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Abstract: One of the deadly diseases affecting the global public is cancer, and more than 85% of cases 

are breast cancer. In the current investigation, QSAR studies have been performed on 31 analogs of the 

quinazoline derivatives, which have anti-proliferative activity against the cancer cell line MCF-7. The 

machine learning (ML)-based SVM technique exhibited a good correlation between fitted and observed 

biological activities. Internal and external validations have assessed and validated the descriptive and 

predictive performances of QSAR models. This model demonstrates an R2 value of 0.749 and an R2 test 

value of 0.991. Here, seven new molecular structures are designed using the QSAR model predictions, 

and their potential interaction mode with the VEGFR-2 receptor (PDB ID: 3VHE) is analyzed using 

molecular docking and pharmacokinetic parameters. Based on QSAR model predictions, molecular 

docking, dynamic, and ADMET in silico property assessments, we recommend one newly designed 

molecule as an anti-breast cancer drug remain further in vivo and in vitro investigations before clinical 

trials. 
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1. Introduction 

According to the World Health Organization, approximately 112 nations rank cancer 

as the second most prevalent cause of mortality, while approximately 23 countries rank it as 

the third or fourth leading cause. By 2020, there will have been an estimated 9.0 million new 

cases of cancer reported. According to predictions, this figure will rise to 28 million instances 

by 2040 [1]. From a cancer perspective, breast cancer is the most prevalent and deadly 

malignancy. In 2020, 2.3 million women received a breast cancer diagnosis, and 684,996 of 

them passed away, accounting for 16% of all women's cancer deaths. In 2040, nearly three 

million new cases and one million deaths are expected from breast cancer [2]. 

Humans and other species can develop breast cancer; it starts in the breast tissue and 

develops from the milk ducts (ductal carcinomas) or the lobules (lobular carcinomas), which 

supply the ducts with milk [3]. Current breast cancer therapy regimens include the management 

of adjuvant drugs such as anthracyclines, epirubicin, doxorubicin, fluorouracil, and 

cyclophosphamide [4]. Breast cancers are classified according to the specific receptors' levels, 

such as the progesterone receptor, the estrogen receptor, and the human epithelial receptor 2 
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(HER-2). Hormone receptor status is positive in almost 75% of breast cancer patients. 

Unfortunately, effective treatment alternatives tailored to these subtypes are lacking [5].  

Quinoxalines have been shown to be selective ATP-competitive inhibitors of several 

kinases, making them a valuable building block for anticancer medications [6–10]. The basic 

goal of anticancer medications is to neutralize cancer cells while inflicting no damage to normal 

cells. Many quinazoline derivatives are FDA-approved cancer treatments. Gefitinib, erlotinib, 

lapatinib, afatinib, and vandetanib. Gefitinib and erlotinib were used in 2003 and 2004 to treat 

advanced or metastatic NSCLC—the erlotinib and gemcitabine for local, advanced, or 

metastatic pancreatic cancer in 2005. Erlotinib acts as a tyrosine kinase inhibitor. In 2011, the 

FDA approved vandetanib for metastatic medullary thyroid cancer. In 2013, the afatinib for 

NSCLC. The FDA approved lapatinib in 2012 for breast cancer treatment [11], and it is only 

one drug among all quinazoline derivatives for the treatment of breast cancer. Additionally, it 

shows potential adverse reactions, including hair loss, a dry mouth or xerophthalmia, 

gastrointestinal issues such as constipation and difficulty swallowing, and dermatological 

conditions such as herpes simplex or aphthous ulcers. To overcome these side effects and 

design a potentially privileged scaffold to treat breast cancer [12]. 

Most recent drug discovery approaches make significant use of computational tools. 

Computational chemistry and in silico approaches were used as effective tools for drug design 

and discovery [13,14] with ADMETox [15] examination of new drugs. QSAR modeling is an 

important tool in drug development that links the chemical structures of compounds with their 

biological activity [16]. A ligand's biological response or activity can be predicted using 

different QSAR models based on its physicochemical properties. 

Recently, some authors established the quinazoline derivative QSAR model for 

anticancer agents. In detail, HeLa cancer cell line cytotoxicity is investigated for a series (1–

26) of quinazoline derivatives substituted at positions 3, 6, and 8 by QSAR-2D. Regression 

analyses like PCA, PLS, MLR, and MNLR, internal and external validation, and Y-

randomization are used to execute, predict, and generate anti-cancer activities [17]. Another 

study showed the Heuristic and GEP methods to generate linear and non-linear 2D-QSAR 

models and CoMSIA to build 3D models with SYBYL software. Novel compounds were 

created using 2D-QSAR molecular descriptors and 3D contour maps. A few compounds 

showed optimum activity in osteosarcoma docking experiments [18]. Arjun Anant et al. are 

developing pharmacophore models, 3D-QSAR, and virtual screening to target CDK4/6 kinase. 

A total of 46 ligands were analyzed, with ADRRR_1 identified as the best pharmacophore 

model. The studies contribute to the future production of quinazoline derivatives targeting 

CDK4/6 kinase [19]. Moreover, Sagiru Hamza et al. developed a QSAR model on a 

quinazoline-4(3H)-one derivative using Material Studio v8.0. The model was internally and 

externally tested. This QSAR model was chosen for its superior statistical parameters, and 

seven compounds with better breast cancer activity were designed [20]. This literature review 

did not turn up any models created using ML techniques or new scaffolds for developing breast 

cancer inhibitors.  

Machine learning (ML)-based QSAR techniques have been used to develop promising 

molecules [21]. The current study aimed to use the ML-QSAR approach to develop more 

effective quinazoline compounds as breast cancer inhibitors while also predicting their ADME 

qualities and investigating their in silico approach. 

QSAR commonly employs SVMs due to their ability to handle high-dimensional data 

and non-linear relationships. The hyperplane was created to maximize separation between 
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classes in the feature space. SVMs thrive in QSAR applications, including drug activity, 

toxicity, and bioavailability prediction. These tools are versatile and robust, making them 

suitable for QSAR modeling. Researchers developed a framework known as "ML-QSAR" to 

model QSAR using machine learning approaches. SVM is a popular QSAR modeling machine 

learning algorithm. The framework helps choose suitable algorithms for application 

requirements and enhances current approaches [22,23]. The main goal of this study was to use 

machine learning to create a QSAR model. The model was based on more powerful quinoxaline 

compounds as breast cancer inhibitors and suggested new powerful candidates. Molecular 

docking was utilized to model and investigate their interactions with the target enzyme, verify 

the molecular stimulation technique, and forecast their potential pharmacological impacts. 

2. Materials and Methods 

2.1. Database. 

This study used a database that included a number of quinoxaline derivatives. The 

database contained 31 compounds that are anticancer drugs and apoptosis inducers [24]. Figure 

1 shows the 2D chemical structure of quinoxaline. Table 1 offers the entire set of derivatives. 

