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Abstract: The reverse Sombor index is a natural variation of the recently introduced Sombor index, a 

degree-based topological index found to have nice mathematical properties and very useful 

applications. In this article, the associated matrix of the reverse Sombor index of a graph 𝐺, called the 

reverse Sombor matrix ℛ(𝐺), is introduced. Also, some mathematical properties of this matrix and 

bounds on its eigenvalues are presented and established. The reverse Sombor energy ℰℛ(𝐺) of 𝐺, the 

sum of the absolute values of the eigenvalues of ℛ(𝐺), is introduced, and certain bounds are established. 

The chemical applicability of this parameter is discussed by comparing it with the 𝜋-electron energy of 

some polyaromatic hydrocarbons. Further, a computational analysis of the relation between the energy 

and reverse Sombor energy of trees of order 𝑛 = 8,9,⋯ ,14 is presented.  
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1. Introduction 

A topological index/molecular descriptor is a graph invariant, which is very useful in 

understanding the physical, chemical, and structural properties of chemical/molecular graphs. 

Various topological indices are found in literature and are mainly categorized based on the 

degree and distance in graphs. Very commonly, vertex-degree-based(VDB) topological indices 

in the form  

𝑇𝐼(𝐺) = ∑𝑢𝑣∈𝐸(𝐺) 𝑓(𝑑(𝑢), 𝑑(𝑣))( 

have been studied, Zagreb index [1], Randi𝑐 index [2], and harmonic index [3] being some of 

them.  

One of the recently introduced VDB indices, named the Sombor index [4], has found a 

central place in literature, owing to some of its interesting mathematical properties and its 

applicability to studying the chemical properties of molecular graphs. Different variations of 

the Sombor index have since been proposed and studied [5-17].  

As introduced by Gutman [18], a graph G's energy is equal to the total of the absolute 

values of 𝐴(𝐺), and is denoted 𝐸(𝐺). It is worth noting that eigenvalues play a crucial role in 

the fundamental understanding of graphs since they are intimately linked to nearly every 

significant graph invariant, establishing a connection with each extreme property. Thus, graph 

energy, though a particular form of matrix norm, has drawn the interest of both pure and applied 

mathematicians. Spectral graph theory studies matrices associated with graphs, eigenvalues, 
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and graph energies and plays an essential role in analyzing graph matrices using matrix theory 

and linear algebra.  

Different graph energies associated with topological indices have been introduced and 

extensively studied in the literature. For related work and applications of graph energy, we cite 

[19-25]. In particular, the Sombor energy 𝐸𝑆𝑂(𝐺) [26], based on the Sombor index of a graph 

𝐺, is defined as the sum of the absolute values of the eigenvalues of the Sombor matrix.  

In [17], Swamy et al. have introduced a variation of the Sombor index, namely the 

reverse Sombor index of 𝐺, denoted 𝑅𝑆𝑂(𝐺), and have studied some of its mathematical 

properties.  

In this article, we introduce the reverse Sombor matrix of a graph 𝐺, and based on its 

eigenvalues, we define the reverse Sombor energy ℰℛ(𝐺) of 𝐺. Further, we establish some 

bounds on ℰℛ(𝐺)for other graph invariants. Further, we study the correlation of the reverse 

Sombor energy of some molecules containing hetero atoms with the respective 𝜋-electron 

energy. Also, we make a computational analysis of the relation between the energy and reverse 

Sombor energy of trees of specific order and present respective regularities.  

2. Materials and Methods 

Based on the dataset of all trees with n unlabeled nodes available in [27], the 

computational analysis on the relation between the energy and reverse Sombor energy of all 

trees of order 𝑛 = 8,9,⋯ ,14 is made using Microsoft Excel. In particular, the correlation 

analysis between the 𝜋-electron energy and the reverse Sombor energy is made. Also, the 

correlation between the graph energy and the reverse Sombor energy is computed, and the 

corresponding analysis is made. 

3. Preliminaries 

We consider simple finite undirected graphs in this article. Given a graph 𝐺 with vertex 

set 𝑉(𝐺) and edge set 𝐸(𝐺), two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) are said to be adjacent if they share a 

common edge. The degree of a vertex 𝑢 ∈ 𝑉(𝐺), denoted 𝑑𝑒𝑔(𝑢), or simply 𝑑(𝑢), is the 

number of vertices adjacent with 𝑢 in 𝐺. A vertex 𝑢 with degree zero is called an isolated 

vertex, and that of degree one is called a pendant vertex. The maximum degree of any vertex 

in 𝐺 is denoted by Δ(𝐺).  

