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Abstract: Dibenzofuran (DBF) is a typical heterocyclic aromatic compound (O-HETs) capable of 

coexisting with Polycyclic Aromatic Hydrocarbons (PAHs) in settings of pyrolysis and combustion. 

This review focuses on reports entailing the synthesis of DBF derivatives possessing anticancer and 

antibacterial prowess, though it is not a comprehensive discussion of the compounds in question but 

rather an illustration of the range of anticancer and antibacterial activity possessed them besides 

variables synthesis sources thereof. Compounds with diminished benzene rings, e.g., morphine and its 

derivatives, are omitted, besides compounds with alkylation-disrupted aromaticity, such as usnic acid. 

It is worth noting that one of the most important issues that we learned in this review is that dibenzofuran 

derivatives have many medical advantages. 
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1. Introduction 

Polycyclic Aromatic Compounds (PACs), such as Heterocyclic Aromatic Compounds 

(O-HETs) and Polycyclic Aromatic Hydrocarbons (PAHs), are becoming substantial threats to 

the Environment and human health due to their severe mutagenicity, general and photo-induced 

toxicity, and carcinogenicity [1-3]. PAHs emissions are correlated with the releases of NSO-

HETs, it was observed that it comprises 10 and 40% of the total emissions of various PAHs in 

tar oil and also in coal tar, in addition to its water-soluble part [4-7]. DBF is a typical O-HET 

composed of furan and benzene rings. The furan ring is a five-membered ring where the 

heteroatom (oxygen atom) maintains a single pair of nonbinding valence shell electrons. DBF 

is composed of two benzene rings fused on both sides of the furan ring, found to be mutagenic 

and toxic [8]. Usually, DBF is employed as an insecticide, carrier for printing textiles and 

dyeing, and component in heat-transfer oils [9, 10]. DBFs are common in coal and coal tar, 

creosote, crude oils, some high-temperature incineration waste processes, tobacco smoke, 

forest fires, aluminum manufacturing petroleum, rubber, wood combustion, and fossil fuel [8, 

11–19]; they always coexist with other aromatic compounds, like DBF derivatives [16, 20–26]. 

It has been observed during recent references that synthetic organic chemistry has a distinct 

biological activity in all different applied directions [27-51]. Therefore, this review will focus 

on reports related to the synthesis of DBF derivatives with demonstrated antibacterial activity. 
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2. Physicochemical properties of the DBF moiety 

DBF is a white volatile aromatic organic solid compound and is a heterocyclic 

compound that contains a furan ring in the middle of two combined benzene rings and is soluble 

in nonpolar organic solvents; it is thermally robust with a convenient liquid range. A hydrogen 

atom binds all the numbered carbon atoms. DBF is obtainable from coal tar, making up 1% of 

it, and has relatively low toxicity [52]. These properties are utilized by using DBF as a good 

heat transfer agent [52]. Moreover, it undergoes many different electrical reactions, such as 

halogen reactions and Friedel-Crafts reactions. It was proved that the reaction of DBF with 

butyl lithium leads to dilithiation [53]. It is worth noting that the DBF compound is a precursor 

to furobufen, which was proven by the interaction of Friedel-Crafts with succinic anhydride. 

The toxicity of this new drug is also evident from the fact that the rats were not harmed, and 

this is evident after a complete diet for 200 days, provided that it consists of 0.025 - 0.4% of 

DBF [52]. However, DBFs containing many chlorine atoms are still of great interest due to 

their potential to be hazardous. 

2.1. Health hazard Information. 

2.1.1 Health effects. 

PCDDs and PCDFs (Figure 1) are dibenzofuran derivatives and are among the 

important organic chemicals studied extensively. Therefore, there is a large number of 

publications on the toxic effects of these derivatives. Moreover, it has recently been found that 

a lot of reviews and ratings are available. On the other hand, the World Health Organization 

conducted a number of consultations on this interesting topic and published many reports on 

this subject. The most important ones are [54-64]. 

O
O

O

Cl x Cl y
Clx Cl y  

Figure 1. General structures of PCDDs (left) and PCDFs (right). 

2.1.2. Acute effects.  

No evidence is present on DBF’s acute effects on humans or animals [65].  

2.1.3. Chronic effects (noncancer). 

There is no information on the chronic effects of DBF in humans or animals. The US 

EPA has no reference concentration (RfC) or reference dose (RfD) for DBF yet [66]. 

2.1.4. Cancer risk of DBF moiety. 

No information is present on DBF’s carcinogenic effects on humans or animals. EPA 

classified DBF as a Group D, meaning it is not classifiable regarding human carcinogenicity 

[66, 67].  
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2.1.5. Reproductive/developmental effects of DBF moiety. 

No information is present on DBF’s reproductive or developmental effects on humans 

or animals. 

2.1.6. Hazard summary. 

Subjects can be exposed to DBF through inhalation or ingesting contaminated drinking 

water or food. There is no information on DBF's acute (short-term), chronic (long-term), 

developmental, carcinogenic, and reproductive aspects in humans or animals. However, 

information on the health effects of polychlorinated DBFs is present. Yet, the U.S. 

Environmental Protection Agency (EPA) has noted that the immensely varying biological 

activity of different chlorinated DBFs, dismissing the feasibility of risk assessment by analogy 

to any of these frequently analyzed compounds and classifying DBF as a Group D, 

unclassifiable in terms of human carcinogenicity [68]. 

2.1.7. Sources and potential exposure. 

Exposure could take place via inhaling or dermal contact, especially in areas with 

combustion/carbonization activities, e.g., coal gasification and tar operation sites [69]. DBF is 

released into the air through combustion and is usually found in grate, fly ash, coke dust, and 

flame soot. The population could consume DBF through contaminated air or contaminated 

drinking water or food [69, 70]. Also, DBF presides in tobacco smoke [69] and has been 

deemed a concerning pollutant to EPA's Great Waters Program due to its environmental 

presence and toxicity, bioaccumulation potential, and human toxicity [71].  