The compounds have been split into two subsets: 78% of the set for creating the QSAR model 

and 22% for validating the model. The distribution is based on activity. The activity of 

compounds was expressed as pIC50=-logIC50 and was used as the dependent variable. The 

compounds included in the test set were chosen manually from a group of structures based on 

the Y-response (the dependent variable) that each exhibited. This strategy utilizes the parameter 

of activity as the procedure for data collection. Molecules with high activity, low activity, and 

moderate activity were included in both sets to guarantee even dispersion. To enhance 

performance, the training set was comprised of the molecules that were the most active and the 

least active [25]. 

 
Figure 1. 2-D chemical structure of Quinoxaline scaffold. 

Table 1. Structures and their corresponding IC50 and PIC50. 

Sr.no R1 R2 IC50 (µM) (pIC50) 

1. -CH3 m-(benzamide) 692.0 3.159 

2. -CH3 m-(4-chloro benzamide) 692.0 3.159 

3.[b] -CH3 m-(4-methoxy benzamide) 288.0 3.540 

4. -Cl m-(benzamide) 5.3 5.275 

5. -Cl m-(4-chloro benzamide) 21.4 4.669 

6.[b] -Cl m-(4-methoxy benzamide) 380.0 3.420 

7.[b] -H m-(4-chloro benzamide) 182.0 3.739 

8. -H m-(4-methoxy benzamide) 219.0 3.659 

9. -CH3 p-(benzamide) 25.7 4.590 

10. -CH3 p-(4-chloro benzamide) 138.0 3.860 

11. -CH3 p-(4-methoxy benzamide) 24.0 4.619 

12. -CH3 p-(4-methyl benzamide) 60.3 4.219 

13. -Cl p-(benzamide) 323.6 3.489 

14. -Cl p-(4-chloro benzamide) 1000.0 3.000 

15. -Cl p-(4-methoxy benzamide) 1000.0 3.000 

16. -CH3 p-(thiourea phenyl) 15.5 4.809 

17. -CH3 p-(phenyl) urea 13.5 4.869 

18. -CH3 p-(4-chlorophenyl) urea 9.0 5.045 
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Sr.no R1 R2 IC50 (µM) (pIC50) 

19. -CH3 p-(3-methoxyphenyl) urea 24.5 4.610 

20.[b] -CH3 p-(3-methylphenyl) urea 30.0 4.522 

21. -Cl p-(thiourea phenyl) 170.0 3.769 

22. -Cl p-(phenyl) urea 148.0 3.829 

23.[b] -Cl p-(4-chlorophenyl) urea 692.0 3.159 

24.[b] -Cl p-(3-methylphenyl) urea 64.5 4.190 

25. -Cl p-(3-methoxyphenyl) urea 47.9 4.319 

26. -Cl p-(4-methoxyphenyl) urea 436.5 3.360 

27. -H p-(3-methoxyphenyl) urea 32.0 4.494 

28. -CH3 
p-(4-methylbenzene) 

sulphonamide 
22.9 4.640 

29. -CH3 p-(4-nitrobenzene) sulphonamide 10.23 4.990 

30 -Cl 
p-(4-methylbenzene) 

sulphonamide 
537.0 3.270 

31. -Cl p-(4-nitro benzene) sulphonamide 55.0 4.259 

p- para; m-meta; o- orth. 

2.2. Model QSAR and validation. 

2.2.1. Support vector machines (SVM). 

The WEKA program was used to construct 2D-QSAR models [26,27]. We created the 

QSAR model using the SMOreg (Sequential Minimal Optimization Regressor) approach, an 

effective machine learning methodology for SVM (Support Vector Machine) [28]. Regression 

and classification use SVMs as guided learning tools. SVM classifies data by employing a non-

linear kernel function to locate hyperplanes in the high-dimensional space. This hyperplane 

achieves optimal separation of positive and negative variables. The support vector 

methodology (SVM) maximizes the margin between the hyperplane and a limited group of 

training data points. SVM is a common machine-learning method in cheminformatics. Several 

solid evaluations have highlighted SVM's use in QSPR and QSAR investigations, especially 

drug design. Stable, reproducible, and algorithm-independent SVM findings are its key 

benefits. Selecting the appropriate kernel function is crucial for a successful SVM model. Two 

popular kernels for classification issues are the polynomial kernel and the RBF kernel. For this 

study, we used a polynomial kernel instead of RBF. We used John Platt's Sequential Minimal 

Optimization (SMO) approach to train a support vector classifier. SMO normalizes all 

properties, fills gaps, and converts nominal to binary [29]. 

2.2.2. Internal and external model validation. 

We used a cross-validation LOO (leave-one-out) to evaluate the precision of QSAR 

models built with partial least squares (PLS). This evaluation involved calculating the cross-

validation square coefficient (q2) and the optimal number of components (ONC). To obtain the 

coefficient (r2), we conducted a non-cross-validation study using the ONC that we developed 

during the cross-validation research. The values of r2 and q2 comprise the internal quality 

appraisal of the developed models, according to SEE (Standard Error Estimation). Equations 1 

and 2 provide an outline of q2 and r2. 

q2 =
∑(yi−ŷi)2

∑(yi−y̅)2  > 0.5                    (1) 

r2 =
[∑(yi−y̅)(ŷi−y̅̂)]

2

∑(ŷi−y̅̂)2.∑(yi−y̅)2  > 0.6         (2) 

The model must be submitted for additional validation in accordance with the 

Golbraikh-Tropsha method and Roy's methodology [30–36]. 
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Golbraikh-Tropsha’s method: 

rpred
2 =

[∑(yi−y̅)(ŷi−y̅̂)]
2

∑(ŷi−y̅̂)2.∑(yi−y̅)2  > 0.6         (3) 

0.85 ≤ K =
∑(yi.ŷi)

∑(ŷi)2 ≤ 1.15               (4) 

0.85 ≤ K′ =
∑(yi.ŷi)

∑(yi)2 ≤ 1.15              (5) 

r0
2 = 1 −

∑(yi−k.ŷi)2

∑(yi−y̅)2                            (6) 

 r0
′ 2 = 1 −

∑(ŷi−k′.yi)2

∑(ŷi−y̅̂)2                         (7) 

b) Roy’s method: 

rm
2 = r2. (1 − √|r2 − r0

2| )              (8) 

rm
′ 2 = r2. (1 − √|r2 − r0

′ 2| )           (9) 

∆rm
 2 = |rm

2 − rm
′ 2|                             (10) 

rm
2̅̅̅̅ =

rm
2 +rm

′ 2

2
                                      (11) 

Other statistical quantities were calculated, such as: 

QF1

2 = 1 −
∑ (yi−ŷi)2nEXT

i=1

∑ (yi−y̅TR)2nExt
i=1

               (12) 

QF2

2 = 1 −
∑ (yi−ŷi)2nEXT

i=1

∑ (yi−y̅EXT)2nExt
i=1

              (13) 

CCC =
2.∑ (yi−y̅).(ŷi−y̅̂)

nEXT
i=1

∑ (yi−y̅)2+
nEXT
i=1

∑ (ypred−y̅̂)2nEXT
i=1

+nEXT(yi−y̅̂)2
     (14) 

2.3. Drug prospects and activity forecast. 

Seven new ligands were proposed using the QSAR model and field contour analysis. 

