like compounds with promising binding 

affinities (docking score <-6.5) were identified and subjected to ADMET profiling using SwissADME and 

pkCSM. The interactions of the compounds above were further validated by MM-GBSA and molecular 

dynamics using Prime-MMGBSA and Desmond (Schrödinger). ADMET profiling demonstrated that 7 

natural-like compounds had excellent drug-like properties. The MM-GBSA and MD simulations finally 

revealed that 4 natural-like compounds, i.e., N-[(4Aminophenyl)methyl]adenosine, 5'-N 

Ethylcarboxamidoadenosine, Trifluridine, and APNEA, have strong protein-ligand interactions thus may 

act as potential TNF-α inhibitors. This study gives potential evidence for the effectiveness of these natural-

like compounds as TNF-α inhibitors. 
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1. Introduction 

Tumor necrosis factor alpha (TNF-α), also known as TNF superfamily member 2, is a 

highly potent and multifunctional proinflammatory cytokine. It plays a central biological role in 

the critical functioning of immune cells. Moreover, TNF-α is involved in various cellular activities, 

such as cell proliferation, metabolism, inflammation, differentiation, and apoptosis. TNF-α is a 

homotrimeric protein consisting of 157 amino acids that are predominantly produced by monocytic 

lineage cells, like macrophages, microglia, Kupffer cells, and many others, but can also be secreted 

in limited quantities by B cells, NK-cells, neutrophils, mast cells, endothelial cells, 
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cardiomyocytes, fibroblasts, osteoclasts, osteoblasts, astrocytes, dendritic cells, microglial cells, 

keratinocytes, and adipocytes [1–3]. It has been shown that cells do not store TNF-α; however, 

stimulation may initiate the de novo synthesis. The expression of TNF-α is controlled by various 

transcriptional, translational, and post-translational regulatory processes [4]. Upon activation 

through receptor binding, TNF-α has the potential to activate multiple immune signaling pathways. 

These include stimulation of c-Jun N-terminal kinase (JNK), nuclear factor kappa B (NFκB), 

mitogen-activated protein kinase (MAPK), and extracellular signal-regulated protein kinase 

(ERK) that are implicated in inflammation [5]. Dysregulation of TNF-α signaling is associated 

with multiple disease pathogenesis, such as inflammatory bowel disease, psoriasis, spondylitis, 

diabetes, asthma, systemic lupus erythematosus, chronic obstructive pulmonary disease (COPD), 

cancer, multiple sclerosis, and rheumatoid arthritis (RA) [6–9]. The levels of TNF-α are found to 

be significantly increased in patients suffering from diseases such as RA, breast cancer, and asthma 

[7,10–13]. Chronically stressed patients have also been reported to have higher TNF-α levels [14–

19].  

Over the past few years, many TNF-α blockers such as infliximab, etanercept, adalimumab, 

golimumab, and certonyzumab have revolutionized clinical interventions for various autoimmune 

disorders [20–22]. These drugs bind to the TNF-α dimer, which primarily inhibits the association 

of TNF-α with TNF-α receptors, thus downregulating the activation of downstream signaling 

complexes that trigger inflammation and other related pathways [23]. To date, the reported drugs 

are antibodies or proteins with high molecular weights, which are associated with numerous 

adverse effects, such as congestive heart failure, injection site reaction, and systematic side effects 

[24]. Moreover, most published small molecules explicitly target TNF-α via deregulation of its 

expression. Only a handful of compounds have been identified to inhibit this interaction, including 

polysulfonatednaphthylurea (suramin) and its analogues and indole-linked chromone (SPD304). 

However, the clinical uses of these small molecules are limited owing to low potency and poor 

selectivity, which tend to cause adverse effects such as bone marrow toxicity, nephrotoxicity with 

suramin, and cell toxicity with SPD304 [25]. 

Natural products (NPs) are an appealing source of active pharmaceutical ingredients 

because of their diverse structures, powerful biological activities, and favorable pharmacological 

profiles. However, the lengthy timeline and high expense of isolating and identifying naturally 

occurring substances have encouraged scientists to develop natural-like product libraries based on 

small molecules, taking stability enhancement and bioavailability into consideration. Moreover, 

two natural-like molecules (quinuclidine and indoloquinolizidine) [26], two FDA-approved 

compounds (ezetimibe and darifenacin), and iridium(III) biquinoline complex (metal-based) were 

described by Chan and his colleagues, which function as direct inhibitors of TNF-α [25,27,28].  

Based on these findings, we conducted this cheminformatics study to explore several new 

natural-like compounds that may act as safe and novel TNF-α inhibitors. 
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2. Materials and Methods 

2.1. Molecular docking studies. 

2.1.1. Protein preparation. 

The three-dimensional (3D) crystal structure of human TNF-α (PDB ID-2AZ5) [29–31] 

was retrieved from the protein data bank (https://www.rcsb.org/structure/2AZ5) [32]. The protein 

structure was then processed using Protein Preparation Wizard bundled with the Schrödinger Suite. 

First, the protein was pre-processed by assigning appropriate bond orders, incorporating hydrogen 

atoms, and generating disulfide bonds and zero-order bonds to metals. Water molecules larger than 

5Å were removed from the het groups. Possible ionization states were generated in the protein 

structure using Epik, and the most stable state was selected [33]. Moreover, the Prime module of 

the Schrödinger Suite was utilized to fill in missing chains and loops. The chains with no active 

site residues were then trimmed. In the later stage, the sample water orientation was optimized, 

and protonation states were produced at pH 7.0 using PROPKA. Lastly, a controlled minimization 

was done using the OPLS3e force field to converge heavy atoms to a Root Mean Square Deviation 

(RMSD) value of 0.30Å [34–36]. 

2.1.2. Ligand preparation. 

A library of 210 natural product-like compounds (Cat. No.: HY-L021L) was downloaded 

from MedChemExpress. The compounds were processed using the LigPrep Module of the 

Schrödinger Suite. The energy of the retrieved 3D structure was minimized and geometrically 

optimized, desalted, and further optimized for their proper chiralities and missing hydrogen atoms. 

The Epik package obtained possible ionization and tautomeric states between pH 6.8 and 7.2. 

Finally, the compounds were minimized to an RMSD of 1.8Å using the OPLS-2005 force field in 

the Schrödinger Suite to produce low-energy ligand isomers [37–40]. 

2.1.3. Active site prediction. 

The processed protein structure was subjected to the SiteMap module in the Schrödinger 

Suite The top five active sites were identified. A minimum of 15 site points were expected for each 

reported site. Hydrophobicity and grid values were defined as more restricted and standard values, 

respectively. Moreover, site maps at 4Å from the closest site points were clipped. The best active 

site thus obtained was used for grid generation [41,42]. 

