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Abstract: The halide perovskite materials are being studied owing to their significant optical and 

thermoelectric properties and attractive applications in solar cells, LEDs, magnetic, optoelectronic, and 

temperature-resistive devices. Therefore, the electronic, structural, and thermodynamic properties of 

Cs2NiF6 have been examined utilizing the WIEN2k code's full-potential linearized augmented plane 

wave (FP-LAPW) approach based on the DFT. Cs2NiF6 crystallizes in the cubic structure, space group 

Fm-3m (225). Its band profile shows a semiconducting nature with a band gap of 1.79 eV. Further, we 

have estimated thermodynamic parameters such as bulk modulus, Debye temperature, and thermal 

expansion coefficient in temperatures varying from 0 to 1200K and pressures from 0 to 30 GPa using 

the QHD model.  
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1. Introduction 

The perovskite materials having the general formula ABX3 were first discovered by 

"Gustav Rose in 1839" [1]. Perovskites are in high demand because of their remarkable 

applications in solar cells, optoelectronic devices, and thermoelectric devices [2-10]. The 

notable advancements in the perovskite solar cells can be credited to the exceptional 

photovoltaic properties exhibited by lead halide perovskites, which include relatively low 

effective masses for holes and electrons, high optical absorption coefficients, excellent 

stability, good defect tolerance, large diffusion lengths of photo-generated charge carriers, and 

tunable direct bandgap energy. In recent years, there has been a significant improvement in the 

efficiency of perovskite materials, with values increasing from 2.2% to 20.1% [11-15]. 

However, these compounds contain Pb, which is considered to be toxic and unstable against 

temperature and moisture. Sn or Ge can replace lead, but these perovskites have a self-doping 

effect [16], so another possibility is to study double perovskites. Double perovskites have 

gained interest as alternatives to traditional perovskite solar cells. They offer improved stability 

and environmental durability compared to their single perovskite counterparts. 

The double perovskites, represented by the general formula, A2BB'X6, where A is a rare 

earth element, B and B' are cations, and X can oxide or halides, have applications in the field 

of industry and technology. The vacancy ordered double perovskite is A2BX6, where A, B, and 
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X represent tetravalent, octavalent cation, and halide, respectively. These halide perovskites 

can be the replacement of lead halide perovskites. Researchers are studying various vacancy-

ordered double perovskites for their applications in optoelectronic devices and other renewable 

energy technologies [17-31,50-51]. Rb2ZrCl6 exhibits impressive resistance to high 

temperatures, ultraviolet radiation, and exposure to moisture and oxygen in the environment 

[21]. Recently, Cs-based double perovskites have been prepared experimentally and studied. 

Wang et al. conducted a study to identify the potential use of double perovskites for 

optoelectronic applications in the industry [14]. They explored several novel double 

perovskites and proposed their potential applications in solar cells. In recent studies, several 

potential materials, such as Cs2SnI6 and Cs2PdBr6, have been synthesized based on theoretical 

predictions [17]. Fang et al. prepared the Cs2SnI6 powder and studied the application in solid-

state dye-sensitized solar cells and obtained PCE of 6.14% by using an additive in the Cs2SnI6 

electrolyte [28]. Ali M. et al. investigated Cs2NiCl6 and Cs2NiBr6 and found them to have 

extremely narrow bandgaps. These materials are well-suited for optoelectronic applications in 

visible and ultraviolet light regions due to their ability to exhibit multiple absorption peaks 

within the energy range of 1 eV [27]. Fernandez et al. studied the XRD pattern of Cs2TeI6 

powder, which shows the cubic structure (space group Fm-3m) and calculated optical gaps of 

1.5eV [29]. However, the exploration of stable halide perovskites without lead and with small 

band gaps continues to be an active research area. Vacancy-ordered double perovskite can 

serve as an alternative to lead-based halide perovskite. From the literature survey, we found 

that the properties of Cs2NiF6 have not been calculated till now. Thus, we have performed 

calculations to determine the electronic, thermodynamic, and structural properties of Cs2NiF6 

in WIEN2k code based on density functional theory (DFT).  