Table 2 depicts the structures and activities of the new candidates. The results indicate that the 

candidate drugs being considered exhibit similar levels of activity as compound 4 and 

Sorafenib (Experimental activity: pIC50 value of 5.187). 

Table 2. Newly designed compounds and their predicted activities. 

 

N° R1 R2 pIC50 

M4 -Cl -H 5.275(b) 

A1 -CO2H -Cl 5.318(a) 

A2 -CONH2 -Cl 5.398(a) 

A3 -CH3 -NH2 5.496(a) 

A4 -CH3 -OC6H5 5.789(a) 

A5 -CH3 -C6H5 5.409(a) 

A6 -CH3 -CONH2 5.555(a) 

A7 -CH3 -CON(CH3)2 5.403(a) 

Sorafenib - 5.187(b) 

pIC50
(a): predicted activity after applying the QSAR model; pIC50

(b): Experimental activity of the commercialized 

drug SOR; N° - Newly designed drug compounds; R1, R2 – different functional group substitution. 
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2.4. ADME-Tox and bioavailability. 

Lipinski's rule was cast off to direct the screening of compounds[37,38]. At the initial 

stage of drug discovery, Lipinski's rule can be effective. It states that if a chemical violates 

more than two of the below criteria and calculates Log p ≤ 5, and (PSA) ˂ 140 Å2, it is 

impermeable or badly absorbed [39,40]. The parameters LogP, MW, TPSA (topological polar 

surface area), N-violations, n-atoms, N-rot, and volume were applied to estimate drug 

likeliness, and the “Swiss ADME” (http://www.swissadme.ch) database was used for 

evaluations. The ADME and toxicity characteristics were calculated using the pkCSM-

pharmacokinetics web server (http://structure.bioc.cam.ac.uk/pkcsm) [41] for analysis. All 

compounds are taken into consideration, and as a result, each of these seven compounds 

complies with the Lipinski rule and is compared with the reference standard Sorafenib. Also, 

toxicity profiling was performed based on the fact that compounds A3, A5, and A6 have shown 

toxicity, as illustrated in Tables 3 and 4. This theoretical screening helped to select a few 

promising active leads for consideration for further study. 

Table 3. Pharmacokinetic properties and synthetic access of novel proposed compounds. 

Sr. No. 

Physicochemical property 
Lipinski 

rule 

Synthetic 

accessibility (SA) MW NRB TPSA 
Log Po/w 

(MLogP) 
HBA HBD 

A1 461.86 8 133.31 2.69 6 4 Yes 3.13 

A2 460.87 8 139.10 2.28 5 4 Yes 3.16 

A3 412.44 7 122.03 2.51 4 4 Yes 3.11 

A4 489.52 9 105.24 3.39 5 3 Yes 3.46 

A5 473.53 8 96.010 3.64 4 3 Yes 3.45 

A6 440.45 8 139.10 2.28 5 4 Yes 3.19 

A7 468.51 9 116.32 4.15 5 3 Yes 3.42 

Sorafenib 464.82 9 92.35 4.10 7 3 Yes 2.87 

Optimal 

rang 
<500 ≤ 10 ≤ 140 ≤ 5 < 10 < 5 Yes/No 0 < S.A <10 

MW- molecular weight; NRB- Num. rotatable bonds; TPSA- topological polar surface area; LogP- partition 

coefficient; HBA- Hydrogen Bond Acceptor; HBD- Hydrogen Bond Donor. 

Table 4. Platform pkCSM-pharmacokinetics for in silico ADME/Tox prediction of novel compounds. 

Drug candidate A1 A2 A3 A4 A5 A6 A7 SOR 

Absorption 

Log S (SILICOS-

IT) 
-4.31 -4.40 -4.61 -3.62 -3.99 -4.43 -4.831 

-

4.496 

Log Po/w (MLogP) 2.69 2.28 2.51 3.39 3.64 2.28 4.15 5.549 

HIA (Human 

Intestinal 

Absorption) % 

65.305 80.128 83.541 100 97.939 83.095 83.949 91.25 

1.1Distribution 

BBB (Blood–Brain 

Barrier) 
-1.231 -1.04 -1.165 

-

1.222 
-0.983 -1.28 -1.072 

-

1.741 

P-gp substrate Yes Yes Yes Yes Yes Yes Yes Yes 

Fu (Fraction 

unbound (human)) 
0 0 0.03 0.327 -0.983 0.093 0.079 0.038 

Metabolism 

CYP1A2 inhibitor No No Yes No Yes Yes No Yes 

CYP2C19 inhibitor No Yes Yes Yes Yes Yes Yes Yes 

CYP2C9 inhibitor Yes Yes Yes Yes Yes Yes Yes Yes 

CYP2D6 inhibitor No No No No No No No No 

CYP3A4 inhibitor Yes Yes Yes Yes Yes Yes Yes Yes 

Excretion 
Total Clearance 

(log ml/min/kg) 
-0.436 -0.559 -0.09 

-

0.014 
0.031 -0.036 0.085 

-

0.221 

Toxicity 

AMES toxicity No No Yes No Yes Yes No No 

hERG I inhibitor No No No No No No No No 

hERG II inhibitor Yes Yes Yes Yes Yes Yes Yes Yes 

H-HT (Human 

Hepatotoxicity) 
Yes Yes Yes Yes Yes Yes Yes Yes 
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2.5. Molecular docking. 

In silico modeling is an excellent way to design drugs by anticipating possible 

interactions between ligands and the disease targets (receptors) [42]. The molecular docking 

study was carried out by the internet facility (https://cadd.labshare.cn/cb-

dock2/php/blinddock.php) [43]. The most stable conformations of compounds were 

meticulously selected and analyzed utilizing Discovery Studio 2020 Client software version 

20.1. The compounds pass the ADME and toxicity profile, and they are only selected for 

docking study.  

2.5.1. Preparation of ligands. 

During ADME analysis of the proposed compounds, those who pass pharmacokinetic 

testing are selected as the new proposed ligands (A1, A2, A4, and A7), and Sorafenib is the 

reference standard. The MM2 function of Chem3D 16.0 was utilized to create the structure's 

two-dimensional model. Mol2 file format is used to upload to the Swiss Dock server, and you 

can click on the prepare a ligand button. 

2.5.2. Preparation of receptor. 

The receptor (PDB ID: 3VHE) was obtained from the RCSB website in PDB format. 

(http://www.rscb.org) Removed the water molecules and heteroatoms from the receptor. The 

hydrogen atoms were introduced along with the grid box. 

A grid box of 50 x 50 x 50 grid points was constructed around the active locations of 

VEGFR and c-Raf, with a grid spacing of 0.375. During docking, we kept the receptor rigid 

and the ligand flexible. The Lamarckian Genetic Algorithm was used to create the ligand output 

conformations. The docked conformations were then grouped further using an all-atom RMSD 

cut-off of 4. The clusters were further examined in terms of binding energy, ligand efficiency, 

inhibitor constant, intermolecular energy, van der Waals, electrostatic energies, and so on. The 

interaction study was performed using PyMol and Discovery Studio Visualize using the lowest 

binding energy conformation of the ligand. Molecular docking illustrates the ligand-receptor 

interactions as well as the ligands' affinity for the receptor. 

