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Abstract: One of the most significant renewable energy sources in the coming decades will be 

hydrogen. Recently, most of the hydrogen in the world has been produced using fossil fuels and their 

derivatives. Hydrogen can also be produced from readily available biomass. The biomass-based 

methods have several advantages, such as eco-friendliness, carbon neutrality, and renewable energy 

sources. Before the commercialization of hydrogen as a fuel, some technological, economic, and 

environmental challenges must be overcome. This article provides an updated review of the concept of 

green or biohydrogen, the importance of hydrogen in different fields, and biomass-based production 

methods. A total of 127 articles have been reviewed and cited in this manuscript. 
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1. Introduction 

High energy demand results from the world's growing population and economy. Fossil 

fuels have fulfilled the need for energy, but due to their rapid depletion, these traditional 

sources are in a precarious position [1]. Energy and associated activities are becoming 

increasingly necessary to support human well-being, advancement in society and the economy, 

and healthcare. To fulfill the energy requirements of future generations, resorting to renewable 

energy sources is a great strategy to mitigate climate change [2]. Global environmental 

problems and rising greenhouse gas emissions necessitate an upgrade from conventional to 

renewable energy sources [3]. The hydrogen economy is an idealistic term for the integrated 

system of hydrogen generation, storage, and social use [4]. 

Large amounts of hydrogen are used in the chemical, petroleum, automobile, 

pharmaceutical, and alternative fuel industries, which suggests that its production will continue 

to increase. Hydrogen has the highest combustion energy discharge per mass among commonly 

used fuel sources [5,6]. Around 96% of hydrogen has been estimated to be produced from 

conventional fossil fuels, with 48% from steam reforming of natural gas, 30% from naphtha 

reforming, and 18% from coal gasification. Still, evidence suggests an interaction between 

global environmental contamination and conventional hydrogen production methods [7]. 

Several methods, such as thermal, electrolytic, and photolytic, can produce hydrogen [8]. 

Recently, there has been much interest in the prospective utilization of renewable biomass as a 

key feedstock for hydrogen production. The production of hydrogen from biomass has to be 
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improved as soon as possible [9]. Biomass, used for manufacturing a range of biofuels, is one 

of the most promising renewable resources. Due to increased economic activity, biomass 

energy would benefit local society and contribute to a consistent energy supply [10]. 

Biochemical and thermochemical conversions of biomass to hydrogen are the two basic 

methods. Typically, the thermochemical process is more rapid than the biological process and 

provides more hydrogen [11]. A desirable and feasible alternative to conventional hydrogen 

production methods is biological production. The synthesis of hydrogen using biological 

methods has two significant obstacles: a low hydrogen yield and a high cost of manufacture 

[5]. The biological production of hydrogen is based on bio-photolysis, fermentation, and hybrid 

reactor systems. Thermochemical conversion techniques, such as pyrolysis, steam gasification, 

steam reforming of bio-oils, and supercritical water gasification, can convert environmentally 

favorable feedstocks into hydrogen [9]. 

2. Hydrogen, green hydrogen, and hydrogen production methods 

Hydrogen has an atomic number of one, and the molecular formula is H2. Hydrogen is 

a nonmetal placed on the left side of the periodic table with the first group of alkali metals [12]. 

Hydrogen is an odorless and colorless gas and the cleanest fuel. Hydrogen is non-polluting and 

has the potential to be an excellent energy carrier. To tackle the world's energy concerns, some 

significant obstacles must be overcome before hydrogen can be widely used in a sustainable 

future energy infrastructure [13]. Hydrogen is used in petroleum refining, food processing, 

transportation, the production of chemicals, energy storage, etc. Producing hydrogen via partial 

oxidation, splitting, photolysis, steam methane reforming, coal gasification, electrolysis, and 

other processes is feasible. The fuel sources and different processes used for producing 

hydrogen molecules, such as green, blue, grey, and other forms, are therefore used to categorize 

the different types of hydrogen [14-18] (Table 1). Hydrogen is more suitable for spark ignition 

(SI) engines than compression ignition (CI) engines due to its unique characteristics. Several 

studies involving hydrogen use in SI engines have been conducted to solve problems like low 

volumetric efficiency and lower power density [19]. Table 2 compares the fuel characteristics 

of hydrogen, natural gas, diesel, and gasoline [19-23]. 

Table 1. Types of hydrogen based on sources/processes. 