Section 1 contains a brief introduction to the perovskite materials. Section 2 includes 

computational details used for the present calculations. Section 3 demonstrates the results 

obtained from the calculations. In the last section, the conclusion is presented. 

2. Computational details 

Cs2NiF6 has been studied for its electronic, thermodynamic, and structural properties 

utilizing the WIEN2k code's FP-LAPW approach [32-33], which is based on DFT [34]. 

"Perdew Burke Ernzerhof Generalized Gradient Approximation(PBE-GGA)" and PBEsol 

("Perdew-Burke-Ernzerhof solid-state") exchange-correlation potential are used in calculations 

to describe the electronic structure and properties of the materials [35-36]. The ground state 

optimization is solved by "Birch Murnaghan equation" [37].  

The maximum angular momentum lmax was modified to 10, and RMT×Kmax was set to 7 

where RMT and Kmax defines the size of the muffin-tin sphere and the maximum wave vector 

allowed in the calculation. The core leakage has been prevented by setting energy and charge 

convergence to 10-3 Ry and 10-3 e/a.u3, respectively. Fourier transformation vector Gmax was set 

to 12 a.u-1. We take RMT values as 2.28, 1.72, and 1.30 a.u for Cs, Ni, and F, respectively. The 

numbers of K-points are set to be 1000. The mechanical properties of Cs2NiF6 are estimated 

using an IR-elast package in WIEN2k [38]. 

The thermodynamic parameters of Cs2NiF6 were determined using the quasi-harmonic 

Debye model (QHD) at different temperatures and pressures [39-41]. This model takes into 

account the thermal vibrations of atoms and provides estimates of thermodynamic properties 

such as entropy, heat capacity, and free energy as a function of temperature and pressure. The 

Gibbs function is minimized by optimizing the volume of the system: 
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[
𝜕𝐺∗

𝜕𝑉
]

𝑝,𝑇
                                               (1) 

Equation 1 can be solved to obtain the thermal equation of state, which can be utilized 

to calculate the Debye temperature, thermal expansion coefficient, isothermal bulk modulus, 

and Gruneisen constant. 

3. Results  

3.1. Structural properties. 

In cubic structure, different atoms of Cs2NiF6 occupy different positions: Cs at an 

atomic position of (0.25, 0.25, 0.25), Ni at (0.5, 0, 0), and F at (0, 0.298161, 0) shown in Figure 

1 with space group Fm-3m (225) [42].  

 

 

 

Figure 1. Crystal structure of Cs2NiF6 

The A2BX6 structure comprises six separate [BX6] octahedra, each providing a 12-fold 

coordination environment for individual X anions. These [BX6] octahedra assume a cubic 

arrangement when positioned at the corners and face center positions. The optimization is done 

using GGA and PBEsol potentials. The optimized lattice parameter was evaluated by an 

optimized curve of total energy and volume obtained using "Birch Murnaghan equation of 

state" (eq 2) as demonstrated in Figure 2. 
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Figure 2. Optimized curve of Cs2NiF6 for different exchange potentials a) GGA; b) PBEsol. 

Table 1 presents the determined values of bulk modulus, optimized energy, volume, 

lattice parameter, and pressure derivative. The optimized lattice parameter (8.88 Å) is found to 
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be close to the experimental results (8.94 Å) [43]. The PBEsol has the lowest total minimum 

optimized energy than GGA potential. 