2.1.4. Receptor-ligand docking. 

The processed ligands obtained through LigPrep were docked with TNF-α (PDB ID-2AZ5) 

using the Glide package of Schrödinger Suite [43,44]. The best-docked ligands were selected based 

on their docking scores. The docking score is based on receptor and ligand properties, including 

hydrogen bonds, extra precision (XP) penalties, electrostatic forces, lipophilic pockets, rotational 

penalties, etc. The XP mode and OPLS-3 power field were used to conduct the docking. The 

docking results were analyzed using the Glide module XP visualizer [35]. 
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2.2. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling. 

The ADMET characteristics of the selected ligands were determined using the free online 

web server SwissADME [45] from the Swiss Institute of Bioinformatics and pkCSM [46]. 

SwissADME forecasts physicochemical descriptors and predicts ADME parameters, 

pharmacokinetic properties, drug-like nature, and medicinal chemistry friendliness of one or more 

small molecules to support drug discovery. The SwissADME tool uses a vector machine (SVM) 

algorithm. Briefly, multiple molecules were entered into the SMILES list field according to their 

respective structures, followed by their submission to SwissADME calculations by clicking the 

run button. After completing the calculation within seconds, the output was compiled with all the 

values for each molecule, one molecule after the other. The data was then exported as a combined 

CSV file. 

Moreover, the ADMET properties of the selected compounds were determined using the 

pkCSM web server. The pkCSM is a freely available machine-learning platform for analyzing and 

optimizing pharmacokinetics and toxicity properties using graph-based signatures. The SMILES 

string was provided to the web-server, and the prediction mode was selected as ADMET. The 

predictions containing all ADMET properties were displayed in tabular format immediately after 

the completion of the calculation [47–49].  

2.3. Binding free energy. 

The molecular mechanics-generalized born surface area (MM-GBSA) was used to measure 

the binding free energies of the protein-ligand complex using the Prime module of the Schrödinger 

Suite [50], which takes into account the VSGB dissolvable model and OPLS3 power field for 

analysis. The binding-free energy (∆Gbind) of docked compounds was determined using equation 

(1) [51,52]. 

                                                ∆𝐆bind =  ∆𝐄MM + ∆𝐆solv + ∆𝐆SA                    (1) 

where ∆EMM= difference in energy between the complex structure and the sum of the energies of 

the ligand and un-liganded protein using the OPLS force field. 

∆Gsolv= difference in the GBSA solvation energy of the complex and the sum of the 

solvation energies for the ligand and un-liganded protein. 

ΔGSA= difference in the surface area energy for the complex and the sum of the surface 

area energies for the ligand and un-liganded protein. 

2.4. Molecular dynamics (MD).  

MD simulations were performed using the Desmond module of Schrödinger Suite A three-

step procedure comprising a system builder, minimization, and molecular dynamics was used. 

Initially, the protein-ligand complex was prepared using a system builder. A single point charge 

(SPC) [53] was utilized as a solvent model in the system builder with an orthorhombic boundary 

box. Sodium and chloride ions were used to balance the charges. The model system was then 

subjected to energy minimization to eliminate steric clashes for a maximum of 2000 iterations. 

The simulation was performed under NPT ensemble for 50 ns. 
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Moreover, throughout the simulation, the Nose-Hoover thermostat algorithm and Martyna-

Tobias-Klein barostat algorithm were used to maintain a constant temperature of 300 K and 1 atm 

of pressure, respectively. A cut-off value of 9.0 Å was used in the short-range method to assess 

the short-range coulombic interactions. The run was conducted for 50 ns, and 1000 frames were 

used to construct the trajectory [54–56]. After successful MD simulation, the file was processed 

using a Simulation Interaction Diagram (SID) to determine the stability of the simulated complex 

over the 50 ns simulations. 

3. Results and Discussion 

TNF-α is released in almost all inflammatory conditions and has a wide variety of 

biological activities that contribute to systemic symptoms (e.g., loss of appetite, fever, 

development of insulin resistance, metabolic abnormalities) and immunological changes (e.g., 

recruitment of neutrophils, increased phagocytosis, pro-inflammatory genes induction) [57]. FDA-

approved TNF-α blockers, such as infliximab, adalimumab, and etanercept, are antibodies or 

proteins with a high molecular weight and a long list of side effects. Therefore, there is a need for 

novel molecules with anti-TNF-α activity and fewer adverse effects. 

This study aimed to identify novel natural-like compounds with TNF-α inhibitory action 

using an in-silico approach. The 3D structure of the target protein TNF-α was downloaded from 

the RCSB protein data bank library and visualized (Figure 1A). The Ramachandran plot is a simple 

approach for visualizing the distribution of torsion angles in a protein structure. It also offers an 

overview of the permitted and prohibited areas of torsion angle values, which are crucial for 

determining the quality of three-dimensional protein structures [58]. In the Ramachandran plot of 

TNF-α, a residue of 90.2% was found in the most favored region, 9.6% in the additional allowed 

region, and 0.2% in the generously allowed region, indicating that it is a favorable protein for 

docking (Figure 1B) The raw protein was pre-processed using the Protein Preparation Wizard 

(Figure 1C). Chains C and D with no active site residue were trimmed (Figure 1D). 

 
Figure 1. Structure of TNF-α (2AZ5). (A) Represents the raw structure of TNF-α with a small-molecule inhibitor 

retrieved from protein data bank (B) (Ramachandran plot for the predicted structure (C) represents the processed 

protein obtained following protein preparation wizard (D) represents the processed protein with A and B chain. 
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The active site was identified using the SiteMap module bundled with Schrödinger Suite. 

A total of 4 top potential druggable pockets on the surface were identified (Figure 2).  

 
Figure 2. Active site detection using SiteMap. The figure shows 4 best active sites obtained by using the SiteMap 

module of Schrödinger. 

Out of all, site 1 and site 2 had drug scores≈1 with a volume of 213.30 Å3 and 173.59 Å3, 

respectively (Table 1).  

 

Table 1. Details of best 4 active sites of TNF-α using SiteMap.  

Sites Site Score Size D Sore Volume(Å3) 

Site 1 0.969 105 0.928 213.003 

Site 2 0.858 38 0.909 173.558 

Site 3 0.789 52 0.671 207.858 

Site 4 0.585 26 0.541 80.948 

Based on the literature, site 2 is preferred for designing inhibitors of TNF-α [29,59]. Hence, 

site 2 was used for grid generation using the Receptor Grid Generation Wizard of the Schrödinger 

Suite (Figure 3).  

