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Abstract: In this present study, Graphene oxide (GO) is synthesized by modified Hummer’s method. 

The GO formed is further used to prepare V2O5 embellished reduced graphene oxide (rGO) composites 

(rGO: V2O5) in varying ratios via an in-situ process. UV-Vis spectroscopy was employed to study 

optical properties such as band gap and optical conductivity of the composites and individual species. 

rGO synthesized was studied to have a narrow band gap of 1.93 eV, which was much lower than the 

metal oxide used. Thus, rGO enticing material is to be used to modify the band gap of the prepared 

composites, thus lowering the optical band gap to 1.32 eV for rGO: V2O5 (2:1) and enhancing the optical 

conductivity to 5.34×1010 S.cm-1. Characterization of the compound is done using various analytical 

techniques, including FTIR, SEM, XRD, and TGA. All these studies designate the successful 

fabrication of the required composites with specific properties. Thus, it is concluded from the study that 

rGO:V2O5 in 2:1 can be used as a potent material in optoelectronic applications. 

Keywords: Clean and affordable energy, optical conductivity, optical band gap, reduced graphene 

oxide, V2O5. 
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1. Introduction 

In recent years, the study of the optical properties of material has been an interesting 

area of research due to the increasing demand for advanced materials with unique electronic 

and optical properties [1]. In current studies, rGO and V2O5 synthesize a hybrid material with 

better optical activity than the individual material. 

V2O5  was chosen for the research due to its remarkable properties, such as good 

adsorption in visible regions, electrical conductivity, and great electrochemical performance. 

Along with this, V2O5 is an easily available and efficacious material [2-4]. rGO has been used 

due to its ability to act as a supporting material for charge transport. rGO consists of many 

important properties, such as electrical conductivity, large surface area, and good optical 

properties [5-8]. 

Various studies have been done to investigate the optical properties of rGO: V2O5 

composites that are obtained by the ex-situ fabrication method. One of the important optical 

properties of these materials is the optical band gap, which measures the energy required to 

excite the electrons from the valance band to the conduction band. This is a significant property 
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for designing and developing devices like solar cells, photodetectors, and light-emitting diodes 

[9-10]. 

Optical conductivity is a property of the material that determines its ability to conduct 

light. Knowing the optical conductivity of rGO : V2O5 composites can optimize their optical 

performance for numerous applications. Thus, it is an important area to research as it can 

potentially contribute to developing advanced optical and electronic devices [11-13]. In this 

research work, rGO is composited with V2O5 in different ratios to study the synergetic impact 

of V2O5 and rGO with each other. The exciting results make these composites a promising 

contender for optoelectronic applications.  

2. Materials and Methods  

2.1. Materials.  

Graphite, Conc. Sulphuric acid (H2SO4), Potassium permanganate (KMnO4), Ascorbic 

acid, Hydrochloric acid (HCl), 30% Hydrogen peroxide (H2O2), and V2O5 are purchased from  

Loba Chemie Pvt. Ltd. 

2.2. Synthesis of GO from graphite.  

GO is synthesized from graphite by using Modified Hummer’s method. 5g of Graphite 

powder is taken in a 500 ml beaker, to which 75 ml of concentrated H2SO4 is added. 15 g of 

KMnO4 is added very slowly to the reaction. The material was stirred for 2 hours at a 

maintained temperature of 5°C. Afterward, the temperature increased to 35°C, and the material 

was kept vigorously stirred for 30 minutes. 200 ml deionized water is added to the above 

solution, which generates a temperature rise from 35-98°C owing to the heat of hydration. 

Stirring is continued for the next 45 minutes at the temperature mentioned above. 140 ml 

deionized water and 20 ml H2O2 (30 wt. %) is then added, which results in the generation of 

yellow-brown precipitates of GO. Further, on vacuum filtration, the precipitates are separated 

and washed with 5% aqueous HCl. The obtained filtrate was dried for 24 hours at 60°C in a 

vacuum oven [14-15]. 

2.3. Synthesis of rGO by ascorbic acid. 

GO is transformed to rGO with the help of ascorbic acid. 1g of GO prepared earlier is 

dispersed in 400 ml of water. 10 g of ascorbic acid is added to the solution and is allowed to 

stir for 120 minutes at 60°C. The product is obtained as a thick black slurry and is collected 

with the help of centrifugation. 10-20 ml H2O2 (30 wt. %) was added to the reaction mixture, 

and it was stirred for 30 minutes at 60°C to remove excess ascorbic acid. A black-colored 

product is obtained and washed with ethanol and water 3-4 times. The product is collected with 

the help of centrifugation and dried at 120°C for 24 hours [16-17]. 

2.4. Preparation of composite ratios. 

Composite of rGO and metal oxide V2O5 are prepared in varying ratios of 1:1, 1:2, and 

2:1 using the solvothermal method. rGO is prepared by reducing GO with the help of ascorbic 

acid. V2O5 is added to the rGO formed, and stirring is continued for 1 hour at 60°C (Scheme 

1). The product is sonicated for 30 minutes at room temperature for better insertion of V2O5 in 
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the rGO layers. The product is obtained by centrifugation followed by decantation. The ratios 

are dried at 60°C and ground to powder form [18]. 

