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Abstract: Worldwide, cancer remains a significant health concern, and great efforts are made continuously to 

identify new drugs to increase therapeutic efficacy, limit treatment side effects, and overcome drug resistance. 

In this field, dual/multi-targeted therapy has emerged as a forefront strategy in combating cancers, focusing on 

disrupting specific molecular pathways essential for tumor growth and progression. In this computational study, 

we have focused our interest on identifying, among 44 approved anti-cancer drugs, potential VEGF-R1 

inhibitors, thereby exhibiting inhibitory effects on angiogenesis. The binding affinity of the tested compounds 

to the extracellular domain of VEGF-R1 has been performed by using PyRx software and showed that 

Cladribine, Etoposide, Allopurinol, and Altretamine were the most effective compounds, characterized by 

promising binding energies ranging between -8.9 to -9.2 kcal/mol. Our computational study clearly showed that 

Etoposide, Cladribine, Altretamine, and Allopurinol exhibit a great potential affinity to VEGF-R1, suggesting 

their potential inhibition of VEGF/VEGF-R1 complex that could be of great interest to suppress and block the 

angiogenic pathway in tumors. Further in silico analyses and experimental investigations are needed to explore 

the anti-angiogenic effect of these small anti-cancer compounds deeply. 
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1. Introduction 

Scientific evidence has shown that tumor cells actively recruit stromal cells, vascular cells, and 

fibroblasts to create a microenvironment that fosters tumor growth. Moreover, to promote tumor 

growth, cancer cells will induce angiogenesis during early tumor development by recruiting bone 

marrow-derived endothelial progenitor cells and activating different growth factors involved in the 

angiogenic signaling [1]. Thus, inhibiting angiogenesis and vascular growth would deprive the tumor 

of oxygen and nutrients, which is a promising approach to blocking tumor development [1,2].  

Vascular endothelial growth factor (VEGF) plays a crucial role in tumor vascularization and 

metastasis [1]. This 45 kDa homodimeric glycoprotein is a member of the tyrosine kinase receptors 

family [1], which includes VEGF-A, VEGF-B, VEGF-C, VEGF-D [1], and placental growth factor 
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(PlGF) [1,2]. Among these, VEGF-A primarily drives tumor angiogenesis [3]. Its angiogenic effects 

arise from direct interactions with endothelial cells, facilitated by its binding to two similar tyrosine 

kinase receptors, VEGF receptor-1 (VEGF-R1) and VEGF receptor-2 (VEGF-R2) [1–3]. 

Likewise, the activation of VEGF-R1 engages in diverse biological mechanisms, including 

chemotaxis, the secretion of inflammatory cytokines, the recruitment of medullary progenitor cells to 

injury sites [1], the secretion of growth factors [2], interaction with PlGF [3], and the activation of 

proteolytic enzymes [4–6]. Also, VEGFR-2 serves as the main receptor transmitting angiogenic signals, 

and inhibition of VEGFR-2 signaling can attenuate angiogenesis by disturbing signaling pathways [7]. 

VEGFR-2 exhibits greater potency than VEGFR-1 and displays kinase activity approximately tenfold 

stronger than VEGFR-1 [8]. However, the downside of its activity is that this receptor is not specific 

for tumor angiogenesis. It regulates physiological functions such as blood pressure or pulmonary 

hypertension [8–10]. Unlike VEGFR2, the pro-angiogenic activity of VEGFR1 seems more restricted 

to pathological phenomena. In this context, it appears to be an interesting therapeutic target, and 

consequently, targeting this receptor seems a strategy of choice to block tumor growth without inducing 

too many side effects [10]. 

Despite significant advancements in medical knowledge, the effectiveness of cancer treatment 

remains unsatisfactory. Previously, the primary focus was developing highly specific inhibitors 

targeting individual receptor tyrosine kinases (RTKs). However, there is a consensus that molecules 

capable of interfering with multiple targets simultaneously may prove more effective than single-target 

agents, representing a transition from "one compound - one target" to "cocktail therapy" and, more 

recently, to the multi-target approach. In this field, the US Food and Drug Administration (FDA) had 

approved Sorafenib and Sunitinib, targeting VEGFR, PDGFR, FLT-3, and c-Kit, ushering a new 

generation of anti-cancer drugs acting on multiple molecular targets and capable of inhibiting various 

pathways [11–15].  