 
Figure 3. Grid Generation. The figure shows the grid used for docking. 
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A total of 210 natural-like compounds were included in this study. After successful 

docking, parameters such as docking score, ecoul (Coulomb energy), Glide evdw (Van Der Waals 

energy), Glide energy (Van Der Waals energy + Coulomb energy), and the interacting residues 

(hydrogen bonds) against TNF-α were determined. Binding affinities of the ligands with TNF-α 

were analyzed and evaluated based on their docking scores. Out of the 210 compounds, more than 

50 compounds showed a docking score <-5; however, the top 20 compounds were selected for 

further investigation (Table 2).  

The 2D structure, drawn using ChemDraw Ultra version 12 (CambridgeSoft) [60], and 

docking poses of all 20 compounds showing the best docking results with TNF-α are depicted in 

Figure 4 and Figure 5, respectively.  

 
Figure 4. 2D structure of compounds. The figure shows the 2D structure of 20 compounds, showing the best docking 

result against TNF-α. 

Table 2. Docking properties of selected compounds. 

S.

No

. 

Name 

Glide 

Rotatable 

Bonds 

Docking 

Score 

Glide 

evdw 

Glide 

ecoul 

Glide 

Energy 

Glide 

emodel 

XP H 

Bond 

1 Lactitol (monohydrate) 17 -8.68 -24.93 -12.314 -37.244 -44.714 -3.58 

2 N6-(2-Phenylethyl)adenosine 9 -7.924 -32.221 -6.083 -38.304 -52.565 -0.96 

3 (2S,3R)-Voruciclib (hydrochloride) 7 -7.917 -35.718 -6.178 -41.895 -56.206 -0.7 

4 CNT2 inhibitor-1 9 -7.88 -35.636 -8.45 -44.085 -82.181 -1.19 

5 Voruciclib (hydrochloride) 7 -7.879 -33.46 -8.692 -42.152 -50.072 -1.18 
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S.

No

. 

Name 

Glide 

Rotatable 

Bonds 

Docking 

Score 

Glide 

evdw 

Glide 

ecoul 

Glide 

Energy 

Glide 

emodel 

XP H 

Bond 

6 2-D08 4 -7.376 -24.915 -10.983 -35.898 -44.059 -1.92 

7 N6-(4-Hydroxybenzyl)adenosine 9 -7.116 -31.796 -7.212 -39.008 -53.335 -2.585 

8 YS-49 4 -7.07 -25.723 -5.846 -31.569 -44.069 -0.96 

9 
Guanosine 5'-diphosphate 

(disodium salt) 
9 -7.031 -28.488 -23.588 -52.076 -65.673 -3.11 

10 
N-

[(4Aminophenyl)methyl]adenosine 
8 -6.789 -32.256 -7.059 -39.315 -52.583 -2.045 

11 R-1479 6 -6.762 -26.543 -10.059 -36.602 -42.144 -2.883 

12 5'-N-Ethylcarboxamidoadenosine 6 -6.757 -32.509 -6.466 -38.976 -43.712 -1.189 

13 NM107 5 -6.706 -24.311 -6.687 -30.998 -37.316 -2.4 

14 Flavoxate (hydrochloride) 6 -6.697 -35.914 -1.617 -37.531 -52.618 0 

15 Trifluridine 5 -6.673 -26.13 -4.587 -30.717 -38.418 -1.59 

16 Idarubicin (hydrochloride) 7 -6.66 -35.317 -4.861 -40.177 -55.398 -0.96 

17 X-Gluc (Dicyclohexylamine) 6 -6.608 -33.401 -5.38 -38.781 -50.398 -2.067 

18 RO-9187 6 -6.603 -27.081 -8.93 -36.011 -46.357 -2.072 

19 APNEA 9 -6.58 -33.117 -3.648 -36.764 -49.825 -1.646 

20 N6-Cyclohexyladenosine 7 -6.542 -27.657 -5.579 -33.236 -43.591 -1.44 

Docking score Docking score, including all additional terms; Glide evdw Van der Waals energy; Glide ecoul 

Coulomb energy; Glide energy Modified Coulomb-van der Waals interaction energy; Glide emodel Model energy, 

Emodel; H Bond H-bond pair term 

 
Figure 5. Dock poses of selected compounds. The figure represents 3D dock poses of the best 20 docked 

compounds against TNF-α. 

All 20 compounds, including Lactitol (monohydrate), N6-(2-Phenylethyl)adenosine, 

(2S,3R)-Voruciclib (hydrochloride), CNT2 inhibitor-1, Voruciclib (hydrochloride), 2-D08, N6-(4-

Hydroxybenzyl)adenosine, YS-49, Guanosine 5'-diphosphate (disodium salt), N-

[(4Aminophenyl)methyl]adenosin R-1479, 5'-N-Ethylcarboxamidoadenosine, NM107, Flavoxate 

(hydrochloride), Trifluridine, Idarubicin (hydrochloride), X-Gluc (Dicyclohexylamine),  RO-

9187, APNEA and N6-Cyclohexyladenosine exhibited docking scores between -8.68 and -6.54. 

The good binding affinities were due to good hydrogen bonding, Coulomb energy, and Van der 

Waals forces (Table 2). The 3D docking poses and 2D interaction revealed that SER60, LEU59 

TYR59, GLN61, TYR119, GLY121, and TYR151 in chain A and TYR59, LEU59, SER60, 

TYR119, and TYR151 in chain B play an important role in ligand binding (Figure 6-7, Table 3). 
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Figure 6. 3D docking poses of the top 20 docked compounds with TNF-α. The output of the Schrödinger 3D diagram 

showed the binding site residues of TNF-α with the top 20 docked compounds.  

Table 3. List of top identified molecules with different types of interactions with active site residues (PDB 2AZ5). 