The Sombor index [4] of a graph 𝐺 is defined as 

𝑆𝑂(𝐺) = ∑𝑢𝑣∈𝐸(𝐺) √𝑑(𝑢)
2 + 𝑑(𝑣)2    

The adjacency matrix of a graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} is defined as 𝐴(𝐺) =

(𝑎𝑖𝑗) where, 𝑎𝑖𝑗 = {
1
0
𝑖𝑓   𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺)

otherwise
. 

The reverse Sombor index of 𝐺 [17] is defined as  

𝑅𝑆𝑂(𝐺) = ∑𝑢𝑣∈𝐸(𝐺) √𝑐(𝑢)
2 + 𝑐(𝑣)2 , 

where 𝑐(𝑢) = Δ(𝐺) − 𝑑(𝑢) + 1 is called the reverse vertex degree of 𝑢 [29, 30].  

The Sombor matrix [26] of a graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} is defined as 

𝐴𝑆𝑂(𝐺) = ((𝑎𝑆𝑂)𝑖𝑗) where,  

(𝑎𝑆𝑂)𝑖𝑗 = {
√𝑑(𝑣𝑖)

2 + 𝑑(𝑣𝑗)
2

0

𝑖𝑓   𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺)

otherwise
. 
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The total of the absolute values of the eigenvalues of 𝐴𝑆𝑂(𝐺) is the Sombor energy of 

G. . 

4. Reverse the Sombor energy of a graph. 

Definition 4.1 The reverse Sombor matrix of a graph G with V(G) = {v1, v2, ⋯ , vn} is 

defined as ℛ(G) = (rij) where, rij = {
√c(vi)

2 + c(vj)
2 

0

if   𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺)

otherwise
. 

The reverse Sombor polynomial of 𝐺 is defined as 𝒫(𝐺)(𝜆) = |𝜆𝐼 − ℛ(𝐺)|with 𝐼 being 

the identity matrix of order 𝑛 × 𝑛. It is to be observed that the eigenvalues of ℛ(𝐺) are all real 

as it is symmetric. If 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 are the eigenvalues of ℛ(𝐺), then the reverse Sombor 

energy of 𝐺 is defined as ℰℛ(𝐺) = ∑𝑛𝑖=1 |𝜆𝑖|. 

Observation 4.2 For the complete graph Kn, spec(ℛ(Kn)) = (
−√2 (n − 1)√2
(n − 1) 1

). 

Observation 4.3 For the totally disconnected graph Kn, spec(ℛ(Kn)) = (
0
n
). 

Observation 4.4 For the graph G =
n

2
K2, spec(ℛ(G)) = (

−√2 √2
n/2 n/2

). 

Lemma 4.5 [29] If A and B are square matrices of order n, then  

∑

1≤i≤n

λi(A + B) ≤ ∑

1≤i≤n

λi(A) + ∑

1≤i≤n

λi(B) 

where λi(Mj) corresponds to the ith eigenvalue of Mj, j = 1,2 with λi ≥ λi+1.  

Theorem 4.6 For a path Pn of order n ≥ 4,  

ℰℛ(Pn) ≤ √2(2csc (
π

n + 1
) sin(

(2⌊
n

2
⌋ + 1) π

2(n + 1)
)) + 2(2√5 − 3√2). 

Proof. It is easy to observe that, for n ≥ 4,  

ℛ(Pn) =

(

 
 
 
 

0 √5 0 0 ⋯ 0

√5 0 √2 0 ⋯ 0

0 √2 0 √2 ⋯ 0

0 0 √2 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ √5

0 0 0 0 √5 0 )

 
 
 
 

 

= √2

(

 
 
 

0 1 0 0 ⋯ 0
1 0 1 0 ⋯ 0
0 1 0 1 ⋯ 0
0 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ 1
0 0 0 0 1 0 )

 
 
 
+ (√5 − √2)

(

 
 
 

0 1 0 0 ⋯ 0
1 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ 1
0 0 0 0 1 0 )

 
 
 

 

           = √2A(Pn) + B 

 where  
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B = (√5 − √2)

(

 
 
 

0 1 0 0 ⋯ 0
1 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ 1
0 0 0 0 1 0 )

 
 
 

 

has the spectrum 

spec(B) = (
−(√5 − √2) 0 (√5 − √2)
2 (n − 4) 2

) 

so that E(B) = 4(√5 − √2).  