The formation energy of Cs2NiF6 is calculated using eq 3 

ΔH𝑓 = 𝐸𝐶𝑠2𝑁𝑖𝐹6

𝑡𝑜𝑡𝑎𝑙 − [2𝐸𝐶𝑠
𝑏𝑢𝑙𝑘 + 𝐸𝑁𝑖

𝑏𝑢𝑙𝑘 + 6𝐸𝐹
𝑏𝑢𝑙𝑘]                                (3) 

where 𝐸𝐶𝑠
𝑏𝑢𝑙𝑘, 𝐸𝑁𝑖

𝑏𝑢𝑙𝑘 , 𝐸𝐹
𝑏𝑢𝑙𝑘 are the energies of the fundamental state per atom of Cs, Ni, 

F, and   𝐸𝐶𝑠2𝑁𝑖𝐹6

𝑡𝑜𝑡𝑎𝑙  gives the total energy of Cs2NiF6.The formation energy is calculated to be -

2.43eV/atom. The studied material is stable owing to its negative formation energy. 

Also we have calculated the cohesive energy of Cs2NiF6 using the equation4. 

𝐸𝑐𝑜ℎ = 2𝐸𝐶𝑠
𝑖𝑠𝑜 + 𝐸𝑁𝑖

𝑖𝑠𝑜 + 6𝐸𝐹
𝑖𝑠𝑜 − 𝐸𝐶𝑠2𝑁𝑖𝐹6

𝑡𝑜𝑡𝑎𝑙                                   (4) 

where 𝐸𝐶𝑠
𝑖𝑠𝑜, 𝐸𝑁𝑖

𝑖𝑠𝑜 and 𝐸𝐹
𝑖𝑠𝑜 denote total energies of isolated atoms and 𝐸𝐶𝑠2𝑁𝑖𝐹6

𝑡𝑜𝑡𝑎𝑙  is the 

total ground state energy of Cs2NiF6 .The value of cohesive energy is found to be 4.01 eV/atom 

which indicates that the material is stable.  

Table 1. Ground state values of lattice parameter, volume, E0, B, and B'. 

Parameters Present study Experimental/others 

 GGA PBEsol  

Lattice constant, a (Å) 9.04 8.88 
8.94 [43] 

8.81 [14] 

Volume, V (a.u3) 1246.3304 1181.5678 - 

E0 (Ry) -35402.022 -35383.471 - 

Bulk modulus, B (GPa) 47.73 54.59 - 

Pressure derivative, B' 5.07 4.99 - 

3.2. Electronic properties. 

Figure 3 depicts the electronic band structure of Cs2NiF6. The band gap of Cs2NiF6 is 

calculated to be 1.795 eV, with the conduction band (CB) minima located at the X point in the 

Brillouin zone, while the valence band (VB) maxima are situated at the Γ point. This indicates 

that Cs2NiF6 has an indirect band gap and semiconducting nature. Cs2NiF6 has a small band 

gap, which can be useful in optoelectronic applications [29]. 

The density of states (DOS) was employed to analyze and gain insights into the 

electronic properties of Cs2NiF6. Figure 4 displays the total DOS plots, which suggest that the 

material is semiconducting. Understanding the orbital properties aids in elucidating the 

electronic contributions of individual atoms to the stabilized structure. The Positioning of Cs 

orbitals significantly away from the Fermi level indicates that Cs has minimal influence on the 

band edge states in Cs2NiF6. Furthermore, both the Ni and F orbitals play a role in forming the 

CB edge and VB edge. 

 
Figure 3. Band structure of halide double perovskite Cs2NiF6. 
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Figure 4. Total density of state plot of Cs2NiF6. 

3.3. Elastic and mechanical properties. 

Alternatively, the stability of materials under compression is determined by the elastic 

constants. Therefore, the mechanical properties of Cs2NiF6 are estimated using the IR-elast 

package in WIEN2k [38] code. These constants also tell about the bonding nature, 

ductile/brittle nature, and melting temperature. Cs2NiF6 has a cubic structure, which is also 

satisfied by the criteria  

C11 > 0, C44 > 0, C11-C12 > 0, C11+2C12 > 0                              (5) 