S.No. Name 
No. of Contacts Active Site Residues 

HB π- π Chain A Chain B 

1 Lactitol (monohydrate) 4 - 

TYR119, LEU120, GLY121, 

GLN61, SER60, 
TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 
GLY121 

2 
N6- 

(2-Phenylethyl)adenosine 
2 1 

TYR119, LEU120, GLY121, 
GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 
TYR59, TYR119, LEU120, 

GLY121 

3 
(2S,3R)-Voruciclib 

(hydrochloride) 
1 1 

TYR119, LEU120, LEU57, 

GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

LEU57 

4 CNT2 inhibitor-1 1 3 

TYR119, LEU120, GLY121, 

GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121 

https://doi.org/10.33263/BRIAC142.047
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC142.047  

 https://biointerfaceresearch.com/  10 of 26 

 

S.No. Name 
No. of Contacts Active Site Residues 

HB π- π Chain A Chain B 

5 Voruciclib (hydrochloride) 2 1 

TYR119, LEU120, GLY121, 

GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121 

6 2-D08 2 2 

TYR119, LEU120, GLY121, 

GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121 

7 
N6-(4-

Hydroxybenzyl)adenosine 
2 - 

TYR119, LEU120, GLY121, 

LEU57, SER60, 
TYR59,TYR151 

TYR151, LEU57,SER60, 

TYR59, TYR119, LEU120, 
GLY121 

8 YS-49 2 2 
TYR119, LEU120, GLY121, 

LEU57, ILE155, 

TYR59,TYR151 

TYR151, GLN61,SER60, 
TYR59, TYR119, LEU120, 

GLY121 

9 
Guanosine 5'-diphosphate 

(disodium salt) 
3 - TYR119, LYS98, GLY121 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121, LYS98 

10 
N-[(4Aminophenyl)methyl] 

Adenosine 
3 1 

TYR119, LEU120, GLY121, 

GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121 

11 R-1479 3 - 

TYR119, LEU120, GLY121, 

GLN61, SER60, 
TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 
GLY121 

12 
5'-N-

Ethylcarboxamidoadenosine 
2 1 

TYR119, LEU120, GLY121, 
GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 
TYR59, TYR119, LEU120, 

GLY121 

13 NM107 2 - 

TYR119, LEU120, GLY121, 

GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121 

14 Flavoxate (hydrochloride) - 3 

TYR119, LEU120, GLY121, 

GLN61, SER60, 

TYR59,TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121 

15 Trifluridine 2 - 
TYR119, LEU120, GLY121,  

GLY122,  TYR59,LEU57 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 
GLY121 

16 Idarubicin (hydrochloride) 1 - 
TYR119, LEU120, GLY121, 

GLN61,  SER60, TYR59, 

TYR151 

TYR151, GLN61,SER60, 
TYR59, TYR119, LEU120, 

GLY121 

17 
X-Gluc 

(Dicyclohexylamine) 
4 1 

TYR119, LEU120, GLY121, 

GLN61,  SER60, TYR59, 

TYR151, LEU 59 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121, LEU59 

18 RO-9187 4 - 

TYR119, LEU120, GLY121, 

GLN61,  SER60, TYR59, 

TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 

GLY121 

19 APNEA - 1 
TYR119, LEU120, GLY121, 

TYR59,LEU57,  TYR151 

TYR151, GLN61,SER60, 

TYR59, TYR119, LEU120, 
GLY121 

20 N6-Cyclohexyladenosine 2 - 
TYR119, LEU120, GLY121, 

GLN61,  SER60, TYR59, 

TYR151 

TYR151, GLN61,SER60, 
TYR59, TYR119, LEU120, 

GLY121 

HB No. of hydrogen bond  

π- π No. of pi-pi stacking 
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Figure 7. 2D interaction of top 20 docked compounds with TNF-α. The output of Schrödinger 2D interaction diagram 

of TNF-α with the top docked compounds.  

The Lactitol monohydrate is a disaccharide analog of lactulose. It is used to treat hepatic 

encephalopathy and constipation. The docking score for Lactitol monohydrate was found to be -

8.68. The docking score was attributed to 4 hydrogen bond formations between Lactitol 

monohydrate and TNF-α at Tyrosine and Leucine at chain A with Serine and Guanidine at Chain 

B (Figure 6-7). N6-(2-Phenylethyl)adenosine is an adenosine receptor (AR) agonist having Ki 

values of 11.8 nM, 30.1 nM, 0.63 nM for rat A1AR (A1 adenosine receptors), human A1AR and 

hA3AR (human A3 adenosine receptor), respectively. The docking score for N6-(2-

Phenylethyl)adenosine was observed to be -7.92. The docking score was attributed to 2 hydrogen 

bonds at Serine and Tyrosine, along with good Van der Waals energy (Figure 6-7, Table 2-3). 

(2S,3R)-Voruciclib hydrochloride is the enantiomer of Voruciclib hydrochloride. (2S,3R)- 

Voruciclib is an orally active cyclin-dependent kinase (CDK) inhibitor that ultimately blocks cell 
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cycle and inhibits cell proliferation. The docking score for (2S,3R)-Voruciclib hydrochloride was 

-7.92. The docking score was attributed to 1 hydrogen bond formation between (2S,3R)-Voruciclib 

hydrochloride and TNF-α at Tyrosine at chain A along with good Van der Waals energy (Figure 

6-7, Table 2-3). CNT2 inhibitor-1 is a potent concentrative nucleoside transporter 2 Inhibitor 

(CNT2). CNT2 inhibitor-1 exhibits inhibitory activity 1500-fold more potent than 2’-deoxy-5-

fluorouridine, phlorizin, and 7,8,3’-trihydroxyflavone, well-known human CNT2 inhibitors. The 

docking score for CNT2 inhibitor-1 was observed to be -7.88. The docking score was attributed to 

1 hydrogen bond between CNT2 inhibitor-1 and TNF-α at Tyrosine at chain A along with 3 pi-pi 

stacking (Figure 6-7, Table 2-3). 2-D08 is a cell-permeable, mechanistically unique inhibitor of 

protein SUMOylation. 2-D08 inhibits sumoylation by preventing the transfer of SUMO from the 

UBC9-SUMO thioester to the substrate. The docking score for 2-D08 was observed to be -7.34. 

The docking score was attributed to 2 hydrogen bonds and 2 pi-pi stacking (Figure 6-7, Table 2-

3). N-[(4-Aminophenyl)methyl]adenosine is an adenosine receptor inhibitor. The docking score 

for N-[(4-Aminophenyl)methyl]adenosine was -6.79. The docking score was attributed to 3 

hydrogen bonds and 1 pi-pi stacking (Figure 6-7, Table 2).  

The success of a drug candidate is driven not only by its high potential but also by its 

favorable ADMET profile. A variety of ADME tools are accessible, which can predict several 

crucial aspects in silico and help analyze important characteristics of molecules. Nowadays, 

computational ADME is advised to be used early in the drug development process and should be 

performed in conjunction with in vivo and in vitro studies to limit the number of safety problems 

[61,62]. In the current study, ADMET profiling was performed using freely accessible online web 

servers, viz. SwissADME and pkCSM. According to the pharmacokinetic analysis, all compounds 

had noblood–brain barrier (BBB) permeability except YS-49 and Flavoxate (hydrochloride). 

Moreover, most compounds showed no inhibition of cytochrome P450 isomers (CYP2C9). 