Thus, by Lemma 4.5, we have 

ℰℛ(Pn) ≤ √2E(Pn) + E(B) 

= √2

(

 
 
4∑

⌊
n

2
⌋

i=1

cos (
π  i

n + 1
)

)

 
 
+ 4(√5 − √2) 

= √2(2csc (
π

n + 1
) sin(

(2⌊
n

2
⌋ + 1)π

2(n + 1)
) − 2) + 4(√5 − √2) 

= √2(2csc (
π

n + 1
) sin(

(2⌊
n

2
⌋ + 1) π

2(n + 1)
)) + 2(2√5 − 3√2) 

Theorem 4.7 Let G = (V, E) be a graph with  

𝒫RSO(G) = λ
n + c1λ

n−1 +⋯+ cn 

Being the characteristic polynomial of ℛ(G). Then  

(i) c1 = 0,  

(ii) c2 = −RF(G),  

(iii) c3 = −2∑Δ ∏uv∈E(Δ) √cu
2 + cv

2 where the summation is taken over all cycles Δ of 

length 3 in G.  

Proof. Since each coefficient ci, i = 1,2,⋯ , n, (−1)ici corresponds to the sum of all the 

principal minors of ARSO(G) with i rows and i columns, we have the following: 

(i) c1 = 0 as all the principal diagonal elements of ℛ(G) are zero. 

(ii)c2 = ∑1≤i<𝑗≤𝑛 |
0 rij
rji 0

| = −∑1≤i<𝑗≤𝑛 rij
2 = −∑1≤i<𝑗≤𝑛 (c(vi)

2 + c(vj)
2) =

−RF(G) 

(iii) 

c3 = − ∑

1≤i<𝑗<𝑘≤𝑛

||

0 rij rik
rji 0 rjk
rki rkj 0

|| 

      = −2 ∑

1≤i<𝑗<𝑘≤𝑛

rijrjkrik = −2∑

Δ

∏

vivj∈E(Δ)

√c(vi)
2 + c(vj)

2. 
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Lemma 4.8 [Newton’s identity] Given an n × n matrix A, the coefficient c3 in the 

expansion of |λI − A| = λ
n + c1λ

n−1 +⋯+ cn is given by  

c3 =
1

6
(−(tr(A))3 + 3tr(A)tr(A2) − 2tr(A3)) 

where tr(A) is the trace of A.  

We have the following result as a direct consequence of Theorem 4.7 and Lemma 4.8.  

Theorem 4.9 Let ℛ(G) be the reverse Sombor matrix of G with eigenvalues λ1 ≥ λ2 ≥

⋯ ≥ λn. Then,  

(i) ∑ λi = 0,  

(ii) ∑ λi
2 = 2RF(G),  

(iii) ∑ λi
3 = 6∑Δ ∏vivj∈E(Δ) √c(vi)

2 + c(vj)
2. 

Theorem 4.9 can be generalized as follows.  

Lemma 4.10 Let p be the length of the smallest odd cycle contained in G and ∑Cp  

denote the summation over all cycles of size p contained in G. Then, for q = 1,3,⋯ , p − 2,  

(i)∑ni=1 λi
q
= 0, 

(ii) ∑ni=1 λi
p
= 2p∑Cp ∏vivj∈E(Cp) √c(vi)

2 + c(vj)
2.  

5. Bounds for reverse Sombor energy  

In this section, we have obtained some bounds on the  ℰℛ(𝐺) reverse Sombor energy..  

Lemma 5.1 [DiazâMetcalf Inequality] Let (a1, a2, … , an) and (b1, b2, … , bn) be 

positive real numbers, satisfying the condition rai ≤ bi ≤ Rai for 1 ≤ i ≤ n. Then  

∑

n

i=1

bi
2 + rR∑

n

i=1

ai
2 ≤ (r + R)∑

n

i=1

aibi. 

 In the above expression, equality holds if and only if bi = Rai or bi = rai for 1 ≤ i ≤

n.  

Lemma 5.2[31] Let a1 ≤ a2 ≤ ⋯ ≤ an ≤ 0isa sequence of non-negative real numbers. 

Then  

∑

n

i=1

ai + n(n − 1) (∏

n

i=1

ai)

1

n

≤ n(∑

n

i=1

√ai)

2

≤ (n − 1)∑

n

i=1

ai + n(∏

n

i=1

ai)

1

n

. 