Type of hydrogen Sources/processes References 

Blue Fossil fuels and CO2 are captured and stored underground [15] 

Black/brown Coal gasification [16] 

Green Water splitting via renewable electricity or renewable biomass [14] 

Grey Fossil fuels via steam methane reforming [16] 

Pink Electrolysis of water via nuclear energy [17] 

Yellow Electrolysis of water using solar energy [18] 

Turquoise Pyrolysis of methane [18] 

Purple Splitting of water via chemo-thermal electrolysis [16] 

Red 
High-temperature catalytic splitting of water using nuclear power 

thermal 
[17] 

White Naturally occurring hydrogen [16] 

Table 2. Comparison between the fuel properties of diesel, gasoline, natural gas, and hydrogen. 

Fuel properties Hydrogen Natural gas Diesel Petrol 

Density (kg/m3) 0.089 0.754 830 730-780 

Auto ignition temperature (K) 858 553 523 623 

Lower heating value (MJ/kg) 119.7 50.2 42.5 44.8 

Volumetric energy constant (MJ/m3) 10.7 34 to 58 33 x 103 35 x 103 

Combustion speed (m/s) 2.993 0.355 0.867 0.356 

Latent heat of vaporisation (kJ/kg) 446 509 - 348 

Minimum ignition energy in air (mJ) 0.02 0.29 0.24 0.24 
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Fuel properties Hydrogen Natural gas Diesel Petrol 

CO2 emission 0 9.5 13.4 2.52 

Octane number 0 120 30 86 to 94 

However, hydrogen produced from renewable resources has no emissions and is 

regarded as a green fuel. The use of green hydrogen is a substitute for traditional energy 

sources. So long as the process is carried out with energy from renewable sources, there are no 

greenhouse gas emissions [7]. However, the primary way of producing hydrogen nowadays is 

by converting fossil fuels, which constitute 96% of production. This is hardly a method that 

will make sustainable energy possible. However, there's a greener way to produce hydrogen 

[4]. The main obstacles to developing and growing a hydrogen economy are the shortage of 

green hydrogen-producing facilities and hydrogen transportation and storage infrastructure 

[24-26]. Recent energy roadmaps and national strategies aimed at carbon neutrality by 2050 

show that green hydrogen is one of the prominent accelerators of the energy transition and the 

decarbonization of our societies [27]. Molecular hydrogen may be produced from biomass, 

water, and fossil fuels. Such sources must always possess abundant energy needed to obtain 

hydrogen from them [11,28]. Fossil fuel processes transform products obtained from fossil 

fuels that contain hydrogen. These methods are gasification, pyrolysis, and reforming. A key 

challenge in establishing a hydrogen-based economy is the removal of sulfur, which is present 

in most fossil fuels [8]. Renewable resources comprise water and biomass, where hydrogen is 

also produced. Hydrogen has been produced from biomass via biological and thermochemical 

processes. Thermolysis, electrolysis, photo-electrolysis, and bio-photolysis are used to produce 

hydrogen from water [11,13,28]. Figure 1 depicts the overall standard methods for hydrogen 

production [29-35]. 

 
Figure 1. Standard hydrogen production methods. 

3. Biomass-based production methods 

Hydrogen is considered a potential energy source because of the restricted fossil fuel 

supplies, rising fuel costs, and growing pollution driven by worldwide energy demand. 

Hydrogen can be derived from renewable resources such as water and biomass. Renewable 

energy is now known as superior cleansing energy [36]. Hydrogen derived from biomass might 

be considered a significant energy source. Biomass has a lower carbon impact and is renewable 

compared to fossil fuels. Producing hydrogen from biomass has some challenges. Biomass 

produces a small amount of hydrogen since it has a low energy and baseline hydrogen content 

[37]. Due to an increase in the economy, energy from biomass would be advantageous to the 
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local society and provide a steady energy supply. Biomass can be produced using waste 

biomass, growing certain energy crops, and harvesting plant and tree remnants [38]. 

3.1. Thermochemical methods. 

Biomass thermochemical conversion yields a variety of liquid, solid, and gaseous fuels 

and is likewise relevant from an industrial and ecological aspect [39]. Thermochemical 

production of hydrogen using various biomass types is considered a viable and economically 

appealing method. Hydrogen may be produced from various kinds of wet biomass via 

thermochemical processes, eliminating the chemical addition requirement. There is still more 

to be done to progress most thermochemical conversion processes, and there are several 

obstacles, such as variable equipment prices, feedstock supply, practical obstacles, and public 

opinion [40]. Thermochemical methods include pyrolysis, gasification, and supercritical liquid 

[41] (Fig. 2). 