CYP2C9 is a major cytochrome P450 enzyme involved in the metabolic clearance of a wide variety 

of therapeutic agents, including NSAIDS, oral anticoagulants, and oral hypoglycemics. Inhibition 

of CYP2C9 activity results in decreased metabolism of therapeutic agents, thus enhancing their 

plasma concentration, which may cause serious adverse effects. Thus, not having CYP2C9 

inhibitory action by natural-like compounds suggests low chances of drug interactions utilizing 

the CYP2C9 enzymatic pathway for metabolism [63–65] (Table 4). 

Table 4. ADMET properties of selected compounds using SwissADME. 

S.N

o. 
Name 

Mol. 

Weight 

No. of 

Heavy 

atoms 

Molar 

Refra

ctivity 

CYP

2C9 

inhib

itor 

BBB 

perm

eabil

ity 

Log S 

(ESOL) 

Sol. 

Cla

ss 

No. of 

Lipinski 

Violatio

ns 

Synth

etic 

Access

ibility 

Bioavail

ability 

Score 

1 
Lactitol 

(monohydrate) 
362.33 24 73.36 No No 2.02 HS 2 5.48 0.17 

2 
N6-(2-

Phenylethyl)ad

enosine 

371.39 27 96.87 No No -3.15 S 0 4.29 0.55 

3 

(2S,3R)-

Voruciclib 

(hydrochloride
) 

506.3 33 123.8 No No -6.19 PS 1 4.52 0.55 

4 
CNT2 

inhibitor-1 
448.47 33 121.9 No No -4.2 MS 0 4.75 0.55 
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S.N

o. 
Name 

Mol. 

Weight 

No. of 

Heavy 

atoms 

Molar 

Refra

ctivity 

CYP

2C9 

inhib

itor 

BBB 

perm

eabil

ity 

Log S 

(ESOL) 

Sol. 

Cla

ss 

No. of 

Lipinski 

Violatio

ns 

Synth

etic 

Access

ibility 

Bioavail

ability 

Score 

5 
Voruciclib 

(hydrochloride

) 

506.3 33 123.8 No No -6.19 PS 1 4.52 0.55 

6 2-D08 270.24 20 73.99 No No -3.61 S 0 2.94 0.55 

7 

N6-(4-

Hydroxybenzyl

)adenosine 

373.36 27 94.09 No No -2.71 S 0 4.17 0.55 

8 YS-49 386.28 24 106.67 No Yes -5.64 MS 0 2.92 0.55 

9 
Guanosine 5'-
diphosphate 

(disodium salt) 

487.16 30 84.26 No No 0.23 HS 1 4.57 0.11 

10 

N-

[(4Aminophen

yl)methyl]aden

osine 

372.38 27 96.47 No No -2.5 S 0 4.24 0.55 

11 R-1479 284.23 20 60.71 No No -0.47 VS 1 4.17 0.11 

12 

5'-N-

Ethylcarboxam

idoadenosine 

308.29 22 74.13 No No -1.36 VS 0 4 0.55 

13 NM107 257.24 18 60.69 No No -0.01 VS 0 3.99 0.55 

14 

Flavoxate 

(hydrochloride

) 

427.92 30 124.67 No Yes -5.7 MS 0 3.8 0.55 

15 Trifluridine 296.2 20 58.11 No No -1.41 VS 0 3.71 0.55 

16 

Idarubicin 

(hydrochloride

) 

533.95 37 131.97 No No -4.87 MS 1 5.71 0.55 

17 

X-Gluc 

(Dicyclohexyla
mine) 

603.93 37 144.14 No No -5.07 MS 2 5.51 0.17 

18 RO-9187 284.23 20 60.71 No No -0.47 VS 1 4.17 0.11 

19 APNEA 386.41 28 101.27 No No -2.8 S 0 4.35 0.55 

20 N6-

Cyclohexylade

nosine 349.38 25 89.5 No No -2.91 S 0 4.42 0.55 

HS Highly Soluble; VS Very Soluble; S Soluble; MS Moderately Soluble; PS Partially Soluble 

Molar refractivity measures the overall polarity of a molecule and should be between 40 

and 130. In the present study, most of the selected compounds' molar refractivity was within the 

acceptable range except for Idarubicin (hydrochloride) and X-Gluc (Dicyclohexylamine). The 

aqueous solubility of a compound significantly affects its absorption and distribution 

characteristics. The water solubility (logS) of a compound represents the solubility of the 

molecules in water at 25°C. Lipid-soluble drugs are absorbed less effectively than water-soluble 

drugs, particularly when administered orally. For solubility, log S, calculated using the ESOL 

model, should not exceed 6. Lactitol (monohydrate) and Guanosine 5'-diphosphate (disodium salt) 

showed Log S of 2.02 and 0.24, respectively, belonging to the highly soluble class. Compounds 

R-1479, 5'-N-Ethylcarboxamidoadenosine, NM107, Trifluridine, and RO-9187 belong to the very 

soluble class. The compounds APNEA, N6-(2-Phenylethyl)adenosine, N-

[(4Aminophenyl)methyl]adenosine, N6-(4-Hydroxybenzyl)adenosine, and 2-D08 showed Log S 

(ESOL) values in the range of -2 to -4; hence all these compounds were found to be soluble. Drug-

likeness prediction was further conducted using Lipinski’s Rule and bioavailability score. 

Lipinski’s Rule of Five indicates that a molecule's absorption is more probable when its molecular 
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weight is less than 500 g/mol, has a log P-value less than 5, and the molecule contains no more 

than 5 H-donor and 10 H-acceptor atoms. Most of the compounds had no Lipinski violations except 

Lactitol (monohydrate), (2S,3R)-Voruciclib (hydrochloride), Voruciclib (hydrochloride), 

Guanosine 5'-diphosphate (disodium salt), R-1479, Idarubicin (hydrochloride), X-Gluc 

(Dicyclohexylamine) and RO-9187. Bioavailability score predicts the probability of a compound 

having at least 10% oral bioavailability in rats or measurable Caco-2 cell (human colon 

adenocarcinoma) permeability. The bioavailability score of most of the selected compounds was 

0.55, indicating the presence of drug-like properties (Table 4). Synthetic accessibility (SA) is 

essential in drug design, as computer-designed compounds cannot be synthesized in certain cases. 

The SA scores vary from 1 (extremely easy) to 10 (extremely difficult). All 20 selected compounds 

exhibited SA scores between 2.92 and 5.71, indicating ease of synthesis with all the selected 

compounds (Table 3). The primary site for the absorption of drugs for an orally delivered solution 

is the intestine. The percentage of chemicals absorbed by the human small intestine was predicted 

using pkCSM. Our results showed that most of the selected natural-like compounds had an 

intestinal absorption of >30% (Table 5). 

Table 5. ADMET properties of selected compounds using pkCSM. 

S.

No

. 

Name 
Mol. 