In this research, Sorafenib and a new proposed ligand (A1, A2, A4, and A7) were placed 

in binding sites that were the same. Figure 2 shows the linked site's surface and the different 

ways that compounds and link sites move together. 
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Figure 2. 2D interaction of (A) A1-3VHE; (B) A2-3VHE; (C) A4-3VHE; (D) A7-3VHE; (E) Sorafenib-3VHE. 

Sorafenib and the newly proposed ligands (A1, A2, A4, and A7) both have negative G 

scores, suggesting that the receptor interacts with them spontaneously. The docking scores are 

displayed in Table 5. 

Table 5. The Vina score of the ligand-receptor complexes studied. 

Complex A1-3VHE A2-3VHE A4-3VHE A7-3VHE SOR-3VHE 

Predicted activity pIC50 5.318 5.398 5.789 5.403 5.187 

Vina score (kcal/mol) -8.10 -10.2 -12.2 -11.7 -7.80 

2.6. Molecular dynamics. 

Further investigation was conducted using MD simulation on the ligand-protein 

complex that had the highest docking score. The compound A4 has the highest docking score 

of -12.2, and the structure is displayed in Figure 3. The Desmond software was used for the 

MD simulations study [44]. In order to solve the system using the OPLS 2005 force field, a 

water box with a volume of 10 cubic units was utilized, employing the TIP3P water model. In 

order to neutralize the systems, sodium ions (counter ions) were introduced. Subsequently, we 

used an energy gradient convergence threshold of 1 kcal.mol-1 to minimize the system. Prior 

to that, we used Desmond's standard six-step relaxation method for pre-equilibration. Initially, 

two minimization processes are carried out: one involving a constrained solute and another one 

without any constraints. We need to use the NPT ensemble in steps three to six to run short 

dynamic simulations of 12 ns, 24 ns, and 100 ns at 10, 50, 300, and 300 K, respectively. A 100 

ns molecular dynamics simulation was then executed. Desmond set all other settings to their 

default value coordinates [44,45]. 
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Figure 3. Chemical structure of compound A4 used for dynamic study.  

3. Results and Discussion 

3.1. QSAR model and their statistical analysis. 

SMO regression findings were produced using a familiar technique known as sequential 

minimization optimization for regression (SMOreg). After examining the statistical quality 

criteria, it was determined that the RMSE produced by SMOreg was 0.0021. The cross-

validated r2 or (q2) is 0.520, and the r2 pred is 0.749 (more than 0.6), indicating that the built 

SVM model makes decent internal and external predictions. The mean absolute error (MAE) 

value of the obtained model indicates the extent of the prediction error. The training set 

demonstrates an MAE of 0.0019 and r2 of 0.999, suggesting superior predictive capabilities. It 

is evident that SVM algorithms are useful for internal and external prediction.  

The QSAR model's external validation comprises the SVM model's predicated pIC50 

values for training and test sets. Tables 6, 7, and 8 contain these values. Additionally, Figure 4 

displays a scatter plot comparing the observed values of pIC50 to the predicted values across 

both the training sets and test sets. Considering the results mentioned above, we could say that 

the QSAR model developed is excellent, robust, predictive, and reliable. The model was best 

suited to predict the activity of new anticancer compounds with confidence. 

Table 6. QSAR model coefficient values after external validation. 

Parameters 
Validation 

Threshold value 
External Internal 

𝐫𝐩𝐫𝐞𝐝
𝟐  0.749 0.999 > 0.6 

𝐫𝟎
𝟐 0.721 0.991 Near r2 value 

𝐫𝟎
′𝟐 0.738 0.987 Near r2 value 

K 1.019 1.000 0.85 ≤ K ≤ 1.15 

K’ 0.978 1.000 0.85 ≤ K ≤ 1.15 

(𝐫𝟐 − 𝐫𝟎
𝟐)

𝐫𝟐
 0.037 0.009 < 0.1 

(𝐫𝟐 − 𝐫′𝟎
𝟐)

𝐫𝟐
 0.014 0.031 < 0.1 

|𝐫𝟐 − 𝐫′𝟐| -0.002 -0.017 < 0.3 

𝐫𝐦
𝟐  0.624 0.906 > 0.5 

𝐫𝐦
′𝟐 0.672 0.887 > 0.5 

𝐫𝐦
𝟐

 0.648 0.896 > 0.5 

∆𝐫𝐦
𝟐  -0.049 0.019 < 0.2 

𝐐𝐅𝟏
 0.982 0.999 > 0.7 

𝐐𝐅𝟐
 0.699 0.999 > 0.7 

CCC 0.857 0.999 > 0.85 
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Table 7. The training set experimental and predicted pIC50 values. 

Compound id Actual 
SVM 

Predicted Error 

1. 3.159 3.16 0.001 

2. 3.159 3.16 0.001 

8. 3.659 3.662 0.003 

10. 3.860 3.857 -0.003 

11. 4.619 4.618 -0.001 

12. 4.219 4.217 -0.002 

13. 3.489 3.486 -0.003 

14. 3.000 3.001 0.001 

15. 3.000 3.001 0.001 

16. 4.809 4.806 -0.003 

17. 4.869 4.868 -0.001 

18. 5.045 5.044 -0.001 

19. 4.610 4.608 -0.002 

20. 4.522 4.519 -0.003 

21. 3.769 3.773 0.004 

22. 3.829 3.831 0.002 

23. 3.159 3.16 0.001 

25. 4.319 4.32 0.001 

27. 4.494 4.493 -0.001 

28. 4.640 4.638 -0.002 

30. 3.270 3.27 0 

31. 4.259 4.256 0.003 

Table 8. Test set experimental and predicted pIC50 values. 

Comp. id Actual 
SVM 

Predicted Error 

6 test 3.420 3.561 0.141 

7 test 3.739 3.188 -0.551 

20 test 4.522 4.519 -0.003 

23 test 3.159 3.16 0.001 

24 test 4.190 3.982 -0.208 

 
Figure 4. An activity plot of training and test set pIC50s versus predictions. 

3.2. Drug candidates and activity prediction. 

Seven novel derivatives are designed from a derived QSAR model. Some structural 

variations exist in these newly proposed compounds. Diaryl ureido linkage is more significant 

for anticancer action when comparing these newly proposed compounds to existing derivatives. 

Tables 3 and 4 show the pharmacokinetic and ADMET properties of the developed quinazoline 

derivatives. With the exception of one criteria violation (MW > 500), the developed analogs 

have all met Lipinski's rule of five; hence, drug-like qualities are likely. Compounds with 
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synthetic accessibility are ranked from 1 (easy synthesis) to 10 (difficult synthesis). These 

compounds have synthetic accessibility ratings of 2.87 to 3.46, indicating a simple synthesis. 

The proposed compounds have uniform brain distribution and can permeate the central nervous 

system, according to LogBB and LogPS values. They also function as substrates and inhibitors 

of superenzyme 3A4, the most important category for drug metabolism. Total clearance (TC) 

is a measure that shows the relationship between bodily substance content and elimination rate 

per unit of time. These inhibitors have reasonable TC values for the body's drug compound. 