Lemma 5.3If ai and bi are non-negative real numbers for 1 ≤ i ≤ n, then  

(∑

n

i=1

ai
2)(∑

n

i=1

bi
2) − (∑

n

i=1

aibi)

2

≤
n2

4
(AB − ab)2, 

where  A = max
1≤i≤n

ai, B = max
1≤i≤n

bi, a = min
1≤i≤n

aiand   b = min
1≤i≤n

bi. 

Lemma 5.4 [Polya-Szego inequality] Suppose ai and bi are positive real numbers for 

i = 1,2, … ,m, such that a ≤ ai ≤ A and b ≤ bi ≤ B. Then, 

∑

m

i=1

bi
2∑

m

i=1

ai
2 ≤

1

4
(√
AB

ab
+ √

ab

AB
)

2

(∑

m

i=1

aibi)

2

 

 

https://doi.org/10.33263/BRIAC143.061
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC143.061  

https://biointerfaceresearch.com/ 6 of 12 

 

5.1.Lower bounds for the Sombor energy. 

Theorem 5.5 Let G be any graph of order n and let Φ be the absolute value of the 

determinant of reverse Sombor matrix ℛ(G), then  

√2RF(G) + n(n − 1)Φ
2

n ≤ ℰℛ(G). 

Proof.  

[ℰℛ(𝐺)]2 = (∑

𝑛

𝑖=1

|𝜆𝑖|)

2

=∑

𝑛

𝑖=1

|𝜆𝑖|
2 +∑

𝑖≠𝑗

|𝜆𝑖||𝜆𝑗| = 2𝑅𝐹(𝐺) +∑

𝑖≠𝑗

|𝜆𝑖||𝜆𝑗| 

Clearly we have,  

1

𝑛(𝑛 − 1)
∑

𝑖≠𝑗

|𝜆𝑖||𝜆𝑗| ≥∏

𝑖≠𝑗

(|𝜆𝑖||𝜆𝑗|)
1

𝑛(𝑛−1) = |∏

𝑛

𝑖=1

𝜆𝑖|

2

𝑛

= Φ
2

𝑛∑

𝑖≠𝑗

|𝜆𝑖||𝜆𝑗| ≥ 𝑛(𝑛 − 1)Φ
2

𝑛 

so that  

√2𝑅𝐹(𝐺) + 𝑛(𝑛 − 1)Φ
2

𝑛 ≤ ℰℛ(𝐺). 

Theorem 5.6 Let G be a graph with order n. Then  

√2nRF(G) −
n2

4
(λ1 − λn)

2 ≤ ℰℛ(G). 

Proof. Setting ai = |λi|, bi = 1, A = λ1, B = 1, a = λn, and b = 1 in Lemma 4.3.  

(∑

n

i=1

|λi|
2)(∑

n

i=1

1) − (∑

n

i=1

|λi|)

2

≤
n2

4
(λ1 − λn)

2 

so that  

2nRF(G) − ℰℛ(G)2 ≤
n2

4
(λ1 − λn)

2. 

After rearranging the terms, we get the required result.  

Theorem 5.7 Let G be a graph of order n. Then, 
2RF(G)+n|λ1||λn|

|λn|+|λ1|
≤ ℰℛ(G)where |λ1| 

and |λn| are the maximum and minimum of the absolute value of eigenvalues of ℛ(G). Equality 

will be attained if and only if for each 1 ≤ i ≤ n, either |λi| = |λ1| or |λi| = |λn|.  

Proof. Substituting bi = |λi|, ai = 1, r = |λn| and R = |λ1| in Lemma 5.1, we have  

∑

n

i=1

|λi|
2 + |λn||λ1|∑

n

i=1

1 ≤ (|λ1| + |λn|)ℰℛ(G) 

so  that 
2RF(G) + n|λ1||λn|

|λ1| + |λn|
≤ ℰℛ(G) 

5.2.Upper bounds for Sombor energy. 

Theorem 5.8 If G is a graph of order n, then ℰℛ(G) ≤ √2nRF(G).  

Proof. Put ai = 1 and bi = |λi| in Cauchy-Schwarz inequality, we get  

[ℰℛ(G)]2 ≤ n∑

n

i=1

|λi|
2 = 2nRF(G) 
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Simplifying the above equation, we get the required result.  

Theorem 5.9 Let G be a non-trivial graph. Then,  

ℰℛ(G) ≥ √
Tr(ℛ(G)2)3

Tr(ℛ(G)4
. 