Imatinib was the first US FDA-approved tyrosine kinase inhibitor (TKI) and has been employed 

in the treatment of chronic myeloid leukemia (CML) and advanced anaplastic thyroid cancer. Imatinib 

functions by blocking the activity of tyrosine kinases Bcr-Abl, c-KIT, and platelet-derived growth 

factor (PDGF) through binding to their ATP-binding site [16,17]. Thereafter, great interest was given 

to identifying new TKIs targeting tumorous and vascular endothelial cell kinase receptors, blocking 

cell proliferation, and encountering angiogenesis pathways [18]. In this field, we have planned to 

investigate the potential inhibitory effects of 45 FDA-approved small molecules on VEGFR1, a 

privileged target in cancer treatment, which can modulate or block signaling pathways involved in 

angiogenesis, and compare them with Bevacizumab, used as reference anti-VEGFR1 drugs like. This 

computational study aims to identify anticancer drugs that simultaneously target different key 

oncogenic pathways for better control of cancer cells and ensure efficient cancer treatment. 

2. Materials and Methods 

2.1. Virtual screening software. 

The computational analysis was carried out using several software/webservers and online 

libraries, as reported in Table 1. 

Table 1. Software and web servers were used in our study. 

In-silico tools Type Prediction Availability 
Open-source 

license 
Reference 

PyRx Software Virtual Screening(docking and scoring) 
Freely 

available 

http://pyrx.source

forge.net/ 
[19] 
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In-silico tools Type Prediction Availability 
Open-source 

license 
Reference 

Open Babel 

version 2.3 
Software 

Chemical Tool Box to search, convert, analyze, 

or store data from molecular modeling, 

chemistry, and solid-state materials. 

Freely 

available 

http://openbabel.o

rg. 
[20] 

Biova Software 
Target preparation 

Visualization of Ligand-protein interaction. 

Freely 

available 
 [21] 

RCSB PDB Database 

Efficient Tool to explore, visualize, and analyze 

the experimentally determined 3D structure of 

macromolecules (mainly proteins and nucleic 

acid) by X-ray crystallography or NMR 

spectroscopy. 

Freely 

available 
http://pdb.org/ [22] 

PuChem 

NCBI 

Open 

chemistry 

database 

Collect data about molecules such as chemical 

structure, toxicity, and physicochemical 

properties via CID(compound ID) 

Freely 

available 

https://pubchem.n

cbi.nlm.nih.gov/ 
[23] 

ChEMBL 

Open 

chemical-

genomic 

database 

The human chemogenomic database combines 

chemical, bioactivity, and genomic datasets to 

facilitate the conversion of genomic insights 

into potent pharmaceuticals 

Freely 

available 

https://www.ebi.a

c.uk/chembl/ 
[24,25] 

Therapeutic 

Target 

Database 

(TDD) 

Online 

database 

Database that offers details on identified and 

investigated therapeutic targets, as well as 

information on the associated diseases, 

pathways, and drugs designed for each target. 

Freely 

available 

https://idrblab.org/t

td/ 
[26] 

2.2. Molecular docking.  

2.2.1. Target prediction. 

Swiss Target Prediction is an online tool established in 2014 to anticipate the targets of small 

bioactive molecules within humans and other vertebrates [27]. The prediction relies on the concept of 

similarity, employing reverse screening methodology. This prediction is founded on a combination of 

2D and 3D similarity with a library of 370000 known actives on more than 3000 proteins [27,28]. The 

updated SwissTargetPrediction interface can be obtained for free through 

www.swisstargetprediction.ch [28]. 

2.2.2. Preparation of target. 

The X-ray crystal data of target receptor tyrosin kinase VEGFR1 (PDB id: 4CL7) was retrieved 

from the Protein Data Bank (RCSB) (http://www.rcsb.org/pdb). The selected conformation of VEGFR-

1 is complex to Cobalt [29]. The 4CL7 structure was edited to remove water and heteroatoms using 

Accelyrs Discovery Studio Visualizer.  