Weight 

No. of 

Rot. 

Bond 

Intestinal 

Absorptio

n 

(Human) 

Skin 

Per

mea

bility 

hER

G I 

inhib

itor 

AM

ES 

toxi

city 

Renal 

OCT2 

substr

ate 

Oral Rat 

Acute 

Toxicity 

(LD50) 

Oral Rat 

Chronic 

Toxicity 

(LOAEL)  

Ski

n 

Sen

sati

on 

1 
Lactitol 

(monohydrate) 
362.328 8 13.262 

-
2.735 

No No No 1.857 4.274 No 

2 
N6-(2-

Phenylethyl) 

adenosine 

371.397 6 69.457 
-

2.735 
No No No 2.119 1.887 No 

3 

(2S,3R)-

Voruciclib 

(hydrochloride) 

506.304 3 84.469 
-

2.735 
No No No 2.892 2.337 No 

4 
CNT2 

inhibitor-1 
448.483 6 70.688 

-

2.735 
No Yes No 2.457 2.705 No 

5 
Voruciclib 

(hydrochloride) 
506.304 3 91.421 -2.74 No No No 2.756 0.785 No 

6 2-D08 270.24 1 95.878 
-

2.736 
No No No 2.33 2.464 No 

7 

N6-(4-

Hydroxybenzyl

)adenosine 

373.369 5 57.571 
-

2.735 
No Yes No 2.473 3.741 No 

8 YS-49 386.289 2 90.284 
-

2.751 
Yes Yes No 2.552 1.029 No 

9 

Guanosine 5'-

diphosphate 
(disodium salt) 

487.166 6 0 
-

2.735 
No No No 2.099 3.359 No 

10 

N-
[(4Aminophen

yl)methyl]aden

osine 

372.385 5 60.728 
-

2.735 
No No No 2.329 1.748 No 

11 R-1479 284.232 3 56.73 
-

2.736 
No No No 1.748 2.459 No 

12 

5'-N-

Ethylcarboxam

idoadenosine 

308.298 3 59.017 
-

2.735 
No No No 2.032 1.517 No 

13 NM107 257.246 2 53.622 
-

2.739 
No No No 2.277 2.736 No 

14 
Flavoxate 

(hydrochloride) 
427.928 5 96.049 

-

2.561 
No No Yes 2.636 0.998 No 
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S.

No

. 

Name 
Mol. 

Weight 

No. of 

Rot. 

Bond 

Intestinal 

Absorptio

n 

(Human) 

Skin 

Per

mea

bility 

hER

G I 

inhib

itor 

AM

ES 

toxi

city 

Renal 

OCT2 

substr

ate 

Oral Rat 

Acute 

Toxicity 

(LD50) 

Oral Rat 

Chronic 

Toxicity 

(LOAEL)  

Ski

n 

Sen

sati

on 

15 Trifluridine 296.201 2 62.768 
-

2.873 
No No No 2.498 2.764 No 

16 
Idarubicin 

(hydrochloride) 
533.961 3 70.711 

-

2.735 
No No No 2.37 2.999 No 

17 

X-Gluc 

(Dicyclohexyla

mine) 

603.938 5 21.561 
-

2.735 
No No No 2.066 2.156 No 

18 RO-9187 284.232 3 56.73 
-

2.736 
No No No 1.748 2.459 No 

19 APNEA 386.412 6 54.003 -

2.735 

No No No 2.343 1.695 No 

20 N6-

Cyclohexylade

nosine 

349.391 4 72.651 -

2.735 

No Yes No 2.109 2.163 No 

Skin permeability is an essential factor for the effectiveness of many drugs and is relevant 

for developing transdermal drug delivery systems. pkCSM estimates the skin permeability 

constant logKp (cm/h) to determine whether a particular substance will likely be skin permeable. 

A substance with a logKp >-2.5 is regarded to have comparatively poor skin permeability. pkCSM 

analysis revealed that all 20 natural-like compounds had logKp <-2.5, indicating effective skin 

permeation ability (Table 4). The development of severe long QT syndrome, which leads to lethal 

ventricular arrhythmia, is mainly caused by inhibiting potassium channels encoded by hERG 

(human ether-a-go-go-related gene). Many drugs have been withdrawn from the pharmaceutical 

market because of their hERG channel inhibitory properties [66,67]. None of the selected natural-

like compounds in our study had hERG inhibitory properties except YS-49 (Table 5). The Ames 

test is a biological experiment to determine the mutagenic potential of chemicals utilizing bacteria 

(Salmonella typhimurium). This test is necessary before clinical investigations, and a negative 

result is required for most regulatory bodies, including the US Food and Drug Administration 

(FDA). A negative Ames test was observed for most of the selected natural-like compounds except 

YS-49, N6-(4-Hydroxybenzyl)adenosine, CNT2 inhibitor-1, and N6-Cyclohexyladenosine. 

Organic Cation Transporter 2 (OCT-2) is a renal uptake transporter involved in the disposition and 

renal clearance of pharmaceuticals and endogenous chemicals [68]. OCT-2 substrates have the 

potential to interact negatively with OCT-2 inhibitors when taken together. Assessing a drug 

candidate’s ability to be carried out by OCT-2 provides valuable information about the clearance 

as well as any possible contraindications of that drug. ADMET analysis showed that most of the 

selected compounds did not have the potential to act as OCT-2 substrates, indicating fewer chances 

of contradictions. Moreover, it is critical to examine the toxic potential of compounds. The lethal 

dose value (LD50) is a typical method used for determining the acute toxicity of a compound. The 

LD50 value is the dose of a chemical that kills 50% of set of test animals when administered all at 

once. The LD50 of the selected compounds was found in the range between 1.8 mol/kg and 2.9 

mol/kg. In many therapeutic techniques, long-term exposure to low to moderate doses of chemicals 

is a serious problem. Therefore, chronic toxicity studies are designed to determine the lowest dose 

of a substance that may cause an adverse effect (lowest-observed-adverse-effect level viz. 

LOAEL). The chronic toxicity study of the selected compounds in log (mg/kg bw/day) was found 
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in the range of 0.8 mol/kg to 3.7 mol/kg, indicating a good safety profile of most of the compounds 

(Table 4). In addition, dermally applied products may also cause skin sensitization. Thus, one of 

the major safety concerns is to determine wheather a substance that comes into contact with the 

skin might cause allergic reactions. ADMET profiling revealed that none of the selected natural-

like compounds had the potential to cause skin sensitivity. Complete ADMET profiling, as 

revealed by SwissADME and pKCSM suggested that 7 compounds, i.e., N6-(2-

Phenylethyl)adenosine, 2-D08, N-[(4Aminophenyl)methyl]adenosine, 5'-N-

Ethylcarboxamidoadenosine, NM107,  Trifluridine, and APNEA have excellent drug-like 

properties and hence were used for further investigation. MM/GBSA calculations were used to 

determine the relative binding affinities of ligands to the target receptor. Theoretically, MM/GBSA 

can be used to rank ligands belonging to a congeneric series based on their free energy [69]. The 

binding energy estimations are improved by MM-GBSA analysis over molecule docking energies. 