Proof. Taking ai = |λi|
2/3, bi = |λi|

4/3, p =
3

2
, and q = 3 in the Hölder inequality  

∑

n

i=1

aibi ≤ (∑

n

i=1

ai
p
)

1

p

(∑

n

i=1

bi
q
)

1

q

, 

∑

n

i=1

|λi|
2 =∑

n

i=1

|λi|
2

3(|λi|
4)
1

3 ≤ (∑

n

i=1

|λi|)

2

3

(∑

n

i=1

|λi|
4)

1

3

 

or 

ℰℛ(G) ≥ (
∑ni=1 |λi|

2

(∑ni=1 |λi|
4)
1

3

)

3

2

= √
Tr(ℛ(G)2)3

Tr(ℛ(G)4)
. 

Theorem 5.10 Let G be a graph with order n. Then,  

√2RF(G) + n(n − 1)Φ
2

n

n
≤ ℰℛ(G) ≤ √

2(n − 1)RF(G) + nΦ
2

n

n
. 

Proof. Setting ai = λi
2 in Lemma 4.2, we get  

∑

n

i=1

λi
2 + n(n − 1)(∏

n

i=1

λi
2)

1

n

≤ n(∑

n

i=1

|λi|)

2

≤ (n − 1)∑

n

i=1

λi
2 + n(∏

n

i=1

λi
2)

1

n

 

so that  

2RF(G) + n(n − 1)Φ
2

n ≤ nℰℛ(G)2 ≤ 2(n − 1)RF(G) + nΦ
2

n. 

On simplifying, we arrive at the result.  

Theorem 5.11 Let G be a graph of order n. Then  

nRF(G) ≤
1

4
(√
λ1
λn
+√

λn
λ1
)ℰℛ(G)2. 

Proof. Setting ai = |λi| and bi = 1 in Lemma 4.4, we get  

∑

n

i=1

1∑

n

i=1

|λi|
2 ≤

1

4
(√
AB

ab
+ √

ab

AB
)

2

(∑

n

i=1

|λi|)

2

. 

 Clearly, λn ≤ λi ≤ λ1. Choosing A = λ1, a = λn, and B = b = 1, we have  

nRF(G) ≤
1

4
(√
λ1
λn
+√

λn
λ1
)ℰℛ(G)2. 

6. Chemical applicability of 𝓔𝓡(𝑮) 

In this section, we make a computational analysis of the reverse Sombor energy ℰℛ(𝐺) 

and 𝜋-electron energy of hetero atoms. Further, we compare the graph energy 𝐸(𝐺)) with 

ℰℛ(𝐺) taking graphs 𝐺 to be trees with fixed order 𝑛 = 8,9,⋯ ,14, which is very relevant as a 
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study of correlation within classes of graphs with fixed order and size provides a better 

understanding of the invariant.  

6.1.Correlation analysis of 𝜋-electron energy with ℰℛ(𝐺). 

The Hückel molecular orbital(𝐻𝑂𝑀) theory is largely concentrated on conjugated, all-

carbon compounds. When considering hetero atoms, one can compare the energy values of 

hetero compounds to determine the range of such compounds. For hetero atoms, we must thus 

modify the Coulomb (α) and resonance integral (β) values (see [32, 33, 34] for specifics). We 

have calculated ℰℛ(𝐺) with a dataset of total 𝜋-electron energy values of hetero atoms, which 

are found in [35]. The molecules containing hetero atoms with the total 𝜋-electron energy and 

the reverse Sombor energy have been tabulated in Table 1. Further, we have found that ℰℛ(𝐺) 

has a strong correlation with that of hetero atoms with correlation coefficient 𝑟 = 0.964 and 

𝑟2(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) = 0.930 (see Figure 1).  

 
Figure 1. Correlation of ℰℛ(𝐺) with the total 𝜋-electron energy of molecules containing hetero atoms. 

Table 1. Molecules containing hetero atoms with total 𝜋-electron energy [35] and the reverse Sombor energy. 