 
Figure 2. Thermochemical methods for hydrogen production. 

3.1.1. Pyrolysis. 

A thermal decomposition process of biomass called pyrolysis is carried out in an inert 

environment. This process of transforming biomass into products with additional value has 

been used frequently [42]. Typically, pyrolysis is carried out using a variety of process modes, 

such as slow and rapid decompositions of biomass material carried out at a high temperature 

in an inert atmosphere [43]. Through this process, the long-chain hydrocarbons of biomass 

breakdown down into smaller molecules in order to produce gas products, biochar, and bio-oil. 

Non-condensable gases like CO, H2, carbon dioxide (CO2), and methane (CH4) are produced 

during pyrolysis. The highest reaction temperature and heating rate distinguish fast and slow 

pyrolysis [44]. The selected biomass is pyrolyzed and then transformed into gas, bio-oil, and 

char. Hydrogen is produced from bio-oil via steam reforming (Fig. 3). 

 
Figure 3. Hydrogen production via biomass pyrolysis. 
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The process of producing hydrogen (and carbon dioxide) from hydrogen carriers in the 

presence of water is known as steam reforming [45]. Synthesis gas, or hydrogen-rich gas, is 

produced by steam reforming. A high purity of hydrogen is produced through additional unit 

operations on the synthesis gas [46,47]. The most commonly used technique to produce 

hydrogen at a high rate is steam reforming of methane (SRM). The primary advantages of SRM 

include its relatively low temperatures, which are cost-effective, and the production of syngas 

that are high in hydrogen. SRM usually takes place at temperatures higher than 500 °C [45]. 

The SRM of methane is completed as below: 

CH4 + H2O → CO + 3H2                 (1) 

CO2 + H2 → CO + H2O                   (2) 

Steam reforming has the benefit of producing the highest possible output of hydrogen. 

The major endothermic reaction's considerable heat load and continuous supply of heat are the 

reaction's two main obstacles [48]. Exothermic processes take place during partial oxidation. 

The process commonly proceeds faster than steam reforming and requires a smaller reactor 

vessel. This method initially yields less hydrogen per unit of input fuel than steam reforming. 

The partial oxidation process provides high methane conversion with excellent hydrogen 

selectivity at relatively high space velocities. Due to challenges such as a slight reduction in 

CO selectivity brought on by overoxidation, partial oxidation has not yet been commercialized 

[49]. Using reactors that are considerably smaller and simpler than with present-day 

technology, catalytic partial oxidation methods can produce very nonequilibrium products 

without carbon production [50].  

Wang et al. [51] studied the pyrolysis of cellulose for hydrogen production and then 

followed plasma-assisted reformation. The studies have been conducted with different reaction 

parameters such as steam, catalyst, discharge power, and reforming temperature. Wang and co-

workers [52] reported that the incorporation of sodium and in-situ carbon dioxide (CO2) capture 

in dental waste-derived sodium zirconate (DW-SZ) substantially enhanced hydrogen 

production in biomass pyrolysis. In order to produce hydrogen during the pyrolysis of three 

different biomass samples (municipal sludge, spirulina, and methylcellulose), the functional 

material that was produced later on was used. In the presence of functional material, spirulina 

provided the highest hydrogen yield compared to others. The pyrolysis of biomass derived from 

coconut wood was investigated by Suprianto et al. [53] to produce hydrogen. The biomass was 

pyrolyzed at 550°C, and the addition of curcumin and activated carbon to the biomass 

significantly increased the production of hydrogen (25.6%). The pyrolysis/gasification of wood 

sawdust biomass containing plastic with and without a Ni/Al2O3 catalyst has been investigated 

by Alvarez et al. [54]. As a result of adding 20 wt (weight) % of polypropylene to the biomass, 

the gas yield increased to 56.9 wt %, and the hydrogen concentration and generation increased 

to 36.1% and 10.9 mmol H2, respectively. Arregi et al. [32] reported a fluidized bed reactor for 

producing H2 using Ni catalyst and pine wood sawdust at 500 °C. This was followed by in-line 

steam reforming of the pyrolysis vapors. At the largest space-time investigated (30 gcat min 

gvolatiles-1), for a steam/biomass ratio of 4, and at a maximum H2 production of 117 g per kg 

of biomass, outcomes were accomplished. 