The values of elastic constants are predicted to be 77.44 GPa, 6.71 GPa, and 17.38 GPa 

for C11, C12, and C44, respectively. The estimated values satisfy the criteria of stable cubic 

structure given by Eq 4. The Voigt-Reuss-Hill approximation [44-46] is used to calculate 

properties like bulk modulus and shear modulus by using eq (6-10) 

Bulk modulus: 

𝐵 =
1

3
(𝐶11 + 2𝐶12)                                                                 (6) 

Voigt's shear modulus 

𝐺𝑉 =
1

5
(𝐶11 − 𝐶12 + 3𝐶44)                                                    (7) 

Reuss's shear modulus: 

𝐺𝑅 =
5(𝐶11−𝐶12)𝐶44

3(𝐶11−𝐶12)+𝐶44
                                                                 (8) 

Shear modulus: 

𝐺 =
1

2
(𝐺𝑉 + 𝐺𝑅)                                                                     (9) 

Young's modulus: 

𝑌 =
9𝐵𝐺

3𝐵+𝐺
                                                                              (10) 

The calculated values are given in Table 2. The ratio of bulk modulus to the Shear 

modulus (B/G) explains the nature of materials [47]. Cs2NiF6 shows a brittle nature as the value 

of B/G is 1.3. This is also verified by the negative value of Cauchy's pressure factor, C12 – C44 

(-10.66 GPa) [48]. 
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Table 2. Calculated elastic constants C11, C12, C44 in (GPa), B (GPa), Voigt shear modulus GV (GPa), Reuss 

shear modulus GR (GPa), shear modulus G (GPa), Young's modulus Y (GPa), Cauchy pressure (C12-C44) 

(GPa), Poisson's ratio ν, B/G ratio and melting temperature Tm (K) for Cs2NiF6. 

Properties Cs2NiF6 

C11 77.44 

C12 6.71 

C44 17.38 

B 30.29 

GV 24.57 

GR 21.82 

G 23.19 

Y 55.44 

C12-C44 -10.66 

ν 0.19 

B/G 1.30 

Tm 1010 ± 300 K 

The bonding nature is predicted by the Poisson ratio, which is given by: 

𝜈 =
3𝐵−2𝐺

2(3𝐵+𝐺)
                                                                           (11) 

Materials have covalent bonding if 𝜈 = 0.1, ionic if 𝜈 = 0.25 and metallic if 𝜈 = 0.33 

[48]. The Poisson ratio is calculated to be 0.19 for Cs2NiF6, indicating covalent bonding. The 

melting temperature has been theoretically calculated using Eq 12 [49]. 

𝑇𝑚 = [(553 + 5.911 𝐶11)  ± 300 𝐾 ]                                 (12) 

The value of Tm is found to be 1010 ± 300 K. 

3.4. Thermodynamic properties. 

Thermodynamic parameters were calculated using the QHD model for Cs2NiF6 at 

various temperatures and pressures to assess the applicability of Cs2NiF6 in various industry 

applications. For calculating thermal parameters, the Gibbs function (G*) should be kept to a 

minimum in terms of volume at constant pressure and temperature [39-41]. 

[
𝜕𝐺∗

𝜕𝑉
]

𝑝,𝑇
= 0                                                                  (13) 

Debye temperature (θD), Grüneisen parameter (γ), Bulk modulus (B), and thermal 

expansion coefficient (α), were calculated by using Equations (14-17). 

𝐵 = [𝑉 (
𝜕2𝐺∗

𝜕𝑉2 )
𝑝,𝑇

]
𝑣𝑜𝑝𝑡(𝑝,𝑇)

                                             (14) 

𝛾 = −
ⅆ 𝑙𝑛 𝜃𝐷

ⅆ 𝑙𝑛 𝑉
                                                                  (15) 

𝛼 =
1

𝑉
[

𝜕𝑉

𝜕𝑇
]

𝑝
                                                                   (16) 

𝜃𝐷 =
ℎ

𝑘
[6𝜋2𝑉

1

2𝑛]

1

3
𝑓(𝑣)√

𝐵𝑠

𝑀
                                         (17) 

𝑣 is Poisson's ratio, Bs is the adiabatic bulk modulus. The estimated thermodynamic 

parameters values at T= 0, 300K and at P=0 GPa is shown in Table 3. 

