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Abstract: Friedelin (friedelan-3-one or 3-oxofriedelane), a plant metabolite, is a pentacyclic 

triterpenoid with pharmacological properties that include anti-inflammatory, antioxidant, analgesic, 

antipyretic, antimicrobial, anticonvulsant, anti-ulcer and anti-tumor activities. This current study aims 

to evaluate the molecular biological targets of friedelin in humans bioinformatically. The bioinformatics 

methods used are target prediction, pharmacokinetic prediction, molecular docking, molecular 

dynamics simulation, and MMGBSA calculation. The results showed that friedelin targeted carbonic 

anhydrase (CA) genes in humans with about 50% probability. Friedelin has low gastrointestinal 

absorption, not affected by p-glycoprotein and cytochrome P450s. The phylogeny revealed that the CAs 

of Vibrio cholerae and Streptococcus pneumoniae are closely related to those of humans. The binding 

of friedelin to human CA proteins was in the order of CA I > CA II > CA IV, with different binding site 

amino acid residue interactions. The MMGBSA results indicate improved stability and binding energy 

of the complex of friedelin with carbonic anhydrase CA I from -31.190 to -34.911 kcal.mol-1 at 0 ns 

and 100 ns, respectively. In conclusion, this study has provided the predictive potential of friedelin as 

a bioactive compound that could modulate the activity of various carbonic anhydrases to a moderate 

degree. 

Keywords: friedelan-3-one; carbonic anhydrases; phylogenetics; molecular docking; molecular 

dynamic simulation; antimicrobial; anti-ulcer. 
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1. Introduction 

Friedelin (also known as friedelan-3-one or 3-oxofriedelane), is the most highly 

rearranged pentacyclic triterpene in plants and serves as a precursor to many other important 

compounds, such as saponins and sterols [1,2]. Friedelin was a compound isolated in 1892 by 

Friedel, and it has been found in many plants, algae, lichen, mosses, and mineral wax [3]. 

Friedelin is the most prominent triterpenoid in cannabis, at a concentration of 12.8 mg/kg in 

the root extract [4], and presents as a major constituent of Garcinia latissimi [5]. 

Luan et al. [6] have isolated friedelin from the fruit and leaf extracts of Couroupita 

guianensis. Friedelin has been identified in the stem bark, fruit peel, and pulp extracts of 

Irvingia gabonensis [7,8]. Friedelan-3-one was found as part of the constituents of 

Hymenocardia acida Tul. [9], and Vernonia auriculifera [10]. Friedelin and friedooleanan-3-

ol were isolated from the stem bark of Talipariti elatum in Cuba by gas chromatography-mass 

spectrometry (GC-MS) method [11]. Friedelin (3-oxofriedelane) and its set of derivatives have 

been identified in the hexane extract of the leaves of Maytenus robusta [12] and hexane extracts 

of leaves and branches of Tontelea micrantha [13]. Friedelin and friedelan-3-ol were found 

present in Maytenus ilicifolia in 15 native populations in the south and mid-west regions of 

Brazil. [14], as well as in dichloromethane-methanol (1:1) extract of the stem bark of 

Calophyllum inophyllum [15]. 

Friedelin has been reported for strong anti-tumor activities and significant lipid-

lowering effects [16,17]. Fiedelan-3-one isolated from the ethyl acetate extract of the leaf of 

Pterocarpus santalinoides showed moderate antimicrobial activity against microbes such as 

Escherichia coli, Helicobacter pylori, and methicillin-resistant Staphylococcus aureus [18]. 