3.1.2. Gasification. 

Gasification of biomass is a typical thermochemical process based on the partial 

combustion of raw biomass. The higher organic hydrocarbons can break down into lower-

molecular-weight combustible gases like CO, H2, and CH4 [55]. Processing a gaseous fuel must 
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be done to produce heat and power for small- to large-scale applications. This opens up a more 

comprehensive range of technological possibilities. Compared to the direct combustion of solid 

fuels, producing energy from gaseous fuels is probably more efficient. Refining biomass 

feedstocks into gaseous fuels has the potential to contribute to a cleaner conversion [56]. Figure 

4 depicts the basic process involved in gasifying biomass into hydrogen. Most chemical 

processes that produce hydrogen involve the water-gas shift (WGS) reaction [57]. The WGS 

reaction is required because the gaseous output of a gasifier commonly consists of significant 

volumes of hydrogen and carbon monoxide, along with smaller amounts of other gases [58]. 

This reaction is presented below: 

CO + H2O → CO2 + H2              (3) 

 
Figure 4. Hydrogen production via biomass gasification. 

Jin et al. [59] studied the catalytic gasification of biomass in a fixed-bed reactor using 

Ni-based catalysts with Ca addition. The hydrogen yield increased from 10.4 to 18.2 mmol/g 

sample in the presence of a Ca-based catalyst. The amount of hydrogen produced following the 

amount of nickel present inside the catalyst increased from 50 g of nickel per mole (with a 

catalyst containing 0.1 mol% of Ca) to 80 g of nickel per mole (with a catalyst containing 0.8 

mol% of Ca). The sorption-enhanced gasification of biomass with steam in a fixed-bed reactor 

has been reported by Zhang et al. [60]. The present study has clarified the effects of 

temperature, catalyst type, and loading on hydrogen production. When K2CO3 was utilized 

with a 20 wt% K loading, the most significant carbon conversion efficiency (88.0%) was 

attained at 700 0C, corresponding to a hydrogen output of 73.0 vol %. Li et al. [61] reported a 

novel two-step staged biomass gasification for hydrogen production. The ability of biomass to 

be gasified at a higher temperature in the first stage and then reformed at a lower temperature 

in the second stage was enhanced by the independent handling of each stage. In the presence 

of sorbent CaO and the effects of different operation conditions, biomass steam gasification 

was reported by Acharya et al. [62]. At steam/biomass ratios of 0.83, CaO/biomass ratios of 2, 

and a temperature of 670 °C, product gas with hydrogen concentrations as high as 54.43% is 

produced. 

3.1.3. Hydrogen production via supercritical liquid. 

Supercritical water gasification (SCWG) is a potential alternative energy conversion 

method. The ability of SCWG to produce hydrogen from biomass has recently sparked a lot of 

interest. In the drying process, SCWG advances without consuming much energy and improves 

process efficiency [63]. Aqueous organic wastes or wet biomass can be completely gasified 

using the SCWG technique under appropriate reaction conditions to yield hydrogen-rich gas 

[64] (Fig. 5). Supercritical water (SCW) is a suitable candidate for the gasification process due 

to its distinct and adjustable physico-chemical properties. SCW behaves in the properties of 
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gases above critical pressures and temperatures without any phase change. Water becomes a 

non-polar solvent when the number of hydrogen bonds across the critical point and the 

dielectric constant significantly decrease [65]. Gasification of biomass is facilitated by SCW 

in an excellent reaction environment [66]. 

 
Figure 5. SCWG for biomass conversion to hydrogen. 

Reddy et al. [67] reported that the SCWG effectively produces hydrogen because it 

prevents biomass drying and enables optimum conversion. Process conditions must be higher 

than 374 °C and 22.1 MPa for biomass to be converted to gases. In SCWG, the reaction 

temperature, feed concentration, residence time, pressure, and catalysts play a crucial role. The 

SCWG is a sophisticated and successful method for converting biomass to hydrogen, as stated 

by Zhao et al. [68]. Four machine-learning models were reported in this study. The maximum 

energy efficiency (43.3%) and hydrogen reaction efficiency (45.6%) were found when biomass 

with a high O-content and low H/C ratio was used as feedstock. Lu et al. [69] have reported 

the SCWG to be a promising method for the efficient utilization of wet biomass for the 

production of hydrogen. The present study demonstrated the impact of pressure, solution 

concentration, residence time, and temperature. Compared to other factors, temperature was 

shown to be the most important for hydrogen production. The SCWG of biocrude for hydrogen 

production was reported by Tushar et al. [70] under different conditions. It has been 

demonstrated that temperature has no effect on the biocrude's carbon gasification efficiency. 