The relative binding-free energy (ΔGbind) of each ligand molecule was calculated using MM-

GBSA technique (Prime), and the findings are shown in Table 6. The ΔGbind of selected 

compounds fell in the range of -33.4 to -48.4` kcal/mol indicating good binding affinity with TNF-

α. 

Table 6. Binding free energy calculation of selected 7 compounds using Prime/MM-GBSA approach. 

S.No. Name ΔGbind 
ΔGbind 

Coulomb 

ΔGbind 

Hbonnd 

ΔGbind 

Lipophili

c 

ΔGbind 

Solv 

GB 

ΔGbind

vdW 

1 N6-(2-Phenylethyl)adenosine -45.52 -12.45 -0.69 -24.83 22.23 -29.7 

2 2-D08 -48.43 -26.04 -0.54 -20.03 20.23 -22.52 

3 
N-[(4-

Aminophenyl)methyl]adenosine 
-33.4 1.06 -0.62 -21.44 27.73 -39.72 

4 5'-N-Ethylcarboxamidoadenosine -46.23 5.89 -1.21 -19.99 7.99 -38.64 

5 NM107 -47.79 -12.24 -1.61 -15.66 12.2 -30.1 

6 Trifluridine -42.11 -8.77 -0.49 -21.13 14.13 -27.55 

7 APNEA -43.61 -3.94 -0.91 -21.66 23.17 -35.34 

Coulomb—Coulomb energy; Hbond—Hydrogen-bonding correction; Lipo—Lipophilic energy; Solv GB—

Generalized Born electrostatic solvation energy; vdW—Van der Waals energy 

Docking studies cannot reproduce the most realistic situation of ligand-protein interactions 

since any grid-based docking technique considers the receptor a rigid entity instead of solvating 

the system with water molecules. So, to further understand the stability of the best-identified hit 

and the non-bonding interaction between the ligand and protein, MD simulation was performed 

for 50 ns using the Desmond module of Schrödinger [54]. When exposed to these MD simulations, 

a system generates Newtonian dynamics, followed by a trajectory pathway for the axis coordinates, 

speed, and even the energies of the particles in the system [70]. 

Molecular Dynamic studies of N6-(2-Phenylethyl)adenosine, 2-D08, N-

[(4Aminophenyl)methyl]adenosine, 5'-N-Ethylcarboxamidoadenosine, NM107, Trifluridine, and 

APNEA have provided comprehensive insights into the stability of protein–ligand interactions in 

a solvent system [71]. RMSD is a parameter that measures a relative change in atom displacement 

concerning a reference frame for a particular frame. When the system maintains low levels of 

RMSD with consistent fluctuations during the entire simulation, it is said to be equilibrated and 

stabilized; greater fluctuations, on the other hand, reflect low stability. RMSD fluctuations of about 

1–3 Å are preferred for smaller proteins. In our findings, we observed acceptable variations in 
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protein RMSD values. The interaction of N6-(2-Phenylethyl)adenosine with TNF-α for a period 

of 50 ns showed that TNF-α was stable after 16 ns with the RMSD value between 2.1 Å to 2.5 Å  

whereas N6-(2-Phenylethyl)adenosine was seen to exhibit RMSD fluctuations between 7.1 Å and 

11.8 Å after 5 ns, however the complex appeared to move apart, most likely owing to significant 

conformational changes in the protein as evident in Figure 8. 

 
Figure 8. RMSD plots of ligands with TNF-α. The RMSD plots of N6-(2-Phenylethyl)adenosine, 2-D08, N-

[(4Aminophenyl)methyl]adenosine, 5'-N-Ethylcarboxamidoadenosine, NM107, Trifluridine, and APNEA for 

simulations run for 50 ns. 

The interaction of 2- DO8 with TNF-α throughout 50 ns revealed that the ligand and protein 

were stable with slight fluctuations within the specified limit and were close to each other after 5 

ns; thus, the complex showed good stability.  The interaction of N-

[(4Aminophenyl)methyl]adenosine with TNF-α for a period of 50 ns showed that TNF-α was 

stable after 30 ns with the RMSD value between 1.8 Å to 2.1 Å  whereas N-

[(4Aminophenyl)methyl]adenosine was seen to exhibit RMSD fluctuations between 6.7 Å and 8.7 
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Å with proximity with each other, indicating a good contact between N-

[(4Aminophenyl)methyl]adenosine and TNF-α as evident in Figure 8. The interaction of 5'-N-

Ethylcarboxamidoadenosine with TNF-α for a period of 50 ns showed that TNF-α was stable after 

25 ns with the RMSD value between 1.9 Å to 2.4 Å, whereas 5'-N-Ethylcarboxamidoadenosine 

was seen to exhibit RMSD fluctuations between 3.0 Å and 3.7 Å with proximity, indicating a good 

contact between N 5'-N-Ethylcarboxamidoadenosine and TNF-α.  The NM107-TNF-α complex 

appeared to move apart, most likely owing to significant conformational changes in the protein. 

The interaction of Trifluridine with TNF-α for 50 ns revealed that the protein was stable throughout 

the run with an RMSD value between 1.3 Å and 2.4 Å, whereas Trifluridine was found to exhibit 

RMSD fluctuations between 1.4 Å and 3.4 Å with proximity with each other, indicating a good 

contact between Trifluridine and TNF-α. The interaction of APNEA with TNF-α for a period of 

50 ns showed that TNF-α was stable after 6 ns with the RMSD value between 1.0 Å to 2.7 Å, 

whereas APNEA was seen to exhibit RMSD fluctuations between 3.0 Å and 4.6 Å with proximity, 

indicating a possibility of good contact.  

 
Figure 9. Protein Interaction with the ligands. The different contacts of N6-(2-Phenylethyl)adenosine, 2-D08, N-

[(4Aminophenyl)methyl]adenosine, 5'-N-Ethylcarboxamidoadenosine, NM107, Trifluridine, and APNEA with 

various protein residues during the simulation of  50 ns. 