Friedelin showed antimycobacterial activity against three nonpathogenic species and thus 

served as a natural African antituberculosis agent [19]. Five friedelane triterpenes (3-

friedelone, 28-hydroxy-3-friedelanone (canophyllol), 28-hydroxyfriedelan-3-one 

(canophyllal), 29-hydroxy-3-friedelanone, and 30-hydroxy-3-friedelanone), were found 

present in Euonymus hederaceus, a reputable medicinal plant noted for its antibiotic and anti-

tumor properties [20,21]. Animal studies have shown that friedelin isolated from Azima 

tetracantha possessed significant analgesic, antipyretic, anti-inflammatory, and anti-ulcer 

effects [22,23], and that it possessed marked antioxidant and liver protective effects in CCl4-

induced oxidative stress on rats [24]. Also, friedelin exhibits remarkable antidiabetic activity 

in rat models through modulation of glucose metabolism in the liver and muscle [25]. 

However, the supply of friedelin from plant sources is insufficient; while chemical 

methods are often complex, synthetic biology and metabolic engineering have provided 

promising and green approaches to reconstruct microorganisms to yield natural high-value 

products [2,26,27]. Based on the promising pharmacological activities and presence of friedelin 

in many medicinal plants, identifying the key biological target enzymes or receptors or 

transcription factors that are responsible for these activities will facilitate the translation of 

friedelin to clinical development as human therapeutics. This study aims to bioinformatically 

evaluate the molecular biological targets of friedelin in humans to facilitate its development as 

therapeutic. 
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2. Materials and Methods 

2.1. In silico target prediction and ADME properties. 

The structure of friedelin was obtained from the PubChem Compound Database 

(https://pubchem.ncbi.nlm.nih.gov/) in canonical Simplified Molecular Input Line Entry 

Specification (SMILES) and Structure Data File (SDF) formats. Target prediction was done 

using the SwissTargetPrediction server (http://www.swisstargetprediction.ch/), where Homo 

sapiens was designated as the target organism [28]. In silico ADME (Absorption, Distribution, 

Metabolism, and Excretion), a prediction was carried out on the SwissADME server [29]. 

2.2. Phylogenetic analysis. 

Targeting bacterial carbonic anhydrase (CA, EC 4.2.1.1) as an emerging mechanism 

for design of anti-infectives, the protein sequences of human and ten (10) bacteria (Neisseria 

spp., Escherichia coli, Helicobacter pylori, Mycobacterium tuberculosis, Brucella spp., 

Streptococcus pneumoniae, Salmonella enterica, Haemophilus influenzae, Staphylococcus 

aureus, and Vibrio cholerae) carbonic anhydrases were obtained from UniProt database in 

FASTA format, and multiple sequence alignment was done on ClustalO server 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). The phylogenetic tree was obtained and 

visualized on iTOL server, https://itol.embl.de/upload.cgi; [30]. 

2.3. Ligand-protein docking simulations. 

The molecular docking simulations were carried out using the method of Fatoki et al. 

[31]. Briefly, the structures of carbonic anhydrases I, II, and IV were obtained from PDB 

database (www.rcsb.org/pdb) in pdb format. The structure of friedelan-3one was converted 

from sdf format to pdb format using PyMol v2.0.7. The crystal structure of the protein targets 

was prepared for docking by removing all water molecules, multichain, and heteroatoms using 

PyMol v2.0.7. The Gasteiger partial charge was added to each ligand, and the docking 

parameter of each target was set using AutoDock Tools (ADT) v1.5.6 [32], and files were saved 

in pdbqt format. Molecular docking simulation was implemented in AutoDock Vina v1.2.3 

[33,34] from the command line. The binding pose was visualized using ezLigPlot on ezCADD 

web server [35], the binding affinity and interacting amino acid residues were reported. The 

ligand efficiency (LE) was evaluated from the equation,  

𝐿𝐸 =
−𝛥𝐺

𝐻𝐴
 

where ΔG is the binding affinity obtained from docking, and HA is the number of heavy atoms 

(non-hydrogen atoms) of the ligand obtained from ADME properties [36-38]. 