3. Syntheses of DBF derivatives 

3.1. Pschorr reaction. 

The preparation of biaryl tricyclic rings is facilitated intramolecularly by the Pschorr 

Reaction through substituting one arene by the aryl radical. Copper catalysis creates The said 

radical in situ from the aryl diazonium salt. Despite the use of excess copper salts, the yield is 

optimally moderate. Two more soluble alternative electron donors were found (refer to modern 

literature on the subject). The method used in the current report improves output at a shorter 

reaction time (Scheme 1). 

N2BF4

Y
CU (I)

Or Cu (O)

Y

Y= -CH=CH-, -O-, -S-, -SO-, ..... 
Scheme 1. Synthesis of biaryl tricyclics. 

3.2. Recent methods. 

Palladium catalysis provides an intracellular cycle for ethyl diazonium salts of diaryl 

ether to produce DBFs. This process uses 3% mol palladium acetate to reflux ethanol without 

a base (Scheme 2) [72]. 
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Scheme 2. Synthesis of DBFs. 

Intramolecular palladium (II) catalyzes the formation of carbon– and oxidized carbon 

bonds under air in the presence of pivalic acid in the reaction‘s solvent rather than the acetic 

acid. This leads to more reproduction and productivity and a wider substrate range. The reaction 

converts electron-rich amines and electron deficiency (Scheme 3) [73]. 

3-5 mol % Pd(OAc)2, 0.1 eq. K2CO3

Air (1 atm), PivOH 110 or 120 0c, 14-48 hY

R

Y

R

Y, NH (110 0C, 14 h) or O (120 0C, 42-48 h)  
Scheme 3. Synthesis of DBFs and/or benzopyrols. 

An effective method to synthesize DBFs from O-iododiaryl ethers is to let reusable 

Pd/C stimulate it within bonding- and ligand-free circumstances. O-ododiaryl ether synthesis 

in one vessel was accomplished through serial iodine and O-arylation of phenol under moderate 

reaction conditions (Scheme 4) [74]. 

O

I

R

O

R
0.3 mol-%, Pd / C (10 wt-%)

3 eq. NaOAc, DMA, 140 0C, 16 h

R, EWG, H  
Scheme 4. Synthesis of DBFs from o-iododiaryl ethers. 

An effective route was developed to formulate carbazoles and DBFs. O-iodoanilines or 

o-iodophenols’ reaction with silyl aryl triflates was followed by exposure to CsF to provide N- 

or O-arylated products by cyclization using the Pd catalyst to obtain carbazoles and DBFs in 

acceptable-to-flawless yields; different functional groups were tolerated (Scheme 5) [75]. 

Y

I

Y
R

I

YH

+

R1

TMS

Tf O

R

R1

R R1

3-35 eq. CsF

MeCN, 25 0C, 10 h

1.1-1.2 eq.

5 mol-%, Pd OAc)2

0.1 eq. PCy3, 100 0C, 1 d

Y: O, NH, NMe, NCO2Et, NMs, CH2NMs

Scheme 5. Synthesis of DBFs and carbazoles. 

Ullmann coupling is a new effective protocol for the rapid construction of 6-diazo-2-

cyclohexanone and ortho haylo bio benzenes formations, including coupling/stirring, one Pd 

catalyst, Pd catalyst, and copper catalyst (Scheme 6) [76]. 
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0.2 eq. CU2O

24 h

1.1 eq.

Y: O, NH, NMe, NCO2Et, NMs, CH2NMs

5 mol-%, Pd (PPh3)4

3 eq. K3PO4, dioxane, 70 0C, 12 h

Br
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Scheme 6. Synthesis from DBFs 6-diazo-2-cyclohexenones and ortho-haloiodobenzenes. 

4. Syntheses of DBF Derivatives 

DBF is a polynuclear aromatic compound. It is also a xenobiotic heterocyclic parental, 

consisting of a furan ring surrounded by two benzene rings in the form of ortho fused across 

the second, third, fourth, and fifth positions [77]. 

4.1. An effective and straightforward route. 

Hexahydrodibenzo was synthesized effectively and straightforwardly with its furans 

based on the rearrangement of a spirodihydrocoumarin [78]. During the assessment of DBF 

morphine-like analogs 24’s pharmacochemistry, it was required to enhance and extend the 

introduction of the stereospecificity of the substitution methods (aminoalkyl groups only) on 

carbon 9b. Currently, interconversion of spirodihydrocoumarin epoxide 2 to DBF structure 3 

is used for easy synthesis. Using this method, various DBF compounds 4 can be composed. It 

was observed that spirocoumarin 15 was successfully converted stereoisomerally to epoxide 2 

(yield: 93%). NMR set the configuration of the epoxide ring according to publications in 1989 

and 1992 [72, 73].  

4.2. The nucleophilic attack. 

Primary or secondary amines’ nucleophilic attack proceeds regioselectively, causing 

the lactone ring to open and produce a phenoxide ion that subsequently attacks the oxiranes by 

forming a dihydro-DBF structure. It is controllable by 4a, obtainable through samples yielded 

from a different synthetic approach 3 (Scheme 7)  [79-84]. 

O O

O

1 2

3
4

5

6

1'

2'
3'4'

O O

O

O

O

O

N

R'

R
O

OH

1

9b
4

O

O

N

R'

R

OH

a; R=R' = CH3, b; R= CH3, R' =CH2CHCH2, c; R=R' = (CH2)2CH2

1 2 3 4

 
Scheme 7. Synthetic routes for 1, 2, 3, 4, 4a, 9b-hexahydrodibenzo [b, d] and furan derivatives, 4a–4c. 