Molecule Code Total 𝝅-electron energy 𝓔𝓡(𝑮) 
Vinyl chloride-like systems  H1  2.23   6.32  

Butadiene perturbed at C2  H2   5.66   9.3  

Acrolein like systems  H3   5.76   9.38  

1, 1-Dichloro-ethylene like systems H4   6.96   10.95  

Glyoxal-like and 1,2-Dichloro-ethylene systems  H5  6.82   9.38  

Pyrrole like systems  H6  5.23   9.15 

Pyridine like systems  H7   6.69   11.31  

Pyridazine like systems  H8   9.06   11.31  

Pyrimidine like systems  H9  9.10   11.31  

Pyrazine like systems   H10   9.07   11.31  

S-Triazene like systems   H11   9.65   11.31  

Aniline like systems   H12   8.19   23.98  

O-Phenylene-diamine like systems   H13   12.21   27.23  

m-Phenylene-diamine like systems   H14   12.22   25.27  

p-Phenylene-diamine like systems   H15   12.21   27.23  

Benzaldehyde like systems   H16   11   29.02 

Quinoline like systems   H17   14.23   34.64  

Iso-quinoline like systems   H18  14.23   34.64  

1-Naphthalein like systems  H19   16.15   36.37  

2-Naphthalein like systems  H20   16.12   36.17 

Iso-indole like systems   H21   13.46   30.45  

Indole like systems   H22  13.59   30.45  

Benzylidine-aniline-like systems  H23  20.10   49.55  

Azobenzene like systems   H24   21.02   49.55 
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Molecule Code Total 𝝅-electron energy 𝓔𝓡(𝑮) 
Acridine like systems   H25   20.56   46.58  

Phenazine like systems   H26   21.62   46.58  

9,10-Anthraquinoline like structures  H27   24.23   52.45  

Cabazole like structures   H28   19.39   42.52  

6.2.Comparing E(G) and ℰℛ(𝐺)of trees. 

The correlation analysis of 𝐸(𝐺) and ℰℛ(𝐺) has been done, taking graphs 𝐺 to be trees with 

fixed order 𝑛 = 8,9, … ,14. Based on these calculations and from Figure 2 we have observed the 

following regularities without any exception: 

• The data points in each cluster nearly form a straight line with a positive slope.  

• These lines are almost parallel to each other, with the distance between them being nearly 

equal.  

• The reverse Sombor energy and graph energy increases as the order of the tree increases.  

• ℰℛ(G) is observed to be minimum for path graphs.  

The correlation coefficient R between the graph energy and ℰℛ energy for all trees of 

order n = 8,9, … ,14 has been tabulated in Table 2.  

Table 2.Correlation between graph energy and ℰℛ energy for all trees of order 𝑛 = 8,9,10, … ,14. 
𝒏  Number of trees  𝑹 

8  23   -0.479059835  

9  47   -0.490346429  

10  106  -0.50306039  

11  235   -0.514487292  

12  551   -0.525680684  

13  1301   -0.530061711  

14  3160   -0.5344958  

 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

 
(g) 

Figure 2. ℰℛ(𝐺) vs 𝐸(𝐺) plotted for the set of trees. 

(a) ℰℛ(𝐺) vs 𝐸(𝐺) plotted for the set of trees with 8 vertices; (b) ℰℛ(𝐺) vs energy 

𝐸(𝐺) plotted for the set of trees with 9 vertices; (c)ℰℛ(𝐺) vs energy 𝐸(𝐺) plotted for 

the set of trees with 10 vertices; (d)ℰℛ(𝐺) vs energy 𝐸(𝐺) plotted for the set of trees 

with 11 vertices; (e)ℰℛ(𝐺) vs that of energy 𝐸(𝐺) plotted for the set of trees with 12 

vertices; (f)ℰℛ(𝐺) vs that of energy 𝐸(𝐺) plotted for the set of trees with 13 vertices; 

(g)ℰℛ(𝐺) vs energy 𝐸(𝐺) plotted for the set of trees with 14 vertices. 

7. Conclusions 

In this article, we have introduced the concept of reverse Sombor energy of a graph 

based on the reverse Sombor index of a graph. Further, we have observed some mathematical 

properties of the reverse Sombor matrix and the corresponding energy ℰℛ(𝐺) and have 

established some bounds on ℰℛ(𝐺). We have also discussed the chemical applicability of this 

parameter by comparing it with the 𝜋-electron energy of some polyaromatic hydrocarbons and 

with the graph energy of trees of order 𝑛 = 8,9,⋯ ,14 is presented. Based on the analysis, it 

has been found that there is a good correlation between ℰℛ(𝐺) and 𝜋-electron energy, whereas 

the correlation between ℰℛ(𝐺) and 𝐸(𝐺) on trees is found to be increasing with the order of 

the tree. These observations are purely experimental, and further theoretical investigation might 

shed some light on this behavior.   
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