2.4. Molecular dynamics simulations. 

Molecular dynamics simulations were performed for 100 nanoseconds using Desmond, 

a Package of Schrödinger LLC [39-41]. The initial protein and ligand complexes stage for 

molecular dynamics simulation was obtained from docking studies. The protein–ligand 

complexes were preprocessed using Maestro's protein preparation wizard, which also included 

optimization and minimization of complexes. All systems were prepared by the System Builder 

tool. The Solvent Model with an orthorhombic box was selected as TIP3P (Transferable 

Intermolecular Interaction Potential 3 Points). The Optimized Potential for Liquid Simulations 
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(OPLS)-2005 force field was used in the simulation [42]. The models were made neutral by 

adding counter ions 0.15 M NaCl to mimic the physiological conditions. The NPT ensemble 

(Isothermal-Isobaric: moles (N), pressure (P), and temperature (T) are conserved) with 300 K 

temperature and 1 atm pressure was selected for complete simulation. The models were relaxed 

before the simulation. The trajectories were saved after every 100 ps during simulation, and 

post-simulation analysis of the trajectories was done to determine the root-mean-square 

deviation (RMSD), radius of gyration (Rg), root-mean-square fluctuation (RMSF), solvent 

accessibility surface area (SASA), protein-ligand interaction profile. Also, prime molecular 

mechanics/generalized Born surface area (MMGBSA) was calculated as follows:  

MMGBSA ΔGbind =   ΔGcomplex  −  ΔGprotein − ΔGligand  

MMGBSA ΔGbind

=   ΔGCoulomb  +  ΔGCovalent  +  ΔGHbond  + ΔGLipo  +  ΔGPacking  

+ ΔGSolvGB  + ΔGvdW 

where "protein*" means "protein from optimized complex"; "ligand*" means "ligand from 

optimized complex"; ΔGbind is the total Prime energy, Hbond denote hydrogen bonding energy, 

Lipo is lipophilic energy, Packing represents pi-pi packing correction. SolvGB is generalized 

Born electrostatic solvation energy, and vdW is Van der Waals energy [41,43,44]. 

3. Results and Discussion 

The results show that friedelin targeted carbonic anhydrase (CA) genes in humans with 

about 50% probability as the main molecular target (Table 1). The ADME geometry of the 

friedelin structure is shown in Figure 1, while the ADME properties are listed in Table 2. 

Friedelin (with a molecular weight of 426.72 g/mol) is poorly soluble in water, has low 

gastrointestinal absorption, cannot permeate the blood-brain barrier (BBB), is not affected by 

p-glycoprotein (P-gp), does not inhibit cytochrome P450s (CYPs), and highly lipophilic (Table 

2). 

The results of multiple sequence alignment showed segments of the human and 

bacterial CAs that are conserved over the period of evolution (Figure 2). The phylogeny 

revealed that the CAs of Vibrio cholerae and Streptococcus pneumoniae are closely related to 

those of humans (Figure 3). The order of CA proteins to which friedelin binds is CA I > CA II 

> CA IV, with different binding site amino acid residues interaction (Table 3). The docking 

pose and interaction of friedelin with human CAs are shown in Figure 4. 

Friedelin and its derivatives, such as celastrol, provide potential resources for 

developing new drugs or dietary supplements [1,45]. The ADME properties of friedelin limit 

its oral route of drug administration as a systemic-acting agent. Still, it is useful in treating 

stomach diseases such as ulcers and topically acting agents, and intravenous administration of 

friedelin might not affect CYPs, which occurs during the first-pass metabolism of xenobiotics 

[46]. 

Clinical applications of various carbonic anhydrase inhibitors (CA) include the 

treatment of epilepsy, glaucoma, obesity, osteoporosis, mountain sickness, and ulcers [47,48]. 

The inhibition of the CAs is also emerging for designing anti-infectives (antifungal and 

antibacterial agents) with a novel mechanism of action [48,49]. 

In addition to carbonic anhydrases (CA II and CA IV) and cytochrome P450 19A1 

obtained in this study, other molecular targets that have been reported for friedelin in the 
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treatment of ulcerative colitis include androgen receptor, cyclooxygenase-1, steroid 5-alpha-

reductase 1, C–C chemokine receptor type 2, cannabinoid receptor 1, testis-specific androgen-

binding protein, and progesterone receptor [50]. 