The equilibrium conditions for the biocrude under consideration have been attained at a lower 

temperature in terms of carbon conversion. Ibtissem et al. [71] conducted SCWG of glycerol 

in mini-autoclaves to carry out a study on optimizing hydrogen production. Results showed 

that for efficient hydrogen synthesis and gasification, a high temperature and a long residence 

time are preferred. In addition, the pressure change has no discernible impact, while the rise in 

the initial glycerol concentration has a detrimental impact. 

Further, the main advantages and disadvantages of the above-mentioned 

thermochemical methods are shown in Table 3. 

Table 3. Main advantages and disadvantages of thermochemical methods. 

Methods Advantages Disadvantages 

Pyrolysis 
Simple and fast process and formation of biochar, bio-

oil, and gas products. 
Catalysts deactivation, sensitivity of 

feedstocks. 

Gasification High yield of hydrogen, reliability, and efficient process. Formation of ash, tar, and other residues. 

Supercritical liquid 
Non-corrosive processes and wet biomass can be 

directly gasified. 

A low heating rate can reduce the efficiency of 

the process and increase the formation of tar. 
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3.2. Biological methods. 

Biomass is now a significant renewable energy source that can substitute fossil fuels in 

order to sustain a green community and expedite the growth of the circular bioeconomy [72]. 

The conversion of biomass is one of the emerging techniques for producing hydrogen, as it is 

low-cost, clean, and renewable. In practice, biological processes can be used to produce 

hydrogen [73]. Environmentally benign and less energy-intensive, biological hydrogen 

production can operate at ambient pressure and temperature [74-77]. It is very challenging to 

develop bioreactors, regulate the reaction conditions, and estimate hydrogen production 

capacity due to the fact that the biological hydrogen production reaction process is so complex 

and necessitates dealing with multiple unsteady and nonlinear interactions [78]. Furthermore, 

because any organic waste may be used in these processes, they may be able to tackle issues 

with waste disposal and energy generation [79]. Figure 6 depicts the classification of biological 

methods for hydrogen production [80-82]. 

 
Figure 6. Biological methods for hydrogen production 

3.2.1. Fermentation. 

Hydrogen is produced easily and rapidly via fermentation. This technology can utilize 

a range of organic wastes as substrates for the fermentation process to produce hydrogen. This 

process allows for treating organic waste and generating extremely clean energy [83]. The 

composition of the organic substances required to produce hydrogen significantly affects its 

performance. Carbohydrates, including glucose, xylose, and sucrose, are the ideal substrates 

for hydrogen production owing to their high degradation rate. Proteins can only produce a small 

amount of hydrogen when they are broken down into amino acids. Lipids, which contain 

glycerol, are likewise inappropriate for the production of hydrogen [84]. The two different 

types of fermentation for hydrogen production are photo-fermentation and dark fermentation 

[81].  

3.2.1.1. Photo-fermentation. 

A photo-fermentation is an organic substrate fermentative reaction involving 

photosynthetic bacteria and light energy. It is an anoxic reaction where organic molecules such 

as lactate, acetate, and butyrate are broken down and produce H2 and CO2 when exposed to 

light [85]. Electrons and protons formed during the oxidation of organic substances are used in 

the photo-fermentative hydrogen production process [86]. Due to the pleasant conditions for 

reactions, the utilization of solar energy, and efficiency, the photo-fermentation process is a 

very promising approach [87]. In anaerobic conditions, PNS (purple non-sulfur) photosynthetic 

bacteria can produce hydrogen from organic acids; this process extends the potential for 

producing hydrogen from various materials, such as organic acid-rich waste and effluent [88]. 
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The mechanistic pathway of photo-fermentation is presented in Figure 7. The fermentation 

process depends significantly on PNS bacteria. Light-harvesting complexes and different 

reaction centers are present in these bacteria. Light energy is absorbed by light-harvesting 

complexes in order to obtain electrons from carbon sources. Electrons are first transported to 

nitrogenase through an electron transfer chain and ferredoxins. 

Light can dramatically increase the synthesis of nitrogenase, which is essential for 

hydrogen generation [89]. Barghash et al. [90] studied a single photo-fermentation technique 

using landfill leachate as the substrate for hydrogen production. This process was based on pH 

values and temperature. As a result, the pH values that were taken into account were 6, 6.5, 

and 7.2, respectively, at a regulated temperature of 37°C. A medium pH scale of 6.0, a 

fermentation temperature of 37 ±1°C, and a constant shaking speed of 100 rpm led to maximum 

hydrogen production. 

 
Figure 7. Mechanism of photo-fermentation. 