Table 3. Thermodynamic parameters at P=0GPa, T=0,300K. 

Thermodynamic parameter Temperature 

 T= 0K T= 300K 

Bulk modulus, B (GPa) 54.50 51.83 

Thermal expansion Coefficient, α 

(K-1) 
0 3.19 ×10-5 
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Thermodynamic parameter Temperature 

Debye Temperature, θD (K) 50.67 49.64 

Grüneisen parameter, γ 2.33 2.35 

 

The behavior of the bulk modulus (B) under pressure and temperature was analyzed for 

the material under investigation. By studying the variation of B with different temperatures and 

pressures, insights were gained into how the material's mechanical properties respond to these 

external conditions. In Figure 5, a variation of bulk modulus with temperature (0K-1200K) for 

various pressure values from 0GPa to 30GPa is presented. It is noted that with increasing 

temperature B decreases, while with increased pressure, bulk modulus increases. It indicates 

that the hardness of a material is reduced by increasing temperature. The behavior of bulk 

modulus under temperature and pressure is a fairly common trend where an increase in 

temperature results in reduced hardness [50]. 

 
Figure 5. Change in B with pressure and temperature. 

The expansion and contraction of the solids can be determined by the thermal expansion 

coefficient. The solids contract when pressure is increased, while it expands when temperature 

is increased. Figure 6 shows the change in the thermal expansion coefficient. It increases 

sharply at 100 K, and after that, it increases slowly, whereas as the pressure rises, its value 

decreases, which is similar to behavior in other perovskites [6]. The estimated value of α at 

300K and 0 GPa is found to be 3.19 × 10-5 K-1.  

 
Figure 6. Change in 𝛂 with temperature and pressure. 

Debye temperature (θD) denotes the peak temperature as a result of a single mode of 

vibrations [3]. Figure 7 presents the change in θD with changes in temperature (0-1200 K) and 
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pressure (0-30 GPa). It is observed that θD reduces slowly as the temperature rises from 0 K to 

1200K whereas θD increases as pressure increases. The value of θD  is estimated to be 50.67 K 

at 0 K and 0 GPa. 

Grüneisen parameter (γ) tells us about the degree of anharmonicity of the solids [51]. 

In Figure 8, a change in γ with temperature and pressure is presented. Grüneisen parameter 

increases slowly with an increase in temperature, but it reduces rapidly with a rise in pressure. 

This indicates that anharmonicity decreases in Cs2NiF6 with the rise in pressure. The value of 

γ is 2.35 at 0 GPa, which reduces to 1.86 at 30 GPa and 300K.  

The properties of Cs2NiF6 have not been investigated other than its structural properties. 

The lattice constant obtained from the optimized curve is in agreement with the experimental 

value and other work, whereas other parameters are calculated for the first time, and they are 

similar to another kind of double perovskite materials [2,3,6,30,31]. 

 
Figure 7. Change in θD with temperature and pressure.  

 
Figure 8. Change in γ with temperature and pressure.  

4. Conclusions 

The structural, thermodynamic, and electrical properties of Cs2NiF6 have all been 

examined and analyzed in the WIEN2k code using DFT. Its structure is stable in cubical form, 

having an Fm-3m (225) space group. Cs2NiF6 shows an indirect band gap of 1.795 eV and a 

semiconducting nature. Thermodynamic parameters are obtained using QHD model. The 

hardness of the material is reduced by increasing temperature, and anharmonicity decreases in 

Cs2NiF6 with a rise in pressure. The value of α , θD and γ were estimated to be 3.19 × 10-5K-1 , 

49.64 K, and 2.35, respectively at 300 K. 
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