Close evolutionary relatedness of human CAs to that of CAs of V. cholerae and S. 

pneumoniae has the potential to design specific drugs against cholera and pneumonia 

infections. This study has shown that friedelin has a higher affinity for CA I, and its affinity to 

CA II and CA IV are almost similar, and these were evident by the binding energy and ligand 

efficiency obtained. The higher LE, the higher the efficiency of the drug in terms of molecular 

recognition per atom [37]. In silico study has reported the antiviral potential of friedelan-3-one 

with high binding energies against 2’-O-ribose methyltransferase, 3-Chymotrypsin-like 

protease (3CLpro), helicase, Papain-like protease (PLpro), RNA-dependent RNA polymerase, 

of SARS-CoV-2 [51]. 

Based on the results of this study, friedelin could be used to manage osteopetrosis due 

to a defect in human CA II and retinitis, which occurs due to a defect in human CA IV. Partial 

or total loss of activity of CA II due to mutation of His94 to Tyr94, His107 to Tyr107, and 

Gly144 to Arg144 have been linked to osteopetrosis autosomal recessive 3 (OPTB3), is a rare 

genetic disease characterized by abnormally dense bone, that has been implicated in cerebral 

calcification (marble brain disease), renal tubular acidosis, and in some cases with mental 

retardation (Ref.: http://www.uniprot.org/uniprot/P00918). 

The reported functional activity of friedelin as an anticonvulsant and anti-ulcer agent 

matched the predicted target CAs obtained in this study [52,53]. The friedelan-3-one isolated 

from Harungana madagascariensis Lam (Hypericaceae) seeds extracts were reported for about 

83% anticonvulsant activities in Albino Swiss mice induced with picrotoxin and 

pentylenetetrazole respectively [54]. 

Table 1. Predicted human protein targets for friedelin compound (PubChem CID: 91472). 

SNo. 

TARGET Percentage (%) 

Probability of 

Binding on Target 
Name Gene ID 

UniProt 

ID 

1 Carbonic anhydrase II CA2 P00918 50 

2 Carbonic anhydrase I CA1 P00915 50 

3 Carbonic anhydrase IV CA4 P22748 50 

4 Cytochrome P450 19A1 CYP19A1 P11511 20 

5 
Acyl coenzyme A:cholesterol 

acyltransferase 
CES1 P23141 20 

6 Carboxylesterase 2 CES2 O00748 20 

7 
Nuclear receptor subfamily 1 group I 

member 3 (by homology) 
NR1I3 Q14994 20 

 

 
Figure 1. Structure of friedelin and its ADME geometry. 
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Table 2. ADME properties of friedelin in humans. 

S.No 

Physicochemical Properties, Water Solubility, Pharmacokinetics, Lipophilicity, 

Druglikeness, and Medicinal Chemistry of Friedelin 

Properties Value 

1 Molecular weight 426.72 g/mol 

2 Number of heavy atoms (HA) 31 

3 Molar Refractivity 134.39 

4 Topological Polar Surface Area  17.07 Å² 

5 Log S (ESOL)  -8.66 

6 Solubility Class  Poorly soluble 

7 Gastrointestinal absorption  Low 

8 BBB permeant  No 

9 P-gp substrate  No 

10 CYPs inhibitor  No 

11 Log Kp (skin permeation)  -1.94 cm/s 

12 XLOGP3  9.80 

13 Lipinski  Yes; 1 violation: MLOGP>4.15 

14 Bioavailability Score  0.55 

15 Synthetic accessibility  5.17 

 

The human cytosolic CAs include CA I and CA II, while human membrane-associated 

CAs include CA IV, CA IX, CA XII, and CA XIV [47], and CA II can also be localized on the 

cell membrane. CA I and CA II are present in the mammalian red blood cells, with low 

expression of CA I patients with hemolytic anemia, thus serving as a marker [55,56]. CA II 

and CA IV could interact with a diversity of membrane-bound carriers to balance cytoplasmic 

pH, increase the activity of bicarbonate transport, and create a functional complex; these 

carriers include the sodium bicarbonate cotransporter NBC1, the chloride/bicarbonate 

exchanger AEI, and the sodium/hydrogen exchanger NHE1 [57-59]. 