Lu et al. [91] investigated the effects of Fe2+ and Fe3+ in the fermentation broth using 

corn stalks for hydrogen production via photo-fermentation. With an energy conversion 

efficiency of 5.21%, which was 19.98% greater than no-addition, the maximum hydrogen 

generation of 70.25 mL/g was found at 2500 μmol/L Fe2+ addition. The effect of the initial pH 

of the buffer on the photo-fermentation process of producing hydrogen was examined by Guo 

et al. [92]. The findings showed that the initial pH values of the phosphate buffer had a 

substantial impact on the photofermentation process. At an initial pH of 6.5, the greatest rate 

of hydrogen synthesis was 23.96 mL/h. The maximal production of hydrogen rates declined 

with the initial pH values at 5.0 and 7.5. Cai et al. [93] reported that integrating dark- and 

photo-fermentation is a viable approach to enhance the effectiveness of saline wastewater 

treatment and hydrogen production. The control was a dark fermented broth that had not been 

pretreated. The hydrogen output (134%) and substrate utilization (67%) were enhanced with 

the addition of photo-fermentative bacteria after dark fermentation. Bosman et al. [94] studied 

microbial photo-fermentation's potential to yield hydrogen. The operation of a thermosiphon 

photobioreactor and the impact of diurnal light cycles on Rhodopseudomonas palustris growth 

and hydrogen productivity were both investigated with an automated system. In the 

thermosiphon photobioreactor, diurnal light cycles that approximate daylight hours were found 
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to lower hydrogen synthesis, exhibiting a lower maximal production rate than continuous 

illumination. 

3.2.1.2. Dark fermentation. 

Dark fermentation is conducted by anaerobes (facultative and obligate) in the absence 

of oxygen and light. These bacteria act on the substrate during the fermentation and produce 

hydrogen [95]. The conditions of the bioreactor must be optimized for efficient bacterial 

growth, as the metabolism of bacteria yields carbon dioxide and hydrogen as byproducts. The 

mixture of gases is collected and can be used as a renewable energy vector [96]. Various 

renewable organic wastes have been explored as potential substrates for dark fermentative 

biohydrogen generation, including rice straw, vegetable waste, food waste, sugarcane 

molasses, oil palm sap, cassava, wheat straw, etc [97].  

 
Figure 8. An outline diagram for dark fermentation. 

Some of the main advantages of dark fermentations include an efficient hydrogen 

production rate as compared to photo-fermentation, no requirement for light energy, low cost, 

and easy design of bioreactors [98]. Dark fermentation has become more widespread than other 

biological methods to produce hydrogen due to its efficiency and independence from light [99]. 

Figure 8 depicts an outline diagram for dark fermentation. Figure 9 presents an outline of the 

bio-hydrogen production route via dark fermentation [100-102]. The basic fermentation 

reaction in dark fermentation is given below: 

c6H12O6 + 2H2O → 2CH3COOH + 2CO2 + 2H2                    (4) 

 
Figure 9. An outline of the bio-hydrogen production route via dark fermentation. 
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Hovorukha et al. [103] investigated the production of hydrogen via dark fermentation 

as well as the decomposition of solid and liquid waste from fruits, vegetables, meat residue, 

alcohol, and sewage. In terms of solid waste, hydrogen yields were 102 L/kg and liquid waste, 

2.3 L/L. The weight of the solid waste decreased by 91-fold due to the fermentation process, 

and the amount of organics in the liquid waste was reduced by 3 fold. Potassium ferrate (PF), 

a strong oxidant, was used in the anaerobic dark fermentation of food waste by Kuang et al. 

[104] to produce hydrogen. Experiments showed that PF enhanced food waste-to-hydrogen 

generation. Through the use of synthetic wastewater in the fermentation process, the rapid PF 

oxidation prevented the processes of hydrolysis, acetogenesis, acidification, methanogenesis, 

and homoacetogenesis. A sequential dark fermentation and microbial electrochemical cell 

(MEC) process using food waste was reported by Jia et al. [105] for producing hydrogen. The 

results demonstrate that anaerobic digested sludge produces biogas at rates and hydrogen 

proportions that are higher than those of anaerobic granular sludge. Ghimire et al. [106] 

reported the dark fermentation of olive mill wastewater, rice straw, and food waste to produce 

hydrogen. The maximum hydrogen yields were observed at an initial pH of 4.5 and 5.0. The 

yield of hydrogen was found to be doubled using olive mill wastewater as compared to rice 

straw and food waste. Eker and Sarp [107] conducted a dark fermentation using waste paper, 

which led to hydrogen production. In order to examine the impact of sugar concentration on 

the production of hydrogen, various concentrations of glucose, which were extracted from 

waste paper, were used. At an initial sugar content of 18.9 g/L, the maximum cumulative 

hydrogen gas was produced. 