 
Scheme 1. Diagrammatic representation of the preparation of rGO : V2O5 composite. 

3. Results and Discussion 

3.1. UV-Vis spectroscopy. 

UV-Vis spectroscopy is used to study the optical properties of the compounds. 

Characterization of compounds is done by using ethanol as a solvent. The instrument used for 

the analysis is a Shimadzu UV-1900i spectrometer with a wavelength range of 200-800 nm. 

According to the data collected with the help of UV-Vis spectroscopy, the peaks observed at 

245 nm in GO are slightly shifted to 279.78 nm in rGO. This peak shift shows the 

rearrangement of graphene sheets after the reduction process [19]. The peaks observed in GO 

at 245 nm and 310 nm are of π to π* and n to π*  transitions due to the presence of C=C bonds 

and C=O bonds, respectively. As GO is reduced to rGO, a red shift is observed [20-21] (Figure 

1). 

 
Figure 1. UV-Vis absorption spectra of all individual and composite materials. 

Band gap is an intrinsic property of an optically conductive material; the band gap is 

observed for different ratios of the rGO:V2O5 composites, V2O5, and rGO with the help of UV-

Vis spectroscopy. For rGO, the observed band gap lies near 1.93 eV, while for V2O5, the band 
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gap lies around 2.82eV (Figure 2a); the results follow the reported studies [22-23]. When the 

band gap of composites was studied, a decrease in the band gap of metal oxide V2O5  was seen 

for 1:1 and 2:1 samples. It is expected as such due to the introduction of defects in the 

composites leading to an increase in charge carrier density and mobility. Whereas in 1:2 

sample, an increase in the band gap is observed. It may be due to the higher band gap of 

transition metal oxide V2O5. 

Optical conductivity is calculated for all the samples. It has been observed that optical 

conductivity for V2O5 and rGO is 2.07×1010 and 3.55×1010 S.cm-1, respectively (Figure 2 b). 

The optical conductivity for the rGO:V2O5 composites that were studied has been observed in 

various ratios of composites (Table 1). The formulas used for calculating optical conductivity 

are as follows: 

Transmittance (T): 

𝑇 = 𝑒𝑥𝑝⁡(−2.303⁡𝐴)………. (1) 

Reflectance (R): 

𝑇 = (1 − 𝑅)2𝑒𝑥𝑝⁡(−𝐴)………. (2) 

Reflectance has been used to calculate the reflective index (𝑛) with the help of the 

following formula: 

𝑛 = (
4𝑅

(𝑅−1)2
− 𝐾2)

1/2

−
(𝑅+1)

(𝑅−1)
 ………. (3) 

Extinction coefficient (K): 

𝑘 =
𝜆𝛼

4𝜋
 ………. (4) 

Optical conductivity(𝜎): 

𝜎 =
𝛼𝑛𝑐

4𝜋
 ………. (5)  [24] 

Table 1. Observed band gap and optical conductivity of rGO, V2O5, and synthesized composites. 

Compound Observed band gap (eV) Optical conductivity×1010 (S.cm-1) 

rGO 1.97 3.55 

V2O5 2.82 2.07 

rGO : V2O5 (1:1) 2.34 2.16 

rGO : V2O5 (1:2) 3.21 1.30 

rGO : V2O5 (2:1) 1.32 5.34 

 

  

(a) (b) 

Figure 2. (a) Band gap of rGO, V2O5, and synthesized composites; (b) Optical conductivity of rGO, V2O5, and 

synthesized composites. 
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3.2. Fourier transforms infrared (FTIR) spectroscopy. 

The Fourier transform infrared spectra were observed with the help of KBr pellets using 

a Perkin Elmer spectrometer with a Diamond ATR detector ranging from around 400 to 4000 

cm-1 with a resolution of 1 cm-1. 

3.2.1. FTIR of GO. 

The FTIR spectra of GO (Figure 3) show the peaks 1063 cm-1, which refers to the C-O 

stretching. The peak observed at 1224.85cm-1 confirms the C-O-C bending. Peak near 3342.37 

cm-1 refers to OH stretching vibrations of C-OH group and water content. Peak observed near 

1700 cm-1 shows the C=O stretch, and peaks near 1623 cm-1 show the C=C stretch [25]. 

3.2.2. FTIR of rGO.  

In the IR spectra of rGO (as shown in Figure 3), the peaks observed in the GO, 1224, 

3342, 1623, and 1700cm-1 are either removed or decreased, displaying that GO has been 

reduced to rGO. A peak near 1066cm-1 shows the presence of a C-O stretch in the compound. 

The peak near 1600 shows the presence of a C=C bond [26]. 