CA IV is a high-activity isozyme showing pH independence in the hydration direction 

[60]. CA IV has been found localized to the brain, capillary bed of the eye, erythrocytes, and 

heart. The kidney expresses CA II, CA IV, and CA XII [47]. CA IX and CA XII are cancer-

related CAs [61,62]. Thus, the CAs obtained in this study have a different function: non-cancer 

targets. Therefore, friedelin could be used to distinguish between CA IV and CA XII functions 

in the kidney. 

Like friedelin, naturally produced coumarin has been identified as a very potent 

inhibitor of bovine CA II, and it could also inhibit a spectrum of human CAs in an 

unprecedented time-dependent manner [63,64]. The catalytic activity of human CA II could be 

dependent on the amino acid residues His 64 and His 94, as obtained in this study. The amino 

acids residues His64, Asn67, His94, His96, His119, Phe131, and Glu238 were found in the 

interaction of coumarin with human CA II [64], while Asn62, Asn67, Asn92, Val142, Leu197, 

Thr198, Thr199, Pro200, Leu203, and Trp208, were reported in the interaction of (C)-

xylariamide A with human CA II [65]. Moreover, a recent study has predicted that tyrosol 

could bind to human CA II with a 100% probability [66]. 

In the results shown in Figure 5, the friedelin complex with carbonic anhydrase CA1 

(1CZM) has RMSD of about 1.0 Å, and the protein was quite stable during the simulation time 

20-100ns while the ligand RMSD was showed to be stabilized between 40-100 ns. Overall, the 

ligand was stable during the simulation. Also, the result showed that carbonic anhydrase CA1 

has Rg < 0.3 Å, RMSF was significant mostly at the N-terminal and 110-120 amino acid 

residues, and total SASA was about 1110 Å2. In Figure 6, high interaction of friedelin with 

carbonic anhydrase CA1 occurs on ASN61, PHE91, ALA132, ALA135, LEU198, PRO202, 

https://doi.org/10.33263/BRIAC142.049
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and TYR204 amino acid residues and also present the profiles of friedelin during the 

simulation. The binding free energies of all complexes were calculated using MMGBSA at 0 

ns and 100 ns. The results indicate improved stability and binding energy of the complex of 

friedelin with carbonic anhydrase CA1 from -31.190 to -34.911 kcal.mol-1, as shown in Table 

4. 

 

 

 

 
Figure 2. Multiple sequence alignment of 3 human CAs and 10 bacterial CAs. 
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Figure 3. Phylogenetic tree of 3 human CAs and 10 bacterial CAs, and their description. 

Table 3. The docking score of binding of friedelin to carbonic anhydrases. 

Protein 

Docking parameter 

Friedelin 

Name Gene PDB ID 

Binding 

Affinity 

(kcal.mol-1) 

LE 

(kcal.mol-1) 

Carbonic 

anhydrase 1 
CA1 1czm 

Spacing: 0.375 

Npts: 126 × 126 × 126 

Center: 36.650 × 14.797 × -

13.116 

-7.975 0.257 

Carbonic 

anhydrase 2 
CA2 1znc 

Spacing: 0.375 

Npts: 126 × 126 × 126 

Center: 4.469 × -0.049 × 52.283 

-7.441 0.240 

Carbonic 

anhydrase 4 
CA4 9ca2 

Spacing:  0.375 

Npts: 126 × 126× 126 

Center: -9.744 × -1.667 × 16.063 

-7.310 0.236 

Molecular dynamics (MD) simulation was performed to determine the variation 

occurring in the protein-ligand system at the atomistic level and articulate the stability of the 

protein-ligand complex in the dynamic environment [67]. RMSD plot indicates that most of 

the protein-ligand complexes were found to be stable up to 100 ns during the MD simulation. 