3.2.2. Biophotolysis. 

Biophotolysis is also known as water-splitting photosynthesis. In this process, oxygenic 

photosynthetic microorganisms such as green algae and cyanobacteria produce hydrogen in the 

presence of water and sunlight. The applicability of green microalgae requires hydrogenase 

and heterocystous cyanobacterial nitrogenase is used in this process [108]. Water has been 

broken down by these bacteria into hydrogen and oxygen via direct or indirect biophotolysis. 

Green algal hydrogenase promotes the evolution of hydrogen in direct biophotolysis. 

Nitrogenase in blue-green algae accelerates nitrogen fixation during indirect biophotolysis. The 

electron transport chain, which is made up of PS-I (photosystem-I) and PS-II (photosystem-II), 

serves as the place where electrons that arrive from splitting water pass. The action of 

ferredoxin-generating adenosine triphosphate (ATP) results from its reduction. These influence 

several chemical processes that lead to the synthesis of hydrogen [109]. In direct photolysis, 

water is split into oxygen and hydrogen; cyanobacteria and microalgae have this capability. 

Algae have developed to such an extent that they can now use solar energy to obtain protons 

and electrons from water. Water splitting takes place as sunlight is absorbed and electrons move 

to hydrogenases and nitrogenases [110]. Pigments at PS-I and PS-II, or both, absorb light 

energy, increasing the energy level of water oxidation electrons when transported from PS-II 

via PS-I to ferredoxin. Hydrogen gas directly retains some of the light's energy [111]. The 

transport of electrons is facilitated via PS-I and ferredoxin (Fd). By using the plastoquinol 

generated via electron transfer to reduce NADP+ (Nicotinamide adenine dinucleotide 

phosphate) to nicotinamide NADPH (Nicotinamide adenine dinucleotide phosphate hydrogen). 

Photosystem II uses these water-derived electrons for photosynthesis. For the production of 

ATP through ATP synthase, a proton gradient is necessary. These protons serve as the 

electrons' terminal acceptors [81]. Figure 10 depicts the process of direct photolysis. In direct 
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biophotolysis, the main drawbacks include oxygen sensitivity and a poor light conversion rate. 

Implementing an oxygen-inactivation-resistant hydrogenase along with oxygen absorbers is a 

way to address this problem [112]. 

 
Figure 10. Direct photolysis. 

The formation of hydrogen and oxygen takes place in distinct reactions in the two stages 

of indirect photolysis (Fig. 11). Glycogen and starch, both found in cyanobacteria and 

microalgae, function as intracellular reserves in the formation of hydrogen [113]. 

Cyanobacteria and green algae, which mainly produce hydrogen using electrons obtained from 

the catabolism of carbohydrates, are used in the process [87]. Water molecules split into 

protons and oxygen in the presence of sunlight during the first step. Carbon dioxide is fixed, 

synthesizing storage carbohydrates, and then hydrogenase produces hydrogen gas in the second 

step. The fact that hydrogen evolution is separate from oxygen evolution is advantageous. The 

considerable ATP consumption of nitrogenase and the constant light supply are some of the 

drawbacks [38].  

 
Figure 11. Indirect photolysis. 

Direct photolysis using Chlamydomonas reinhardtii to produce hydrogen has been 

reported by Ban et al. [114]. Algal cells could retain high amounts of protein and chlorophyll 

by adding Ca2+ ions. For the protection of the PS-II activity, which is in charge of direct 

photolysis H2 generation, high chlorophyll and low ROS (reactive oxygen species) were 

favorable. This study investigates rapid and simple methods for increasing the production of 

H2 from algal photolysis. Ban et al. [115] reported that Pseudomonas sp. strain D has been 

shown to be an essential partner that helps Chlamydomonas reinhardtii promote photolysis-

mediated H2 generation. It is also an excellent partner for fostering H2 production by the green 

algae Chlorella and Scenedesmus. Algal-bacterial collaboration increased starch content, 

maintained protein levels, and slowed the loss of chlorophyll. These are the prospective 

elements whose control offers a chance to increase algal H2 generation. Zarei and others [116] 
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reported a sustainable and environmentally friendly technique for hydrogen production via a 

photobioreactor. An affordable and sustainable method of producing hydrogen has been 

identified, which involves the growth of cyanobacteria in an internal-loop airlift 

photobioreactor. Hupp et al. [117] reported that eukaryotic green algae (Chlorella) have the 

potential for the production of hydrogen. It has been observed that the bacterial partners 

Bacillus amyloliquefaciens, Bacillus mycoides, and Bacillus cereus substantially improve algal 

biomass yield. The production of algal hydrogen was clearly related to effective bacterial 

respiration. 