2.2.3. Extraction and preparation of tested molecules. 

The SDF molecular structures were uploaded using ChEMBL or PubChem, and energy 

minimization was performed for all compounds using open Babel [30]. The 45 molecules utilized in 

this study are listed in Table 2, referenced by their respective codes in the NCBI/PubChem database. 

Table 2. The PubChem CID of the studied compounds and the control compound Bevacizumab. 

N° Molecules PubChem ID N° Molecules PubChem ID 

1 Abemaciclib 46220502 23 Clofarabine 119182 

2 Abiraterone 132971 24 Cobimetinib 16222096 

3 Acalabrutinib 71226662 25 Copanlisib tris-HCl 135565596 

4 Allopurinol 135401907 26 Cyclophosphamide 2907 

5 Altretamine 2123 27 Cytarabine-HCl 6252 

6 Amifostine 2141 28 Dacarbazine 135398738 

7 Aminolevulinic-HCl 123608 29 Daunorubicin 30323 

8 Anastrozole 2187 30 Darolutamide 67171867 

9 Apalutamide 24872560 31 Decitabine 451668 

10 Avaprinitib 118023034 32 Dasatinib 3062316 
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N° Molecules PubChem ID N° Molecules PubChem ID 

11 Azacitidine 9444 33 Dexrazoxane 71384 

12 Bendamustine-HCl 77082 34 Doxorubicin 31703 

13 Brigantine 68165256 35 Duvelisib 50905713 

14 Busulfan 2478 36 Enasidenib 89683805 

15 Capecitabine 60953 37 Encorafenib 50922675 

16 Capmantinib 25145656 38 Entrectinib 25141092 

17 Carboplatin 426756 39 Epirubicin-HCl 65348 

18 Carmustine 2578 40 Erlotinib-HCl 176871 

19 Celecoxib 2662 41 
Estramustine 

phosphate 
259329 

20 Cerentinib 57379345 42 Etoposide 36462 

21 Chlorambucil 2708 43 Exemestane 60198 

22 Cladribine 20279 44 Mitomycin C 5746 

45. Ref Bevacizumab 24801581    

2.2.4. Docking and scoring via PyRx software. 

In the present study, we used the VEGF binding zone, which is located in the extracellular d2 

domain of VEGFR1[31].This is a buried area of the receptor composed of hydrophobic, polar, and 

aromatic residues that can interact with ligands. The detailed analysis of this region allowed the 

identification of three sub-pockets: A, B, and C [31-33]. Docking was conducted to generate a range 

of possible conformations and orientations for the studied ligands within the binding site of VEGFR-

1. The protein structure was prepared in PyRx software, resulting in a PDBQT file containing hydrogen 

atoms for all polar residues. Rotatable bonds were assigned to the ligands and stimulated the interaction 

L-P, and then scoring calculations were performed using the Lamarckian Genetic Algorithm (LGA) 

method. The docking site on the protein target was defined by establishing a grid box with dimensions 

of (X, Y, Z): 81 Å × 61 Å × 64 Å and a grid spacing of 0.375 Å was positioned at the binding pocket 

of VEGFR-1 [31-33]. The best conformation, determined by the lowest docked energy, was selected 

after completing the docking search. Ten runs with AutoDock Vina were executed for each ligand 

structure, with the best pose saved for each run. The final affinity value was determined by averaging 

the affinities of the best poses. This computational investigation continued by analyzing the 2D 

conformation of complex “VEGFR1-Ligand” and the different bounds/residues involved in this 

interaction. Also, bond lengths were detected using Discovery Studio Visualizer [32-33], which must 

list the authority that provided approval and the corresponding ethical approval code. 