The RMSD and Rg are used to assess the flexibility, compactness, and conformational 

divergence of the protein structural ensembles [67]. RMSD scores of 1-3 Å are perfectly 

acceptable for small, globular proteins, while changes much greater will indicate that the 

protein is undergoing a large conformational change during the simulation [40]. 

https://doi.org/10.33263/BRIAC142.049
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Figure 4. Docking pose and interaction of friedelin with (A) carbonic anhydrase CA1 (1CZM), (B) 

CA2 (1ZNC), and (C) CA4 (9CA2). 

 
Figure 5. Molecular dynamic simulation results showing (A) RMSD of friedelin and carbonic anhydrase CA1 

(1CZM); (B) Rg of carbonic anhydrase CA1 (1CZM); (C) RMSF of carbonic anhydrase CA1 (1CZM); (D) 

SASA of carbonic anhydrase CA1 (1CZM). 

A B

C
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Figure 6. Molecular dynamics simulation results showing (A) Interaction profile of contact of friedelin with 

carbonic anhydrase CA1 (1CZM); (B) Ligand (friedelin) profile (RMSD, Rg, Intramolecular Hydrogen Bonds 

(intraHB), Molecular Surface Area (MolSA), SASA, and Polar Surface Area (PSA), during simulation. 

Table 4. Prime MMGBSA binding energy of friedelin-carbonic anhydrase CA1 (1CZM) interaction before and 

after molecular dynamics simulation. 

Simulation 

Time (ns) 

MMGBSA ΔGbind (kcal.mol-1) 

Total Coulomb Covalent Hbond Lipo Packing Solv_GB vdW 

0 -31.190 1.041 -0.049 0 -17.674 0 17.041 -31.549 

100 -34.911 -5.063 2.221 -0.028 -16.729 0 23.263 -38.575 

Total: Total energy (Prime energy). Coulomb: Coulomb energy. Covalent: Covalent binding energy. vdW: Van 

der Waals energy. Lipo: Lipophilic energy. Solv GB: Generalized Born electrostatic solvation energy. Packing: 

Pi-pi packing correction. 

A

B
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The stability of the residues was supported by their acceptable values of the root mean 

square fluctuation (RMSF). RMSF is useful for characterizing local changes along the protein 

chain. The quantitative estimation of the binding potential of the ligand was determined using 

a free binding energy calculation analysis using MMGBSA. Prime MMGBSA provided 

various energy properties, reporting energies for the receptor, ligand, and complex structures, 

with energy differences related to strain and binding [43]. MM-GBSA demonstrated accurate 

pose prediction on a large protein-ligand complexes benchmark with non-redundant binding 

poses [68]. When the last frame (100 ns) of MMGBSA displayed higher binding energy as 

compared to the 0 ns trajectory, it indicates a better binding pose for best fitting in the protein's 

binding cavity [69]. The result of MMGBSA calculations shows clearly that the complexes 

were stable and concludes that friedelin binds efficiently to carbonic anhydrase CA1 (1CZM). 

4. Conclusions 

This study has provided the predictive potential of friedelin as a bioactive compound 

that could moderately modulate the activities of diverse sets of carbonic anhydrases and CYP 

P450 19A1. This pointed out that friedelin could be used to ameliorate the diseases associated 

with human CA I, CA II, and CA IV, as well as CAs of Vibrio cholerae and Streptococcus 

pneumoniae. Friedelin can potentially be developed as a new antimicrobial drug or anti-ulcer 

dietary supplement. Further in vitro and in vivo work will be necessary to validate this study's 

molecular targets and evaluate friedelin's possible host-pathogen protein-protein interactions 

in animal models of cholera and pneumonia diseases. 
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