5. Anticancer DBFs 

Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, 

seaweeds, mangroves, and other halophytes, are extremely important oceanic resources, 

constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely 
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productive, biologically active, and chemically unique, offering a great scope for discovering 

new anticancer drugs. The marine floras are rich in medicinally potent chemicals 

predominantly belonging to polyphenols and sulfated polysaccharides. The chemicals have 

displayed various pharmacological properties, especially antioxidant, immunostimulatory, and 

antitumor activities. The phytochemicals possibly activate macrophages, induce apoptosis, and 

prevent oxidative damage of DNA, thereby controlling carcinogenesis. Despite vast resources 

enriched with chemicals, the marine floras are largely unexplored for anticancer lead 

compounds. Hence, this paper reviews the works conducted on this aspect to provide baseline 

information for promoting marine flora-based anticancer research in the present context of 

increasing cancer incidence, deprived of cheaper, safer, and more potent medicines to challenge 

the dreadful human disease. 

Amongst diseases, cancer stands as one of the most terrible, increasing with impacted 

lifestyle and nutrition and global warming. Cancer treatments do not contain an effective drug 

because the currently available medications cause side effects in some cases. In this context, 

the synthetic compounds that depend on the DBF moiety and natural products extracted from 

medicinal plants are increasingly prominent in treating cancer. The World Health Organization 

recently discovered that almost 80% of the world's population mostly utilizes plant-derived 

medicines from developing countries for health care [85-88]. Potential antioxidant and 

anticancer properties of plant extracts or products isolated from plants’ sources can be 

experimented upon to develop anticancer drugs [89]. Polychlorinated Dibenzo-p-Dioxins 

(PCDD/Fs) and Polychlorinated Biphenyl (PCBs) create similar types of toxic results and seem 

to work by employing a common mechanism of action. However, they vary widely in efficacy 

[90, 91]. Toxicity responses include skin toxicity, teratogenicity, bodyweight loss, immuno- 

and neurotoxicity, and carcinogenicity [92]. Biochemical and genetic studies imply that Aryl 

Hydrocarbon Receptor (AbR) halts most anticancer responses via 2, 3, 7 TCDD and affiliated 

compounds [93]. Common PCDD/Fs mechanism and common-level PCBs are used in the 

development of AhR to develop the concept of Toxic Equivalence Factor (TEF) wherein the 

effectiveness of a given constructor is present within the most effective congeners: 2, 3, 7, 8 

TCDD [94]. The current TEF values are focused on the biological study of both cases in vitro 

and in vivo experimentation [95]. It is currently being used in the risk assessment of complex 

combination compounds. Structural Activity Relationships (SAR) for the various chemical 

responses and toxicity mediated by AbR indicated that the TEF approach applies to all 

alternative PCDD/Fs 2, 3, 7, and 8 PCBD/Fs, planar PCBs, and some relatively planar PCBs 

homogeneous. However, whether the AhR pathway mediates all toxic responses to organic 

halogen elements is unclear. For example, SARs for anticancer responses [96] and 

neurotoxicity [97] appear to swerve from the AbR pathway. The promotion of liver tumors was 

increased in vivo after exposure to Polyhalogenated Aromatic Hydrocarbons (PAHs) in 

experimental animal studies [98, 99].  

All the Polychlorinated Biphenyl (PCB) and Polychlorinated Dibenzo-p-Dioxins 

(PCDD/F) congeners tested in this study showed the inhibition capabilities of Intercellular 

Communication (IC), except for 2.2’, 4.4’, and 5.5’-HxCB. At least two mechanisms, such as 

independent paths based on AhR, may contribute to IC inhibition. PCDD/Fs and coplanar PCBs 

are likely to raise their impact through a pathway based on the AhR receptor, a bidirectional 

PCB, yet applying an autonomous mechanism (AhR) and monochrome PCBs, most likely by 

a mixture of both tracks. The provided information suggests that current values of TEF based 

on intermediate effects of the AhR used to assess the risks of carcinogenic implications may 
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instigate serious risks for individuals prone to complicated combinations of PCBs and 

PCDD/Fs. Moreover, in vitro inhibition seems to be a beneficial model for anticipating the 

potential for tumor acceleration, such as organic halogens and machine studies in the cause of 

IC inhibition by these compounds [100]. 

Multiple naturally occurring DBFs exhibited activity against different cancer types. For 

example, a DBFs series known as kehokorins A-E was secluded from two differing types of 

trichia favoginea, a slime mold [101, 102]. Three kehokorins, A, D, and E, showed counter-

HeLa cell activity and maintained IC50 values of a range of 1.5 mg/mL to 6.1 mg/mL for 

kehokorin A and kehokorin D., respectively (Figure 2). Two DBFs, Pf-1 and Pf-2, were 

recently secluded from Dictyostelium discoideum, another slime mold [103]. 

O
OMe

OMe
O

OMe

OH

O
HO

HO
HO

Kehokorin A

O
OMe

RO OH

Kehokorin D R=H
Kehokorin E R=CH3  

Figure 2. Structures of kehokorins. 

The compounds designated AB0022A are structurally similar to a compound isolated 

from another slime mold species, Dictyostelium purpureum K1001; conversely, it was 

confirmed to possess antibacterial properties [104]. On the other hand, Pf-2 lacked any 

substantial cytotoxicity. Furthermore, Pf-1 and AB0022A showed the limitation of several 

tested cell lines (K562, HeLa, and 3T3-L1), indicating that the free carbonyl-linked phenolic 

group is essential for activity. Despite the lack of IC50 values reports, AB0022A proved 

effectual against the three cell lines compared with Pf-1 [103] (Figure 3).  

O

Cl

OMe

OH

AB0022A Rf-1 R=H

Rf-2 R=CH3

Cl

MeO

O
HO

Cl

O
Cl

OMe

OH
Cl

MeO

O
RO

Cl

 
Figure 3. Cytotoxically active chlorinated DBFs. 