3. Results and Discussion 

3.1. Target prediction. 

SwissTarget prediction serves as an online tool designed to anticipate the macromolecular 

targets of bioactive small molecules, encompassing proteins sourced from humans, mice, and rats. Its 

utility extends to deciphering complex molecular pathways underlying specific bioactive traits, 

rationalizing potential side effects, forecasting target effects, and assessing the viability of repurposing 

therapeutically relevant molecules. In the context of the current investigation, the selection process 

prioritized the top 13 targets based on their pronounced affinity for kinases (Figure S1 of 

supplementary material ). Notably, Ceritinib emerged as a standout, with a 94% binding probability to 

interact with kinase receptors, followed by Capecitabine and Cabmantinib, with 34% and 30% 

interaction possibilities, respectively. Conversely, Altretamine demonstrated a notable affinity towards 

family A protein G-coupled receptors, with an interaction probability of 63.9%. Of particular interest 

is the reference drug Bevacizumab, which exhibits an affinity interaction of 26.7% towards the kinase 

receptor. Our finding showed that the examined molecules may serve as selective inhibitors targeting 
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the protein kinase family, including TKRs, widely reported to play a critical role in molecular pathways 

governing cell survival and differentiation [34]. 

3.2. Molecular docking investigation. 

The binding affinity results of the ligands against the selected angiogenesis targets are shown 

in Table 3. The docking scores of the compounds range from −4.6 to −9.2 kcal/mol. Accordingly, 

Cladribine and Etoposide achieved the highest binding affinity score of −9.2 kcal/mol, closely followed 

by Altretamine and Allopurinol with docking scores of −9.0 and −8.9 kcal/mol for VEGFR, 

respectively. Other interesting drugs, including Estramustine phosphate, Enasidenib, Capecitabine, 

Celecoxib, and Brigatinib, also showed high binding affinities. 

Table 3. List of the scoring and residues implicated in the interaction between the studied compound and the VEGFR 

target. 