Studies on toxicity indicate that AMES is safe; however, compounds A3, A5, and A6 exhibit 

AMES toxicity and should not be considered for further study. As a result, all proposed 

compounds follow the Lipinski rule, and the newly proposed compounds A3, A5, and A6 have 

a toxicity profile given in Tables 3 and 4. 

3.3. Analysis of docking study. 

Molecular docking is a method for identifying probable link conformations between 

drugs and receptors. In this study, the new proposed ligands A1, A2, A4, A7, and Sorafenib 

were inserted into the corresponding receptor binding sites (PDB ID: 3-VHE). We have 

identified and observed five compounds, each occupying a unique binding pocket. Table 9 

displays the compounds' docking scores, as well as their amino acid residues. 

Table 9. Ligand-Receptor (PDB ID: 3-VHE) docking results. 

Sr. No Name of Compound Predicted IC50 value Docking Score Hydrogen bonds 

1 A1 5.318 -8.10 His894 

2 A2 5.398 -10.2 Lys920 

3 A4 5.789 -12.2 
Gly885, Asp1046, 

Asn900 

4 A7 5.403 -11.7 Gly885, Asp1046 

5 Sorafenib 5.187 -7.80 Phe918 

All selected ligands and the reference drug interact spontaneously with receptors that 

have negative G scores. Due to their considerable affinity, the ligands A4 and A7 show higher 

docking scores than the reference ligand on the active side. 

3.4. Dynamics simulation study. 

3.4.1. RMSF and RMSD. 

Figure 5 shows the results of a root mean square deviation (RMSD) study on the 

simulation trajectories to determine the stability of the ligand-receptor complexes. 

 
Figure 5. Protein and ligand RMSD values generated by a 100ns MD simulation. 
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The RMSD value changes over time in Figure 5 for the receptor backbone (3VHE), the 

ligand (A4), and the whole complex structure (A4-3VHE). The backbone RMSD for the 

enzyme (3VHE) complex (A4-3VHE) was very stable from the beginning to the end, with 

almost no change. The complex (A4-3VHE) backbone's RMSD went up from 40 to 60 ns, then 

stayed the same until the exercise was over. The receptor backbone's RMSD is typical of 

globular values for these complexes, which means it stayed pretty steady during the MD 

simulation. 

The RMSF study is a good way to talk about changes in certain parts of protein chains, 

like how stable the amino acid residues are, especially those that are found in active site 

binding. The intensity of the changes stayed below 2.0 A° showen in Figure 6. 

 
Figure 6. Desmond software simulation of A4-3VHE protein RMSF with ligands for 100 ns. 

The residues that interact with the ligand are highlighted by green vertical lines in the 

graph. Upon analysis, it is evident that none of these interacting residues exhibit major 

fluctuations throughout the simulation, indicating a relatively stable interaction between the 

ligand and these specific residues. 

However, it is important to note that the loop region spanning residues 110-120 is 

inherently highly flexible. This flexibility is reflected in the higher fluctuations observed in this 

region compared to other parts of the protein. The increased mobility in this loop region might 

contribute to the overall dynamics of the ligand binding. Still, it does not appear to disrupt the 

key interactions as indicated by the stable RMSD of the interacting residues. 

The stability of the complex is further supported by the tiny variations in the RMSF 

plots and the comparatively lower RMSD values of the A4 compound, which are all below 3 

Å. 

3.4.2. Protein-ligand contacts. 

During the simulation, the interactions between the simulated ligands and amino acid 

residues through thoroughly examining the MD analysis, as shown in Figure 7. The histogram 

in Figure 8 displays the interactions between the protein residues and the ligand, confirming 

the formation of specific bonds like hydrogen, hydrophobic interactions, and water-bridged 

hydrogen bonds. Compound A4, for instance, formed a hydrogen bond and demonstrated the 

maintenance of the simulation time with specific interactions, including GLN-885 (120%), 

ASP-1046 (50%), and CYS-817 (10%). Water bridge contacts were also seen with ASP-814 

(90%), ILE-1025 (70%), and some protein residues (GLU-815, CYS-817, VAL-899, HIS-

1026, ARG-1027, and ILE-1044) that kept the simulation time below 20%. Additionally, we 

observed hydrophobic bonds with ILE-888 (75%), VAL-916 (70%), LEU-1035 (60%), and 

ALA-866 (55%). 
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Figure 7. A diagram to demonstrate protein residue-ligand atom interactions. 

 
Figure 8. The protein-ligand interactions of the ligands with 3VHE during 100 ns MD. 

3.4.3. Ligand properties (rGyr, MolSA, SASA, and PSA). 

Additional properties, including radius of gyration (rGyr), solvent accessible surface 

area (SASA), polar surface area (PSA), and molecular surface area (MolSA), were used to 

analyze the ligand characteristics. The rGyr descriptor quantifies the RMSD at the center of 

mass of a molecule throughout the simulation. Angstroms are used to calculate the Desmond 

MD algorithm. When a molecule is flexible, it can change its shape more often, which affects 

how stable it is in a simulation timeline. Figure 8 shows that rGyr values ranged from 6.5 to 

7.0 Å, with an average of 6.77 Å for the A4 molecule. 

Another molecular descriptor studied is MolSA, which represents molecular boundaries 

and governs interactions with surrounding molecules and the environment. Figure 9 depicts 

MolSA's Vander Waal surface. It assists in identifying steric conflicts and other non-bonded 

interactions. 

SASA (solvent-accessible surface area) measures a molecule's solvent-accessible, 

wide-open surface area. The SASA study reveals ligand binding and protein folding. During 

simulations, monitoring SASA changes can reveal molecular surface area evolution, system 

dynamics, and conformational changes. The usual values were 140 Å. The surface area (PSA) 

of molecules includes charged polar atoms and functional groups. PSA describes a molecule's 

solubility, permeability, and polar interactions. PSA is important because highly polar 

molecules struggle to permeate cellular membranes. Figure 8 demonstrates that potential 

compounds had acceptable PSA and had a value of 148 Å. 
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Figure 9. Properties of the Ligand A4 with (PDB ID: 3VHE) 100 ns simulation. 

All investigated ligand (A4) properties indicate that the complexes remained stable 

throughout the simulation. 

4. Conclusions 

The current study successfully accomplished its objective by employing various 

computer-based drug design methodologies. It suggests novel pharmaceutical compounds that 

have improved anticancer activity compared to drugs like Sorafenib that are currently on the 

market. Using the 2D-QSAR method, an extensive examination was conducted on a group of 

quinoxaline-based molecules that have demonstrated significant potential in therapeutic 

anticancer treatments. We successfully developed predictive models that met rigorous internal 

and external validation criteria by leveraging this correlation. After analyzing the contour 

maps, seven drug candidates were identified that demonstrated enhanced activities compared 

to the reference drug Sorafenib. It is thought that new compounds with a diaryl ureido linkage 

are better for anticancer activity than existing derivatives. Diaryl ureido is crucial in designing 

anticancer molecules due to its near-perfect binding with certain acceptors. Alkylating 

pharmacophores are linked to high-affinity DNA binders and type II inhibitors, including RAF, 

KDR, and Aurora kinases. In type II inhibitors, this moiety makes one or two hydrogen bonds 

with a conserved glutamic acid and the DFG motif's aspartic acid backbone amide, and it is 

confirmed by an in-silico study”. 