Due to its anticancer potency, considerable interest in DBF quinine popolohuanone E 

was raised following its 1993 isolation report [105]. Secluded from the Dysidea sponge, it 

exhibited suppressive behavior toward topoisomerase II (IC50 ¼ 400 nM) and human lung 

cancer cells in type A549 (IC50 ¼ 2.5 mg/mL) [105]. An enormous amount of work has been 

devoted to its synthesis, however (Figure 4). 

O
O

OH

R

Popolohuanone E

HO

HO

O

R

H

R =

 
Figure 4. Structure of popolohuanone E. 
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Terashima, Katoh, and coworkers spearheaded the earliest attempts at the complete 

synthesis of popolohuanone E, where a series of typical compounds of the five assorted 

isotopes were readied, with the most common in popolohuanone E structure was 11 as shown 

[106] (Scheme 8): 

MeO

MeO O OMe

1

1) t-BuLi

2)

CHO

H 2

MeO

MeO OMOM

3; 24%

OHR

1) H2. Pd/C

2) Conc. HCl
MeOH

MeO

MeO OH

4; 78%

R

H

R =

OMe

5

OMOM
1) t-BuLi

2)

CHO

H 2

OMe

6; 74%

MOMO

R

OH
1) H2. Pd/C

2) Conc. HCl
MeOH

OMe

7; 86%

R

OH
O2

Saicomine
OMe

R

O

O

8; 73%

OMe

R

O

O

9; 62%

SOCl2

Py

MeO

MeO OH

4

R

1) NaH

2) 9

MeO

MeO OH

10; 94%
R

Cl

OMe

R

O

O

HO

HO

11; 63%
R

OH

R

O

O

1) Amberlite® IRA-900

2) BB\3 O

 
Scheme 8. Synthesis of popolohuanone E analog. 

Terashim’s synthesis method began with converting 3, 4-dimethoxyphenol to 

methoxymethyl ether 1. Tert-butyllithium was used to lithiate 1, followed by a reaction with 2 

that yielded alcohol 3 (24% yield). The catalytic hydrogenation of reduced benzyl alcohol and 

MOM group, which undergoes acid removal, led to the production of alternative phenol (4) at 

a yield of 78%. MOM-protected 3-methoxyphenyl 5 was used to prepare phenol 7 by a similar 

sequence of transformations; the resulting yields were higher in comparison. Phenol 7 was 

converted to quinone 8 through molecular oxygen oxidation. Salcomine was used to catalyze 

the oxidation. Then, thionyl chloride was used to chlorinate quinone 8 to yield intermediate 9. 

Sodium salt from 4 C-alkylated product 10 was used to condense this medium. Previous model 

studies on much plainer compounds concluded that a phenolic methoxy group was necessary 

for this reaction in C-6 of 4 rather than phenolic oxygen.  

Cyclization of 10 took place via basic ion exchange resins, and demethylation was 

derived from methoxy three groups via boron propropide, resulting in representative E-

populohuanon 11. It was suggested that ion-exchange resins be used to cyclize 10 through 

yields in previous model studies wherein “traditional” rules did not result in the desired 

cyclized outcome of more than 20%. The required aldehyde 2, vital for these studies, was 

prepared across the seven steps of Wieland-Meiser 12 optically pure ketone (Scheme 8). 

Indeed, compound 2 is shown in Scheme 7 as a single isomer, except that it is a mixture of 

epimers; stereoisomers’ segregation took place following the interaction with the arylithium 

reagent (scheme 9). 

CHO

H

2

H

12

O

O

( 7 steps )

 
Scheme 9. Preparation of aldehyde 2. 
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Years later, Katoh, Terashima, and his research group started their work to apply a 

correspondent combination of conversions to consolidate popolohuanone E itself [107]. Ketone 

13 was used to prepare aldehyde 14 across 15 steps [108, 109]. Aldehyde 14 was converted to 

the derivative of methoxyphenol 15as before some changes were applied to the experiment’s 

conditions, of which the most important was benzylic alcohol reduction accomplished by using 

the Barton reaction (converting alcohol into a matching xanthate, succeeded by a radical 

depreciation with tributyltin hydride) rather than catalysis by hydrogenation. Also, within these 

sequences of experiments, arylithium reagents were created by exchanging halogen lithium 

with the matching bromoarene instead of immediate lithiation, as shown in scheme 7. 

Eventually, 15 in the 65% yields of 14 were obtained across five steps. Conjugation partner 16 

was generated similarly immediately to 15 and then converted to quinone 17 as previously 

described for the synthesis of 9. Coupling and cyclization were performed similarly to typical 

compounds, yielding DBF quinone 18 at 75% yield (Scheme 10). 

1413

( 15 steps )O

O

H
CHO

O O

(5 steps)

(65% overal yield)

MeO

MeO OH

15

R

1) NaH

2) 17

3) Amberlite®
IRA-900

MeO

MeO

18; 75%
R

OMe

R

O

O

O

OMe

5

OMOM (5 steps)

(60% overal yield)
OMe

16

OH

R
1) O2/Saicomine

2)SOCl
2
/Py

OMe

17; 66%

O

R
Cl

Cl

O H

O O

R =

 
Scheme 10. Synthesis of popolohuanone E precursor. 

On the other hand, the hydrolysis of the acetal-protecting groups in 18 occurred in a 

quantitative yield. Still, the conversion of the produced ketones to the parallel methylene 

groups turned out to be problematic. The use of Wittig and Tebbe reagents causes the starting 

material to be consumed with no desired product formed as planned, while the Peterson 

olefination attempt only returned the initial material. Eventually, applying Oshima and his 

research group’s reported protocol [110] produced 19 in a 26% yield (Scheme 11). At this 

point, what remained was the removal of methyl from the three methoxy groups to produce the 

E-polyphuanone. Unfortunately, this shift was not achieved, and the closest result was 8-O 

methyl popolohuanone E 20 production at 34% of the yield when 19 was heated at 110°C with 

lithium n butyl thiolate. Till now, no conditions were reported to remove the conclusive methyl 

group from 20 to obtain popolohuanone E or to use other protection groups. 