3.2.3. FTIR of V2O5. 

In the IR spectra of V2O5 (as shown in Figure 3), the peak is observed near 1003, 830.23, 

513.35, and 464cm-1. Peaks observed near 1003cm-1 represent stretching vibrations for terminal 

bonds of oxygen (V=O). Peaks near 513.35cm-1 and 464cm-1 represent symmetric and 

asymmetric stretches of triply coordinated oxygens. Peaks observed near 830.23cm-1 represent 

vibrations of bridged oxygen [27]. 

3.2.4. FTIR of rGO: V2O5.  

The peaks observed in Figure 3, near 3318cm-1 and 1699cm-1, represent the O-H 

stretching and CO stretching, respectively. The peak observed near 1560cm-1 represents C=C 

stretching. The peaks observed near 1003cm-1 show stretching vibrations for terminal bonds of 

oxygen (V=O). Since rGO:V2O5 composite has peaks similar to both rGO and V2O5, It 

contributes to the characterization of the formation of the required composite [26-27]. 

 
Figure 3. FTIR spectra of all the materials. 

https://doi.org/10.33263/BRIAC144.090
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC144.090  

 https://biointerfaceresearch.com/ 6 of 9 

 

3.3. X-ray diffraction analysis. 

X-ray diffraction (XRD) is a great analytical technique that helps predict a compound's 

material properties. The XRD machine used to characterize the samples is Bruker AXS D8 

Advance A25-X1-1A2Z2C4B0. The spectra are recorded at a 2θ range of 10° - 70°, with the 

help of an anode copper source of Cu-Kα radiation (λ=1.54 Å) at the temperature of 25°C. In 

Fig. 4, a sharp peak was observed at 2 =10.5°, and a weak peak near 21° suggests the 

formation of GO. The peak near 2θ =10° is disappeared in rGO due to the reduction process. 

The peak observed near 23° and 43° shows the reduction of GO to rGO. Since it is a broad 

peak, it is signified that crystallization has not occurred properly, and the compounds are 

amorphous. In Fig. 4, the peaks observed at 15.9°, 20.2°, 22.03°, and 31.1° refer to the 

orthorhombic phase of V2O5. Since the peaks observed are sharp, it suggests the presence of 

the crystalline nature of V2O5 [28]. In Fig. 4, the peaks were observed near 23° and 43°. Due to 

the interaction between V2O5 and rGO, the peaks present in rGO are intensified [29]. 

 
Figure 4. X-ray diffraction pattern for all the materials. 

3.4. Scanning electron microscopy (SEM). 

Scanning electron microscopy (SEM) is a technique used to study the morphology of 

compounds. The study of composite morphology is done using FE-SEM instrument model 

FESEM: JSM-7610F-Plus, Au Sputter Coater: DII-29030SCRT. Samples are coated with gold 

before the analysis. The scanning electron microscopy image of rGO: V2O5 composite is 

represented in Figure 5. The flake-like structures present in the FE-SEM images represent rGO. 

V2O5 particles present on the surface of rGO are observed to be agglomerated with each other, 

forming a bead-like structure [30]. 

 
a) 
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(b) (c) 

Figure 5. (a) Images of scanning electron microscopy of rGO: V2O5 (2:1) indicating the presence 

of V2O5 in the matrix of rGO; (b) EDS Layered image of FESEM rGO: V2O5 (2:1) representing 

the presence of expected elements; (c) Energy dispersive X-ray spectra of rGO: V2O5 (2:1). 

3.5. Thermogravimetric analysis (TGA).  

Thermogravimetric analysis (TGA) is an analysis technique used to measure the 

thermal stability of a compound. For the current studies, the instrument used is the Perkin Elmer 

thermal analyzer. The temperature range is between 75-580°C in nitrogen flow at a heating rate 

of 10ºC per minute. Figure. 6 represents the TGA curve of V2O5, rGO, and rGO: V2O5 (2:1) 

composite. In rGO,  16.25% weight loss was observed till 200°C. 200-400°C contributes to a 

weight loss of 37.09%, which is further lost to 44.58% till 515°C. V2O5 reduces 18% of its 

weight to 200°C, 37.5% to 400°C, and 46% to 515°C. In the case of composite rGO: V2O5, 

weight loss is 0.2% to 200°C, 0.7% to 400°C, and 1.05% to 515°C [27, 31]. 

 
Figure 6. Thermogravimetric analysis of rGO, rGO:V2O5, V2O5. 

4. Conclusions 

Based on the current studies on optical band gap and optical conductivity of ex-situ 

fabricated rGO: V2O5, a great reduction in band gap is observed. This reduction is attributed to 

the introducing of defects in the rGO: V2O5 composites. rGO itself is a good material because 

it has less band gap. When it is combined with V2O5, an increase in carrier concentration and 

mobility is observed. Due to the reduction in band gap (1.32 eV) and increase in optical 

conductivity (5.34×1010 S.cm-1) for rGO: V2O5 (2:1), the composites can be used for 

applications like solar cells and photodetectors.  
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