The findings predict all the molecules investigated in silico as drugs, adhering to Veber 

and Lipinski's rules. They fulfill the majority of the criteria specified in the ADME data. 

Because of the molecular docking analysis results, candidate A4 is the most stable within the 

receptor (PDB ID: 3VHE). A molecular dynamic simulation analysis was conducted on the 

A4-3VHE complex to verify the molecular docking method's outcomes. This analysis involved 

binding the A4 compound and the receptor (PDB code: 3VHE) for a duration of 100 ns. Our 

research aims to enhance and improve these A4 molecules to pave the way for future 

therapeutic developments. The positive computational results enhance the wet lab synthesis of 

the proposed ligand A4 and its derivatives for cancer therapy. 

 

 

 

https://doi.org/10.33263/BRIAC146.133
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC146.133  

 https://biointerfaceresearch.com/ 15 of 17 

 

Funding 

The authors would like to thank the Chhatrapati Shahu Maharaj Research, Training, And 

Human Development Institute (SARTHI), Government of Maharashtra, for financial support. 

File no. SARTHI/Fellowship/CSMNRF-2021/2021-22/896. Year 2022. 

Acknowledgments 

We are grateful to the “Bharati Vidyapeeth (Deemed to be university), Poona College of 

Pharmacy, Pune.” (AMCT) for its pertinent help concerning the programs. 

Conflicts of Interest 

The authors declare that the research was conducted in the absence of any commercial or 

financial relationship that could be construed as a potential conflict of interest. 

References 

1. Elkaeed, E. B.; Yousef, R. G.; Khalifa, M. M.; Ibrahim, A.; Mehany, A. B. M.; Gobaara, I. M. M.; Alsfouk, 

B. A.; Eldehna, W. M.; Metwaly, A. M.; Eissa, I. H.; El-Zahabi, M. A. Discovery of New VEGFR-2 

Inhibitors: Design, Synthesis, Anti-Proliferative Evaluation, Docking, and MD Simulation Studies. 

Molecules 2022, 27, 6203, https://doi.org/10.3390/molecules27196203.  

2. Alneyadi, A.; Nizami, Z. N.; Aburawi, H. E.; Hisaindee, S.; Nawaz, M.; Attoub, S.; Ramadan, G.; 

Benhalilou, N.; Al Azzani, M.; Elmahi, Y.; Almeqbali, A.; Muhammad, K.; Eid, A. H.; Vijayan, R.; Iratni, 

R. Synthesis of New Chromene Derivatives Targeting Triple-Negative Breast Cancer Cells. Cancers (Basel) 

2023, 15, 2682, https://doi.org/10.3390/cancers15102682.  

3. Sergiusz L.; Marcin C.; Alicja F.; Jacek B.; Robert S.; Andrzej S. Breast Cancer-Epidemiology, Risk 

Factors, Classification, Prognostic Markers, and Current Treatment Strategies -An Updated Review. Cancer, 

2021, 13, 4287,  https://doi.org/10.3390/cancers13174287 Aruchamy, B.; Kuruburu, M. G.; Bovilla, V. R.; 

Madhunapantula, S. V.; Drago, C.; Benny, S.; Presanna, A. T.; Ramani, P. Design, Synthesis, and Anti-

Breast Cancer Potential of Imidazole–Pyridine Hybrid Molecules In Vitro and Ehrlich Ascites Carcinoma 

Growth Inhibitory Activity Assessment In Vivo. ACS Omega 2023, 8, 40287–40298, 

https://doi.org/10.1021/acsomega.3c04384.  

4. Sharma, D.; Kumar, S.; Narasimhan, B. Estrogen Alpha Receptor Antagonists for the Treatment of Breast 

Cancer: A Review. Chem. Cent. J. 2018, 12, 107, https://doi.org/10.1186/s13065-018-0472-8.  

5. Buravchenko, G. I.; Shchekotikhin, A. E. Quinoxaline 1,4-Dioxides: Advances in Chemistry and 

Chemotherapeutic Drug Development. Pharmaceuticals 2023, 16, 1174, 

https://doi.org/10.3390/ph16081174.  

6. Kethireddy, S.; Ketha, S.; Eppakayala, L.; Chithaluri, S. Anti-Cancer Docking Investigations of Quinoxaline 

Phenyl Thiazolidinones. Vietnam Journal of Chemistry 2022, 60, 346–353, 

https://doi.org/10.1002/vjch.202100146.  

7. Badithapuram, V.; Nukala, S. K.; Thirukovela, N. S.; Dasari, G.; Manchal, R.; Bandari, S. Design, Synthesis, 

and Molecular Docking Studies of Some New Quinoxaline Derivatives as EGFR Targeting Agents. Russ J 

Bioorg Chem 2022, 48 , 565–575, https://doi.org/10.1134/S1068162022030220.  

8. Zayed, M. F. Chemistry, Synthesis, and Structure Activity Relationship of Anticancer Quinoxalines. 

Chemistry 2023, 5, 2566–2587, https://doi.org/10.3390/chemistry5040166.  

9. Ismail, M. M. F.; Shawer, T. Z.; Ibrahim, R. S.; Abusaif, M. S.; Kamal, M. M.; Allam, R. M.; Ammar, Y. 

A. Novel Quinoxaline-3-Propanamides as VGFR-2 Inhibitors and Apoptosis Inducers. RSC Adv 2023, 13, 

31908–31924. https://doi.org/10.1039/d3ra05066a.  

10. Shagufta; Ahmad, I. An Insight into the Therapeutic Potential of Quinazoline Derivatives as Anticancer 

Agents. Medchemcomm 2017, 8, 871–885, https://doi.org/10.1039/c7md00097a.  

11. Ando, K.; Wada, T.; Cao, X. Precise Safety Pharmacology Studies of Lapatinib for Onco-Cardiology 

Assessed Using in Vivo Canine Models. Sci Rep 2020, 10, 738, https://doi.org/10.1038/s41598-020-57601-

x.  

https://doi.org/10.33263/BRIAC146.133
https://biointerfaceresearch.com/
https://doi.org/10.3390/molecules27196203
https://doi.org/10.3390/cancers15102682
https://doi.org/10.1021/acsomega.3c04384
https://doi.org/10.1186/s13065-018-0472-8
https://doi.org/10.3390/ph16081174
https://doi.org/10.1002/vjch.202100146
https://doi.org/10.1134/S1068162022030220
https://doi.org/10.3390/chemistry5040166
https://doi.org/10.1039/d3ra05066a
https://doi.org/10.1039/c7md00097a
https://doi.org/10.1038/s41598-020-57601-x
https://doi.org/10.1038/s41598-020-57601-x


https://doi.org/10.33263/BRIAC146.133  

 https://biointerfaceresearch.com/ 16 of 17 

 

12. Suleimen, Y. M.; Metwaly, A. M.; Mostafa, A. E.; Elkaeed, E. B.; Liu, H. W.; Basnet, B. B.; Suleimen, R. 

N.; Ishmuratova, M. Y.; Turdybekov, K. M.; Van Heсke, K. Isolation, Crystal Structure, and in Silico 

Aromatase Inhibition Activity of Ergosta-5, 22-Dien-3 β -Ol from the Fungus Gyromitra Esculenta. J Chem 

2021, 2021, 5529786, https://doi.org/10.1155/2021/5529786.  