18

1) HCl / MeOH

2) CH2Br2 / Zn / TiCl4

MeO

MeO

19; 26%
R

OMe

R

O

O

O

n-BuSLi

HMpA

MeO

HO

20; 34%

R

OH

R

O

O

O

H

R =

 
Scheme 11. Synthesis of 8-O-methylpopolohuanone E. 

During Terashima and Katoh’s investigation to create popolohuanone E, Anderson and 

coworkers were trying to synthesize it wholly. Again, they were preceded by a model study. 1, 

2, 4-trimethoxybenzene, followed by adding pivaldehyde, created the expected benzyl alcohol 

https://doi.org/10.33263/BRIAC144.092
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC144.092  

 https://biointerfaceresearch.com/ 10 of 28 

 

(Scheme 12), then reduced to 22 via triethylsilane and trifluoroacetic acid [111]. Demethylation 

occurred via trimethylsilyl iodide, followed by furnishing of triol-23a. This provided an 

excellent return as a result: 

MeO

MeO OMe

21

1) n-BuLi
2) t-BuCHO

3) Et3SiH/TFA

MeO

MeO OMe

22; 86%

t-Bu

HO

HO OH

23a; (>95%)

t-Bu

TMSI

 
Scheme 12. Synthesis of triol 23a. 

Furthermore, this triol can be oxidized using silica-supported ferric trichloride, yielding 

81% diquinone-24a. Then, diquinone 24a is treated with potassium carbonate, producing 

analog E-25P in a single step within a 79% yield (scheme 13). 

HO

HO OH

23

R

FeCl3.SiO2 O

HO

24a; 81%
b; 0%

R

OH

R

O

O

O

K2CO3 HO

HO

25a; 79%
b; ----

R

OH

R

O

O

O
b R=

a R= CH2t-Bu

H

 
Scheme 13. Oxidative dimerization of triols. 

According to the optimistic results attained with the typical compound 23a, 60 hydroxy-

arenarol 23b was derived and exposed to the same oxidation circumstances. However, the 

required diquinone 24b was not created, creating the affiliated hydroxyl benzonine instead 

[112]. Likewise, the testing of other oxidants failed to produce diquinone 24b. Therefore, it 

was not possible to cyclize e-populohuanon. The last dibenzofuran to exhibit anticancer 

properties is rhodomartoxin B, extracted from pylidostigmatropicum’s bark extract [113], and 

Australian cherry, rhodomyrtus macrocarpa [114]. The said compound showed behavior 

against Hep-G2 and MDA-MB-231 cell lines with an LC50 value of 19.0 (±9.0) mm former 

and 2.50 (±0.27) mm latter [92, 115-117]. Setzer and coworkers suggested that the anticancer 

activity results from the intercalation of rhodomartoxin B into cytosine base pairs. Djaballah 

and collaborators also found that rhodomartoxin B suppressed the growth of NCEB1 cells with 

an IC50 value of ca. 9 mm [118-120]. Despite the absence of combinations of rhodomartoxin B 

in modern literature, rhodomeratoxin C was reported and exhibited a similar structure (figure 

5). 
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Figure 5. Structures of rhodomartoxins B and C. 

6. Antibacterial DBFs 

DBF and its derivatives are multifunctional due to their pharmacological [121–123], 

physiological [124], and antimicrobial properties [125–127]. DBF has many physiological 
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properties because of its structural relationship to morphine alkaloids [128]. DBF and its 

derivatives cause the depression of respiration and a sharp fall in blood pressure [127, 129]. 

Also, DBFs have many pharmacological properties because they act as analgesics [130] and 

powerful local anesthetics [131, 132]. DBF and its derivatives have a broad antimicrobial 

bactericidal activity [127, 133, 134]. The antifungal activity was evaluated for the isolated DBF 

bis (bibenzyl) against Candida albicans, a clinical pathogenic fungus; they showed moderate 

antifungal efficiency [135]. Two pyrazoline derivatives based on DBF presented excellent 

thermal stability and high fluorescence quantum yields, so they are of great interest as 

fluorescent probes and optoelectronic materials in organic light-emitting devices [136]. 

Dicationic DBF derivatives of anti-P. carinii activity was examined in the immunosuppressed 

rat. Moreover, different DNA binding agents were active compounds because DNA binding 

played a key role in antimicrobial activity in dicationic compounds [137-139]. Unusual DBFs, 

preussiafurans isolated through the fungus Preussia sp., Enantia chlorantha oliv, showed good 

antiplasmodial activity and moderate cytotoxicity [140]. A natural product for DBF [141] 

embodied homoisoflavonoids designed by molecular hybridization and synthesized by a 

reaction of 2-DBF carboxaldehyde with methyl acrylate; DBFs screened for in vitro 

antimycobacterial activity against mycobacterium tuberculosis was found to be active with 

MIC 12.5 mg/mL [142].  

Copper (II) or zinc (II) complexes of DBF derivatives of cyclen were prepared and 

characterized. It was revealed through a fluorescence emission study that the introduction of 

either Cu2+ or Zn2+ stints ligands’ emission intensity. Seven dipeptide complex derivatives were 

assorted [143]. These complexes indicate platinum complexes specifically hindered fungal cell 

growth [143]. Valine-derived synthesized copper (II) and cobalt (II) complexes via Schiff bases 

were studied biologically in vitro for antimicrobial activity against human pathogenic fungi 

and Gram-positive and negative bacteria; they exhibited a remarkable hindrance of Gram-

positive bacteria’s growth and pathogenic fungi. The cytotoxicity of the complexes was 

evaluated in vitro and shown to be non-toxic to human erythrocytes, even at a concentration of 

500 μg/mL [144]. 