Moreover, protein-ligand interactions must be tracked during the simulation. The hydrogen 

bonds are essential for ligand binding. Because of their considerable effect on drug selectivity, 

metabolization, and adsorption, hydrogen bonding characteristics must be considered during drug 

design. Hydrophobic contact is mediated by an aromatic or aliphatic group on the ligand and a 

hydrophobic amino acid. Interactions between two atoms with opposing charges within 3.7 Å of 

one another and do not include a hydrogen bond are known as ionic interactions. Water Bridges 

are protein-ligand interactions that include hydrogen bonds and are mediated by water molecules. 
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The protein-Ligand interaction diagram showed that N6-(2-Phenylethyl)adenosine, N-

[(4Aminophenyl)methyl]adenosine, 5'-N-Ethylcarboxamidoadenosine, Trifluridine, and APNEA 

exhibited strong hydrogen bonding, hydrophobic interactions, and water bridges with TNF-α, but 

surprisingly the interaction of 2-D08 with TNF-α failed to show the desired contact with amino 

acids of TNF-α (Figure 9-10). 

 
Figure 10. Protein-Ligand contacts. The 2D contacts of N6-(2-Phenylethyl)adenosine, 2-D08, N-

[(4Aminophenyl)methyl]adenosine, 5'-N-Ethylcarboxamidoadenosine, NM107, Trifluridine, and APNEA with 

protein residues during the simulation of  50 ns.  

Moreover, the ligand interaction diagram also revealed that LEU57, SER60 TYR59, 

GLN61, TYR119, GLY121, and TYR151 in chain A and LEU57, TYR59, SER60, TYR119, and 

TYR151 in chain B play an important role in ligand binding (Figure 9-10). 

Protein Root Mean Square Fluctuation (P-RMSF) attributes were determined to better 

understand the behavior of individual amino acid residues throughout the simulation. Protein 

residues are essential for attaining a stable conformation in the protein-ligand complexes [72].  P-

RMSF was monitored to assess the local changes along the protein chain. Our results showed that 

very few amino acids exhibited RMSF >3.0 Å during the simulations (Figure 11, Table 7). 

Moreover, low P-RMSF was observed during the respective protein-ligand interaction with the 

active binding site (green color), indicating the stability of protein when complexed with the 

respective compounds. 
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Table 7. Residue index of TNF–α complexed with selected 7 compounds showing P-RMSF >3.0 Å. 

Ligand Residue Index Chain RMSF Value (Å) 

N6-(2-Phenylethyl)adenosine 22 (ALA) A 3.19 

2-D08 10 (ASP) A 3.25 

N-[(4Aminophenyl)methyl]adenosine 22 (ALA) A 3.09 

5'-N-Ethylcarboxamidoadenosine 87 (TYR) B 3.11 

NM107 
86 (SER) B 3.42 

87 (TYR) B 3.41 

Trifluridine 
24 (GLY) A 3.21 

108 (GLY) A 3.13 

APNEA - - - 

 

Figure 11. Protein Root Mean Square Fluctuation. The root mean square fluctuation plot for Cα of protein residues 

in complex with N6-(2-Phenylethyl)adenosine, 2-D08, N-[(4Aminophenyl)methyl]adenosine, 5'-N-

Ethylcarboxamidoadenosine, NM107, Trifluridine, and APNEA, respectively during the simulation of  50 ns. The 

green color represents the binding site interacting with respective compounds; peaks indicate areas of the protein that 

fluctuate the most during the simulation. 

The Ligand Root Mean Square Fluctuation (L-RMSF) characterizes variations in ligand 

atom positioning. The L-RMSF provides information on how ligand fragments interact with 

proteins and their entropic role in the binding events. Atoms of N6-(2-Phenylethyl)adenosine were 

highly fluctuated. Atoms of D08, ranging from 7 to 9, have RMSF > 2.5 Å, while other atoms 

possess low RMSF. Few atoms of 5'-N-Ethylcarboxamidoadenosine atoms exhibited moderate 

fluctuations (RMSF > 2. 0 Å.) Moreover, all atoms of Trifluridine and APNEA had very little 

fluctuations with RMSF < 1.7 Å. (Figure 12, Table 8). 

Table 8. Highly fluctuated atoms of selected 7 compounds during MD simulation. 

Ligand 
Atom 

Index 

RMSF Value 

(Å) 
Ligand 

Atom 

Index 

RMSF 

Value (Å) 

N6-(2-Phenylethyl)adenosine 

23 5.05 
5'-N-

Ethylcarboxamidoadenosine 

4 2.05 

24 5.62 5 2.29 

26 6.05 12 2.34 

26 5.94 NM107 2 4.01 
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27 5.31 3 3.85 

2-D08 

7 2.86 7 4.58 

8 2.66 

Trifluridine,  

19 1.49 

9 3.11 9 1.45 

N-

[(4Aminophenyl)methyl]adenosine 

1 3.70 10 1.45 

2 3.34 

APNEA 

28 1.61 

5 3.26 36 1.44 

7 3.30 25 1.38 

 
Figure 12. Ligand Root Mean Square Fluctuation. The root mean square fluctuation of the atoms in N6-(2-

Phenylethyl)adenosine, 2-D08, N-[(4Aminophenyl)methyl]adenosine, 5'-N-Ethylcarboxamidoadenosine, NM107, 

Trifluridine, and APNEA as indicated in their numbering (top) during the simulation of  50 ns. 

The protein RMSD, protein interaction diagram, P-RMSF, and L-RMSF demonstrated that 

the complex of TNF-α with N-[(4Aminophenyl)methyl]adenosine, 5'-N-

Ethylcarboxamidoadenosine, Trifluridine, and APNEA was stable over 50 ns of the MD 

simulation with strong protein-ligand interactions. 
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4. Conclusions 

TNF-α is directly implicated in the majority of inflammatory events in mammals. In this 

study, a total of 210 natural-like compounds were screened against TNF-α to determine their 

potential as TNF-α inhibitors. Based on the docking scores, 20 natural-like compounds showed 

promising binding affinities with docking score <-6.5, indicating good binding potential with TNF-

α. However, by ADMET profiling, 7 compounds i.e. N6-(2-Phenylethyl)adenosine, 2-D08, N 

[(4Aminophenyl)methyl]adenosine, 5'-N-Ethylcarboxamidoadenosine, NM107, Trifluridine, and 

APNEA were identified as excellent drug-like molecules, which was further validated by MM-

GBSA binding energies and MD simulation. The MM-GBSA and MD simulations finally revealed 

that 4 compounds, i.e., N-[(4Aminophenyl)methyl]adenosine, 5'-N Ethylcarboxamidoadenosine, 

Trifluridine, and APNEA have high binding affinities for TNF-α even in the presence of solvents, 

and counter ions thus may act as potential inhibitors of TNF-α. Nonetheless, additional in vivo and 

in vitro studies are required to validate these results. 
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