13. El-Adl, K.; Sakr, H. M.; Yousef, R. G.; Mehany, A. B. M.; Metwaly, A. M.; Elhendawy, M. A.; Radwan, 

M. M.; ElSohly, M. A.; Abulkhair, H. S.; Eissa, I. H. Discovery of New Quinoxaline-2(1H)-One-Based 

Anticancer Agents Targeting VEGFR-2 as Inhibitors: Design, Synthesis, and Anti-Proliferative Evaluation. 

Bioorg Chem 2021, 114, 105105, https://doi.org/10.1016/j.bioorg.2021.105105.  

14. Moukhliss, Y.; Koubi, Y.; Alaqarbeh, M.; Muzzammel Rehman, H.; Maghat, H.; Sbai, A.; Bouachrine, M.; 

Lakhlifi, T. Computational and Retrosynthetic Investigation of Isoxazole-Bearing Chalcones as Antioxidant 

Activate Compounds. ChemistrySelect 2023, 8, e202203908, https://doi.org/10.1002/slct.202203908.  

15. Shahlaei, M. Descriptor Selection Methods in Quantitative Structure-Activity Relationship Studies: A 

Review Study. Chemical Reviews. American Chemical Society 2013, 113, 8093–8103, 

https://doi.org/10.1021/cr3004339.  

16. Kasmi, R.; Hadaji, E.; Bouachrine, M.; Ouammou, A. QSAR and Molecular Docking Study of Quinazoline 

Derivatives as Anticancer Agents Using Molecular Descriptors. Mater Today Proc 2022, 51, 1821–1830, 

https://doi.org/10.1016/J.MATPR.2020.05.283.  

17. Lian, Z.; Sang, C.; Li, N.; Zhai, H.; Bai, W. 3D,2D-QSAR Study and Docking of Novel Quinazolines as 

Potential Target Drugs for Osteosarcoma. Front Pharmacol 2023, 14, 1124895, 

https://doi.org/10.3389/fphar.2023.1124895.  

18. Anant, A.; Ali, A.; Ali, A.; Gupta, G. D.; Asati, V. A Computational Approach to Discover Potential 

Quinazoline Derivatives against CDK4/6 Kinase. J Mol Struct 2021, 1245, 131079, 

https://doi.org/10.1016/J.MOLSTRUC.2021.131079.  

19. Abdullahi, S. H.; Uzairu, A.; Shallangwa, G. A.; Uba, S.; Umar, A. B. Ligand-Based Drug Design of 

Quinazolin-4(3H)-Ones as Breast Cancer Inhibitors Using QSAR Modeling, Molecular Docking, and 

Pharmacological Profiling. J Egypt Natl Canc Inst 2023, 35, . https://doi.org/10.1186/s43046-023-00182-3.  

20. Lo, Y. C.; Rensi, S. E.; Torng, W.; Altman, R. B. Machine Learning in Chemoinformatics and Drug 

Discovery. Drug Discovery Today. 2018, 23, 1538–1546, https://doi.org/10.1016/j.drudis.2018.05.010.  

21. Nekoei, M.; Mohammadhosseini, M.; Pourbasheer, E. QSAR Study of VEGFR-2 Inhibitors by Using 

Genetic Algorithm-Multiple Linear Regressions (GA-MLR) and Genetic Algorithm-Support Vector 

Machine (GA-SVM): A Comparative Approach. Medicinal Chemistry Research 2015, 24, 3037–3046, 

https://doi.org/10.1007/s00044-015-1354-4.  

22. Niazi, S. K.; Mariam, Z. Recent Advances in Machine-Learning-Based Chemoinformatics: A 

Comprehensive Review. International Journal of Molecular Sciences. 2023, 24, 11488, 

https://doi.org/10.3390/ijms241411488.  

23. El Newahie, A. M. S.; Nissan, Y. M.; Ismail, N. S. M.; Abou El Ella, D. A.; Khojah, S. M.; Abouzid, K. A. 

M. Design and Synthesis of New Quinoxaline Derivatives as Anticancer Agents and Apoptotic Inducers. 

Molecules 2019, 24, 1175, https://doi.org/10.3390/molecules24061175.  

24. Shameera Ahamed, T. K.; Rajan, V. K.; Muraleedharan, K. QSAR Modeling of Benzoquinone Derivatives 

as 5-Lipoxygenase Inhibitors. Food Science and Human Wellness 2019, 8, 53–62, 

https://doi.org/10.1016/j.fshw.2019.02.001.  

25. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining 

Software: An Update. ACM SIGKDD explorations newsletter 2009, 11, 10-18. 

26. Abdulfatai, U.; Ejeh, S.; Ajala, A.; Adawara, S. N.; Babatunde, O. S.; Ya’u Ibrahim, Z. QSAR, Molecular 

Docking, and Molecular Designs of Some Anti-Epilepsy Compounds. Intelligent Pharmacy 2023, 2, 427-

434, https://doi.org/10.1016/j.ipha.2023.11.011.  

27. Cortes, C.; Vapnik, V.; Saitta, L. Support-Vector Networks. Machine Learning 1995, 20, 273-297.  

28. Jagat S. C.; Sandeep K. D.; Deepak S.; Subhash M. A.; Gajendra P. S. QSAR-Based Models for Designing 

Quinazoline/Imidazothiazoles/Pyrazolopyrimidines Based Inhibitors against Wild and Mutant EGFR. PLoS 

One, 2014, 9, 7, e101079. doi: https://doi.org/10.1371/journal.pone.0101079. 

29. Moukhliss, Y.; Khatabi, K. El; Koubi, Y.; Maghat, H.; Sbai, A.; Bouachrine, M.; Lakhlifi, T. 2D-QSAR 

Modeling of Novel Pleconaril Derivatives (Isoxazole-Based Molecules) as Antiviral Inhibitors against 

Coxsackievirus B3 (CVB3). Jordan Journal of Pharmaceutical Sciences 2021, 14, 137-156.  

30. El fadili, M.; Er-rajy, M.; Imtara, H.; Noman, O. M.; Mothana, R. A.; Abdullah, S.; Zerougui, S.; Elhallaoui, 

M. QSAR, ADME-Tox, Molecular Docking and Molecular Dynamics Simulations of Novel Selective 

https://doi.org/10.33263/BRIAC146.133
https://biointerfaceresearch.com/
https://doi.org/10.1155/2021/5529786
https://doi.org/10.1016/j.bioorg.2021.105105
https://doi.org/10.1002/slct.202203908
https://doi.org/10.1021/cr3004339
https://doi.org/10.1016/J.MATPR.2020.05.283
https://doi.org/10.3389/fphar.2023.1124895
https://doi.org/10.1016/J.MOLSTRUC.2021.131079
https://doi.org/10.1186/s43046-023-00182-3
https://doi.org/10.1007/s00044-015-1354-4
https://doi.org/10.3390/ijms241411488
https://doi.org/10.3390/molecules24061175
https://doi.org/10.1016/j.fshw.2019.02.001
https://doi.org/10.1016/j.ipha.2023.11.011
https://doi.org/10.1371/journal.pone.0101079


https://doi.org/10.33263/BRIAC146.133  

 https://biointerfaceresearch.com/ 17 of 17 

 

Glycine Transporter Type 1 Inhibitors with Memory Enhancing Properties. Heliyon 2023, 9, e13706, 

https://doi.org/10.1016/j.heliyon.2023.e13706.  