Furthermore, Kehokorins A–C and three different new DBFs were isolated from field-

collected fruit bodies of a myxomycete, Trichia favoginea var. persimmons, and their structures 

via spectral data. Kehokorin A was an α-L-rhamnopyranoside of kehokorin B, while kehokorin 

C was a 1-demethoxy analog of Kehokorin A showing distinct cytotoxicity against HeLa cells 

with an IC50 value of 1.5 μg/mL [145, 146]. DBFs and Kehokorins A–C isolated from Trichia 

favoginea var. persimilis were cytotoxic against HeLa cells [147, 148]. 

Peptides based on rhodamine B and DBFs were evaluated in vitro for antibacterial 

activities and compared with those of the antimicrobial peptides cathelicidin LL37: cathelicidin 

(polypeptide that is primarily stored in the lysosomes of macrophages and polymorphonuclear 

leukocytes), magainin II (a class of antimicrobial peptides found in the African clawed frog), 

and melittin (melittin consists of 26 amino acids and is a relatively short peptide) [149]. Also, 

rhodomartoxin B (Figure 6) showed significant antibacterial activity. Different values of MIC 

of 0.14 mM and 0.28 mM were recorded against several Staphylococcus aureus as well as 

Bacillus bacillus of this compound [150]. 

Moreover, rhodomartoxin C, which has a similar structure, showed lower biological 

activity when fighting two strains of S. aureus with MIC values of 0.9 mM and 7.2 mM. This 

turns out just as rhodomartoxin B and rhodomartoxin C can be chemically extracted from 

Peledisostigma glabram and R. Macrocarpa [151, 152]. Then, Sargent and coworkers studied 
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the synthesis of rhodomartoxin C in 1983 [153]. Iodination of 1, 3, and 5 trimethoxybenzene 

followed by Ullmann coupling yielded biphenyl 28. Heating 28 with hydriodic acid, then 

methylated with iodomethane, yielded 24% 1, 3, 7, 9 tetra methoxy benzofuran 29 beginning 

from 1, 3, 5 trimethoxybenzene. 29 was formylated via Vilsmeier-Haack formylation, followed 

by diminishing via lithium aluminum hydride (LAH), giving alcohol 30. 
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HO
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Figure 6. Structures of rhodomartoxins B and C. 

The following occurred on an 81% yield for the two steps: a further reduction to 31 by 

catalytic hydrogenation occurred in a semi-quantitative yield. The steps were repeated to give 

the dimethylated derivative 32 a yield of 76% of 31 (Scheme 14). Two Friedel-Kraft-induced 

boron tribromide acyls and demethylation resulted in the synthesis of rhodomartoxin C. 

Achyrofuran, a natural product that structurally resembles rhodomartoxins (Figure 7) was 

isolated from a medicinal plant from South America. Achyrocline saturejoides [154, 155] was 

found to be a good antibiotic against different methicillin-resistant strains of S. aureus, 

NRS402, and ATCC25923, with MIC values of 0.12 mM and 0.25 mM, the same for 

Enterococcus faecalis (ATCC29212) with MIC values of 3.96 millimolar [154, 155]. 

Even though achyrofuran total synthesis was reported in previous pieces of research, a 

preparation of 39, or pre-achyrofuran, was reported by Kingsbury and coworkers [156] 

(scheme 15). Prenylation of 1, 3, and 5 trimethoxybenzene followed by Vilsmeier-Haack 

formylation using oxalyl chloride availed 36 in a 75% yield. Scandium triflate catalyzed diazo 

alkyl insertion availed acylated product 37 in a 91% yield. However, 37’s demethylation with 

boron tribromide provided only a 15% yield. A three-step conversion of 37 into 38 yielded 38 

a 65% overall yield from 37. This method entailed the reduction of the ketone to an alcohol, 

demethylation via trimethylsilyl iodide, followed by oxidation of the alcohol back up to the 

ketone via the Dess-Martin periodinane. Oxidative dimerization/cyclization of 38 using iron 

(III) chloride supported on silica gel gave the final product 39 a 51% yield. 

The following year, Kantrowitz and coworkers analyzed achyrofuran analog 41 

syntheses (Scheme 16) [157]. Hexamethoxybiphenyl 28 was prepared with a 67% yield from 

1, 3, and 5 trimethoxybenzene, similar to the methodology in Scheme 6. Cyclization and 

demethylation occurred via HBr treatment, and the yielded tetrahydroxy DBF was acylated 

(though in low yield) to give 41. Despite the lack of 41’s reported antibacterial activity, it 

inhibited fructose 1, 6-bisphosphatase [157] and, like achyrofuran that showed significant 

antihyperglycemic activity [156], is intriguing for the development of antidiabetic compounds. 

Also, porric acid D showed activity against S. aureus, though not as potent as 

rhodomartoxins, with a MIC of 100 mg/mL (equivalent to 347 mM) [158]. This compound was 

isolated from an Alternaria marine fungus, but its synthesis has not yet been studied (Figure 

8). 
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Scheme 14. Synthesis of rhodomartoxin C. 

Over the years, boletopsis compounds have been extracted from Boletopsis mushrooms 

[159–162]. Furthermore, there are 12 different known boletopsis with the general structure 

shown in Figure 7; they were found to differ in terms of whether the oxygen substituents were 

acetylated, protonated, or methylated, and also whether there was a second oxygen substituent 

on the unfused aromatic ring. Then, different approaches were used for nomenclature with the 

success of discovering each group of boletopsis, and then the study was completed by 

developing a proposal for a unified notation system recently where all of them were named 

“boletopsis” followed by an Arabic number [162]. Despite the weak antibacterial activity of 

many boletopsis, boletopsis 11 56 stands among them as an active component (Scheme 18). It 

was evaluated (along with others) against Escherichia coli, Staphylococcus epidermidis, 

Pseudomonas aeruginosa, and Mycobacterium smegmatis with IC50 values (in mg/mL) of 424, 

242, 272, and 96, respectively. Synthetic boletopsis 11 was exposed to similar bacteria with 

similar outcomes [162, 163]. Cycloleucomelone is closely similar to boletopsis (Figure 9), 

isolated from the same (and other) [159, 162, 164-168] mushroom species, and it has also 

exhibited weak antibacterial activity [160]. 