3.2.3. Electrochemical. 

A microbial electrolysis cell (MEC) is a biochemical approach used to produce 

hydrogen via oxidation and reduction reactions [118]. MEC is an innovative renewable energy 

technology that simultaneously eliminates pollutants such as heavy metal ions, dyes, and others 

from industrial, municipal, and agricultural wastewater. MEC is still in its initial stage due to 

the cost of membranes, design, electrodes, etc., and it encounters difficulties in large-scale 

applications [119]. Waste-to-product conversion occurs in the presence of electrochemically 

active bacteria without harming the environment [120]. Carbon-based anodic materials are 

generally used in MEC because of their chemical stability, availability, and conductivity. Such 

materials also prevent stable bacterial interactions due to their hydrophobic nature. It has been 

suggested that hydrophobicity patterns can be eliminated via acid and heating treatments. One 

of the additional methods to enhance bacterial adherence is immobilization using organic 

polymers [121]. The main parts of MEC are the anode, cathode, and separator (Fig. 12). Protons 

and electrons pass through the electrolyte and the external electric circuit and come together to 

form hydrogen at the cathode. A microbial biofilm on the electrode serves as an electrocatalyst 

and supports the oxidation at the anode [122].  

 
Figure 12. MEC for hydrogen production. 

Shen et al. [123] have presented the MEC technology for wastewater treatment and 

generating hydrogen. The present investigation provides evidence that treating swine waste 

with a MEC can be a successful method for recovering H2. Although adjustments in the flow 

rate showed an insignificant effect on system performance, raising organic loadings and applied 

voltages had a favorable impact. Huang et al. [124] used an integrated reactor to combine 

anaerobic digestion (AD) and single-chamber MEC treatment in order to recover hydrogen 

from food waste (FW) effectively. In the AD-MEC, the hydrogen recovery rate was found to 

be 96%, and the electrical energy recovery rate was 238.7%, respectively. Chavan and Gaikwad 

[125] presented using lignocellulose to produce hydrogen via successive enzymatic treatments 

and microbial electrolysis via MEC. In this study, the performance of MEC was done by 

introducing iron oxide nanoparticles (IONPs) to an anode. Compared to the MEC with an 
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uncoated anode, hydrogen production efficiency was 1.14 times higher. A dual-chamber MEC 

with concentric cylinders was reported by Zhang et al. [126] to produce hydrogen. The 

maximum proportional hydrogen yield was 2.46 mmol/L/D, and energy recovery efficiencies 

were 215.33%. 

The main advantages and disadvantages of the above-mentioned biological methods 

are presented in Table 4. 

Table 4. Main advantages and disadvantages of biological methods.  

Methods Advantages Disadvantages 

Fermentation 

The hydrogen production is enhanced via the 

alternating and complementing of photo and 
dark fermentation methods. 

The formation of side products in dark 

fermentation leads to poor yield of hydrogen. The 
photofermentation process needs a sufficient 

supply of ATP. 

Biophotolysis 

In direct biophotolysis, water, and sunlight are 

needed for the generation of hydrogen. The high 

selectivity for hydrogen in indirect biophotolysis 

is a major advantage. 

Direct biophotolysis requires high light intensity. 

Oxygen can decrease the photochemical 

efficiency. In indirect biophotolysis, the 

hydrogenase enzyme reduces hydrogen yield. 

Electrochemical 
The MEC system can easily be modified as a 

requirement. Hydrogen yield is high. 

An external power supply is required. 

Requirement of catalysts for electrodes. 

4. Conclusions 

Hydrogen is considered a green fuel. Water is produced when hydrogen is used as a 

fuel, and it can be recovered to produce more hydrogen. The energy produced from 

biohydrogen offers the primary advantage of avoiding releasing greenhouse gases while 

transforming hydrogen into energy. The insufficient yield and high production costs of current 

hydrogen production technologies need some advancement. The present study has summarised 

all biomass-based methods for producing hydrogen with updated work. This article will help 

select adequate and corresponding biomass for hydrogen conversion techniques. 
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