31. Aloui, M.; Er-rajy, M.; Imtara, H.; Goudzal, A.; Zarougui, S.; El fadili, M.; Arthur, D. E.; Mothana, R. A.; 

Noman, O. M.; Tarayrah, M.; Menana, E. QSAR Modelling, Molecular Docking, Molecular Dynamic and 

ADMET Prediction of Pyrrolopyrimidine Derivatives as Novel Bruton’s Tyrosine Kinase (BTK) Inhibitors. 

Saudi Pharmaceutical Journal 2024, 32, 101911, https://doi.org/10.1016/j.jsps.2023.101911.  

32. Rosell-Hidalgo, A.; Young, L.; Moore, A. L.; Ghafourian, T. QSAR and Molecular Docking for the Search 

of AOX Inhibitors: A Rational Drug Discovery Approach. J Comput Aided Mol Des 2021, 35, 245–260, 

https://doi.org/10.1007/s10822-020-00360-8.  

33. Golbraikh, A.; Wang, X.S.; Zhu, H.; Tropsha, A. Predictive QSAR Modeling: Methods and Applications in 

Drug Discovery and Chemical Risk Assessment. In Handbook of Computational Chemistry, Leszczynski, 

J., Ed.; Springer Netherlands: Dordrecht, 2016; pp. 1-48, https://doi.org/10.1007/978-94-007-6169-8_37-3.  

34. Mandloi, D.; Dabade, S. J.; Bajaj, A. V; Atre, H. Molecular Docking and QSAR Studies for Modeling 

Antifungal Activity of Triazine Analogues against Therapeutic Target NMT of Candida Albicans. 

International Journal of Pharmaceutical Sciences and Drug Research 2020, 13, 140–146, 

https://doi.org/10.25004/ijpsdr.2021.130204.  

35. Faris, A.; Ibrahim, I. M.; Alnajjar, R.; Hadni, H.; Bhat, M. A.; Yaseen, M.; Chakraborty, S.; Alsakhen, N.; 

Shamkh, I. M.; Mabood, F.; M. Naglah, A.; Ullah, I.; Ziedan, N.; Elhallaoui, M. QSAR-Driven Screening 

Uncovers and Designs Novel Pyrimidine-4,6-Diamine Derivatives as Potent JAK3 Inhibitors. J Biomol 

Struct Dyn 2023, 1-30, https://doi.org/10.1080/07391102.2023.2283168.  

36. Singhal, S.; Khanna, P.; Misra, N.; Khanna, L. Multitarget Diallyl Disulfides (DADS) against Aβ 

Aggregation: Screening through Molecular Docking with Aβ42 & ZnII-Aβ16, ADME, DFT & Synthetic 

Strategy. ChemistrySelect 2021, 6, 4112–4123, https://doi.org/10.1002/slct.202004635.  

37. Lipinski, C. A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discovery Today: 

Technologies.2004, 1, 337–341, https://doi.org/10.1016/j.ddtec.2004.11.007.  

38. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-

Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci Rep 2017, 7, 42717, 

https://doi.org/10.1038/srep42717.  

39. Umar, A.B.; Uzairu, A.; Shallangwa, S.U.G.A. In Silico Studies of Some Potential Anti-Cancer Agents on 

M19-MEL Cell Line. Moroccan J. Chem. 2021, 9, https://doi.org/10.48317/IMIST.PRSM/morjchem-

v9i2.20575.  

40. Pires, D. E. V.; Blundell, T. L.; Ascher, D. B. PkCSM: Predicting Small-Molecule Pharmacokinetic and 

Toxicity Properties Using Graph-Based Signatures. J Med Chem 2015, 58, 4066–4072, 

https://doi.org/10.1021/acs.jmedchem.5b00104.  

41. Forli, S.; Huey, R.; Pique, M. E.; Sanner, M. F.; Goodsell, D. S.; Olson, A. J. Computational Protein-Ligand 

Docking and Virtual Drug Screening with the AutoDock Suite. Nat Protoc 2016, 11, 905–919, 

https://doi.org/10.1038/nprot.2016.051.  

42. Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z. X.; Cao, Y. CB-Dock2: Improved Protein-Ligand Blind 

Docking by Integrating Cavity Detection, Docking and Homologous Template Fitting. Nucleic Acids Res 

2022, 50, W159–W164, https://doi.org/10.1093/nar/gkac394.  

43. Shoaib, T. H.; Abdelmoniem, N.; Mukhtar, R. M.; Alqhtani, A. T.; Alalawi, A. L.; Alawaji, R.; Althubyani, 

M. S.; Mohamed, S. G. A.; Mohamed, G. A.; Ibrahim, S. R. M.; Hussein, H. G. A.; Alzain, A. A. Molecular 

Docking and Molecular Dynamics Studies Reveal the Anticancer Potential of Medicinal-Plant-Derived 

Lignans as MDM2-P53 Interaction Inhibitors. Molecules 2023, 28, 6665, 

https://doi.org/10.3390/molecules28186665.  

44. Bouzina, A.; Bouone, Y. O.; Sekiou, O.; Aissaoui, M.; Ouk, T. S.; Djemel, A.; Mansouri, R.; Ibrahim-Ouali, 

M.; Bouslama, Z.; Aouf, N. E. In Vitro Antitumor Activity, Molecular Dynamics Simulation, DFT Study, 

ADME Prediction, and Eg5 Binding of Enastron Analogues. RSC Adv. 2023, 13, 19567–19584, 

https://doi.org/10.1039/d3ra02904b.  

https://doi.org/10.33263/BRIAC146.133
https://biointerfaceresearch.com/
https://doi.org/10.1016/j.heliyon.2023.e13706
https://doi.org/10.1016/j.jsps.2023.101911
https://doi.org/10.1007/s10822-020-00360-8
https://doi.org/10.1007/978-94-007-6169-8_37-3
https://doi.org/10.25004/ijpsdr.2021.130204
https://doi.org/10.1080/07391102.2023.2283168
https://doi.org/10.1002/slct.202004635
https://doi.org/10.1016/j.ddtec.2004.11.007
https://doi.org/10.1038/srep42717
https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i2.20575
https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i2.20575
https://doi.org/10.1021/acs.jmedchem.5b00104
https://doi.org/10.1038/nprot.2016.051
https://doi.org/10.1093/nar/gkac394
https://doi.org/10.3390/molecules28186665
https://doi.org/10.1039/d3ra02904b