The assembly of three polyposes (7, 11, and 12) has recently been detailed [163]. The 

combination of catechol chlorination with sulfuryl chloride started to yield 42, which is an 

excellent yield (Scheme 17). Bromination and methylation yielded a high yield, as did 

conversion to the corresponding boronic acid 44 by exchange of lithium-halogen and treatment 

with trimethylborate, followed by an acid treatment process. 4-methoxyphenylboronic acid 45-

although with an indefinite yield--was similarly formed. The third aromatic ring in the final 

result was extracted from sesamol 46. The formulation was followed by bromination of 

dichloromethyl methyl ether in the presence of aluminum trichloride. A Lewis acid biocatalyst 

was found to introduce both bromine atoms into the ring - the only monomeric bromine 

occurring when it was not present. Finally, phenol was protected since methoxymethyl ether 

gave 49 in total yield of 53% sesamol. With the three aromatic rings suitably replaced, they 

began to give polytopes through their combinations. The synthetic approach is similar to that 

described by Takahashi et al. in their Vialinin B synthesis [169, 170] (see next section). The 
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Suzuki-Miyaura coupling of boronic acid 44 with aryl bromide 49 was selective, and the 

biphenyl derivative 50 was taken advantage of (Scheme 18). This reaction has been shown to 

be very sensitive to the presence of trace amounts of oxygen. A similar coupling of 45 with 50 

gave the terfinyl derivative 51 a moderate yield. The Baeyer-Villiger oxidation of the aldehyde 

proved somewhat problematic, although reaction conditions eventually provided the 52-

formate ester with a reasonable yield. It is noteworthy that this ester can then be cycled to DBF 

53 under Ullmann-type conditions by re-flushing a pyridine solution of 52 in the presence of 

excess copper(I) oxide; it was impractical to isolate free phenol due to the instability of the 

compound). This then completed the formation of the primary ring system, which is common 

in polytopes. A benzyloxycarbonyl group replaced the protecting methoxymethyl group in an 

overall yield of 72%, which is considered necessary for the subsequent transformation of the 

methoxy group. The three subsequent transitions instabilized the product; thus, 54 were 

converted to 55, as indicated, without purification of any of the mediators. 55 was obtained in 

an overall yield of 55%, which could have been methylated in an excellent available polytopes 

in 11 yield of 56%. Using boron tribromide, demethylation of intermediate 55 availed 

boletopsis 7 in 57. Then, this study concluded with the process of partial methylation of 57 in 

the synthesis of polytopes 12 58. 
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Figure 6. Structure of achyrofuran. Figure 7. Structure of porric acid D. 
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Scheme 15. Synthesis of “pre-achyrofuran”. 
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Scheme 16. Synthesis of an achyrofuran analog. 
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Scheme 17. Synthesis of boletopsis precursors. 

Bolytopsin-12 prepared in this previously mentioned manner was contaminated with 

boletopsis 11, which HPLC could have separated. We believe that the required selectivity for 

this final methylation was due to the lower acidity of the remaining phenolic group in 58 due 

to the absence of any neighboring hydrogen bonding groups. 
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Figure 8. The general structure of boletopsis. 

MeO

MeO Cl

B(OH)2

44

OMOM

49

O
O

CHO

Br

Br

+
Pd(Ph3P)4

Cs2CO3

OMOM

O
O

CHO

Br

MeO

MeO Cl

50; 48%

Pd(Ph3P)4 / Cs2CO3

MeO

B(OH)2

45

OMOM

O
O

CHO

MeO

MeO Cl

51; 40%

OM
e

mCPBA

KF
OMOM

O
O

OCHO

MeO

MeO Cl

52; 49%

OMe

O

O
O

53; 96%

OMe

CU2O

Py
OMeO

MeO

OMe

1 ) HCl
2) BnOCOCl

Py

O

O
O

54; 72%

OMe

OMeO

MeO

OBnO

1) Pb(OAc)4

2) HOAc
3) LiHMDS / AcCl

4) H2 / Pd(OH)2

OH

AcO
AcO

55; 55%

OMe

OMeO

MeO

OMe

AcO
AcO

OMe

OMeO

MeO boietopsin 11

56; 91%

CH3I

K2CO3

OH

AcO
AcO

57; 68%

OH

OHO

HO

OMe

AcO
AcO

58; 63%

OH

OMeO

MeO

BBr3

boietopsin 7boietopsin 12

 
Scheme 18. Synthesis of boletopsis 7, 11, and 12. 
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Figure 9. Structure of cycloleucomelone. 

Recently, derivatives of different dipeptides 4-29 were synthesized, followed by their 

evaluation as antimicrobial agents by the synthesis of DBF-2-sulfonyl chloride (3) (Scheme 

19). Then, compound 3 was conjugated with different amino acid esters at a low temperature, 

under the condition of a strong organic base, to give compounds DBF-2-sulphonyl-amino acid 

ester 4-7, and they were converted in the same study to DBF -2-sulphonyl-hydrazides 8-11 

(Scheme 20). Moreover, the previous esters were converted to DBF-2-sulphonyl-amino acid 

12–14  (Scheme 21). Furthermore, the latter peptides 12-14 were conjugated with several 

different amino acid esters to give the corresponding DBF-2-sulphonyl-dipeptide ester 

derivatives 15-19 (Scheme 21). On the other hand, the ester of peptides 15-19 was converted 

to DBF-2-sulphonyl-dipeptide 20-24 (Scheme 21), which enabled the hydrazine hydrolysis of 

esters 15–19 with the corresponding alcoholic hydrazine hydrate hydrazides 25–29 (Scheme 

21), respectively. On the other hand, at the end of this study, a distinct biological study was 

carried out, and in vitro, antimicrobial evaluation was crosschecked against various pathogenic 

microorganisms and Gram-positive and negative bacteria. A portion of the compounds 

exhibited remarkable antimicrobial aspects [39]. 
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Scheme 19. Synthetic routes for DBF-2-sulfonyl chloride, 3. 
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Scheme 20. Synthetic routes for compounds 4–11. 

In this study, many tripeptides 4-29 derivatives were classified and studied as different 

antimicrobial agents through the synthesis of DBF-2-sulfonyl chloride (3). Compound 3 is then 

combined with different amino acid esters at a low temperature, and a strong organic base must 

be present in order to give a high percentage yield of DBF-2-sulphonyl-amino acid ester 4 and 

5, which is then converted to DBF-2-sulphonyl- amino acid 6 and 7 (Scheme 22). Subsequent 
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compounds 6 and 7 were then conjugated to different amino acid esters, giving the 

corresponding DBF-2-sulfonyl dipeptide ester derivatives 8–11 (Scheme 23). 

1 N NaOH

O

S

O

O

N
H

C
OR

O

(4 - 7)

R1

COOR3Cl . H3N

R
2

ClCOOC2H5 / TEA

O

S

O

O
N
H

C

H
NO

R1

R
2

(15- 19)

O

S

O

O
N
H

C

H
NO

R
1

NHNH2

R2

(25 - 29)

O

S

O

O
N
H

C

H
NO

R1

R2

(20 - 24)

O

S

O

O

N
H

C
OH

O

(12- 14)

R1

NHNH2.H2O

OR
3

O

OH

O

1 N NaOH

*

**

*

*

*

*

*

*

[20, 25, R
1
=CH

2
OH; R

2
=CH

2
OH], [21, 26, R

1
=CH

2
Ph; R

2
=H], [22, 27, R

1
=CH

2
PhOH; R

2
=H], [23, 28, R

1
=CH

2
Ph;

R2=CH2Ph], [24, 29, R1=CH2Ph; R2=CH2PhOH],

[12, R1=CH2OH], [13, R1=CH2Ph],

[14, R1=CH2PheOH],

[4, R=CH2CH3; R1=H], [5, R=CH3; R1=CH2OH],

[6, R=CH3; R1=CH2Ph], [7, R=CH3; R1=CH2PheOH]

[15, R1=CH2OH; R2=CH2OH; R3=CH3], [16, R1=CH2Ph; R2=H;

R3=CH2CH3], [17, R1=CH2PhOH; R2=H; R3=CH2CH3], [18, R1=CH2Ph;

R
2
=CH

2
Ph; R

3
=CH

3
], [19, R

1
=CH

2
Ph; R

2
=CH

2
PhOH; R

3
=CH

3
],

 
Scheme 21. Synthetic routes for compounds 12–29. 

Moreover, in this study, ester compounds 8-11 were converted to DBF-2-sulphonyl-

dipeptide 12-15  (Scheme 23), respectively. On the other hand, the latter compounds 12-15 

were conjugated with different amino acid esters, giving the corresponding DBF-2-sulphonyl-

tripeptide ester derivatives 16-19 (Scheme 24). Then, the previous ester compounds are 

converted to DBF-2-sulphonyl-amino acid 20-23 (Scheme 24), respectively. Finally, hydrazine 

hydrolyzed the esters 16-19 with alcoholic hydrazine hydrate to form the corresponding 

hydrazides 24-27 (Scheme 24), respectively. The whole compounds were analyzed using 

spectral data. Their in vitro antimicrobial evaluation was tested against seven strains of Gram-

positive and negative bacteria and fungi. Some of these compounds (16, 18, 20–22, 24, 25, and 

26) were found to possess significant antimicrobial properties. The MIC values of the most 

active compounds were studied against the test organism Staph. aureus, Bacillus subtilis, and 

Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa, as 

Gram-positive and Gram-negative bacteria, respectively. It is believed that the presented 

molecular structural features of these novel tripeptides based on DBF-2-Sulfonyl- with both 

types [aromatic and hydroxy residues] appeared to be important for new antimicrobial 

candidates that could be investigated in the future [40]. 
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Scheme 23. Synthetic routes for compounds 12–15. 
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[12; R=CH2Ph, R1=H],

[13; R=CH2Ph, R1=CH2Ph],
[14; R=CH2Ph, R1=CH2PhOH],

[15; R=CH2PhOH, R1=H]

[16; R=CH2Ph, R1=H, R2=H, R3=C2H5 ],

[17; R=CH2Ph, R1=CH2Ph, R2= CH2PhOH, R3=CH3],

[18; R=CH2Ph, R1=CH2PhOH, R2=CH2Ph, R3=CH3],
[19; R=CH2PhOH, R1=H, R2=CH2PhOH, R3=C2H5]

[20, 24; R=CH2Ph, R1=H, R2=H],

[21, 25; R=CH2Ph, R1=CH2Ph, R2= CH2PhOH],
[22, 26; R=CH2Ph, R1=CH2PhOH, R2=CH2Ph],

[23, 27; R=CH2PhOH, R1=H, R2=CH2PhOH]  
Scheme 24. Synthetic routes for compounds 16–27. 
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7. Conclusions 

Previous literature reports in this review concluded that highly oxygenated DBFs can 

be extracted from both marine and terrestrial natural sources, from slime molds to giant 

evergreen trees. On the other hand, many members of this group of compounds showed great 

activity in the medical field in general. It has particularly distinct anticancer and antimicrobial 

activity, which encouraged efforts to focus on its healthy composition. Many of these natural 

products are made exclusively by living organisms isolated from them; thus, they continue to 

present artificial challenges for the future. 
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