N° Molecules 
Binding affinity 

(kcal/mol) 
Residues implicated in interaction L-P 

1 Abemaciclib -6,9 Glu 64 Glu 67 Asn 62 Asp 63 Cys 61 Cys 68 Gly 59 

2 Abiraterone -4,7 Cys 61 Cys 68 Asn 62 Asp 63 

3 Acalabrutinib -7,7 Asp 34 Glu 31 Leu 32 Gly 38 Ile 29 Cys 60 Cys 61 Cys 68 

4 Allopurinol -8,9 ILE 29 Gly 59 Glu 30 Glu 31 Arg 36 Gly 59 Cys 57 

5 Altretamine -9 Asp 63 Asn 62 Cys 60 Cys 61 Cys 68 Gly 58 Ile 29 Leu 32 

6 Amifostine -5,1 Cys 61 Cys 68 Asn 62 Phe 36 Ile 46 

7 Amin acid hydro -5,1 Gly 58 Gly 59 Leu 32 Cys 68 Ile 29 

8 Anastrozole -7,1 Glu 30 Leu 32 Thr 31 Gly 39 Arg 58 

9 Apalutamide -7,3 Asp 63 Leu 66 Asn 62 Cys 61 Glu 64 Phe 36 Ile 43 

10 Avaprinitib -4,8 Cys 61 Asn 62 Gly 59 Glu 64 Phe 36 Asp 34 

11 Azacitidine -4,3 Cys 61 Leu 66 Asn 62 Asp 63 Glu 64 Asp 34 Phe 36 Lys 107 

12 Bendamustine-HCl -7,5 Leu 32 Glu 64  Ser 50 Cys 51 Cys 60 Cys 61 Cys 68 

13 Brigantine -8 Glu 64 Gly 59 Cys 61 Cys 68 Glu 64 Ile 46 Phe 36 

14 Busulfan -7,5 Lys 107 Phe 36 Cys 68 Asp 34 Asp 63 Asn 62 Leu 46 Glu 64 Ile 46 

15 Capicitabine -8,6 Phe 36 Glu 46 Asp 34 Asp 63 Asn 62 Leu 66 Lys 107 Cys 61 Cys 68 

16 Capmantinib -7,4 Lys 107 Asp 63 Asn 62 Glu 64 Asp 34 Cys 68 

17 Carboplatin -5,7 Cys 60 Glu 64 Ile 46 Phe 36 

18 Carmustine -5,4 Arg 56 Gly 59 Leu 66 Leu 32 Thr 31 

19 Celecoxib -8 Asp 63 Lys 107 Glu 64 Asn 62 Cys 61 Cys 68 Asn 62 Ile 46 Phe 36 

20 Cerentinib -4,6 Asp 63 Lys 107 Glu 64 Asn 62 Cys 61 Cys 68 Ile 46 Phe 36 

21 Chlorpbucil -7,1 Gly 58 Gly 59 Asp 63 Cys 60 Cys 61 Cys 68 Asn 62 Leu 32 Ile 29 

22 Cladribine -9,2 Asn 62 Cys 60 Cys 61 

23 Clofarabine -5 Leu 32 Gly 59 Glu 30 Leu 32 Thr 31 

24 Cobimetinib -7,2 Cys 51 Cys 60 Ser 50 Glu 64 Asp 34 

25 Copanlisib tris-Hcl -7 Asn 62 Glu 64 Cys 60 Cys 51 Cys 61 

26 Cyclophosphamide -5,1 Asp 34 Phe 36 Glu 64 Leu 66 

27 Cytarabine-HCl -5,7 Glu 64 Lys 107 Cys 61 Gly 59 Asp 34 Cys 51 Cys 60 

28 Dacarbazine -7,2 Asn 62 Gly 58 Gly 59 Leu 66 Leu 32 Gly 

29 Daounorubicin -7,9 Cys 61 Cys 68 Leu 66 Asn 62 Asp 63 

30 Darolutamide -4,2 Asp 34 Glu 64 Ser 50 Cys 60 Cys 68 

31 Decitabine -7,3 Ile 46 Glu 64 Ser 50 Cys 60 Cys 68 

32 Dasatinib -7 Leu 66 Asp 34 Leu 32 Cys 60 Cys 61 Cys 68 Gly 59 

33 Dexrazoxane -6,5 Asp 34 Asp 63 Glu 64 

34 Doxorubicin -4,9 Leu 66 Gly 59 Asp 63 Ser 56 Glu 64 Cys 61 Asn 62 Asp 34 

35 Duvelisib -4,6 
Thr 31 Gly 59 Glu 30 Glu 64 Asp 61 Leu 32 Leu 66 Cys 51 Cys 60 

Ile 29 

36 Enasidenib -8,6 Thr 31 Glu 37 Val 33 Gly 58 

37 Encorafenib -6,4 Glu 64 Glu 67 Asn 62 Asp 63 Cys 61 Cys 68 Gly 59 

38 Entrectinib -6,8 Asn 62 Asp 63Cys 61 Cys 68 

39 Epirubicin-HCl -4,5 Asp 34 Cys 60 Cys 61 

40 Erolontib-HCl -7,8 Ile 29 Asp 34 Ser 50 

41 
Estramustine 

Phosphate 
-8,8 

Asn 62 Asp 34 Asp 63 Glu 64 Ile 29 Leu 32 Gly 58 Cys 60 Cys 61 

Cys 68 

42 Etoposide -9,2 Lys 107 Leu 66 Asp 63 Asn 62 Cys 60 

43 Exemestane -5,1 Cys 60 Cys 61 Asn 62 Ser 50 Ile 46 Phe 36 

44 Mitomycin C -7,9 Gly 58 Gly 59 Ile 29 Leu 32 Thr 31Glu 30 
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N° Molecules 
Binding affinity 

(kcal/mol) 
Residues implicated in interaction L-P 

45 Bevacizumab -8,5 
Glu 30 Glu 64 Thr 31 Gly 59 Leu 32 Leu 66 Asp 63 Cys 51 Cys 60 

Ile 29 

Figure 1 presents the 2D diagram of the interaction between the top 9 compounds and the target 

4CL7, ranked by their binding energies. A tight junction is observed with Cladribine, Etoposide, 

Altretamine, and Allopurinol, which creates a stronger connection than Bevacizumab, which is used 

as a reference drug. Analysis of binding liaisons showed that Etoposide engaged with the target active 

site through two conventional hydrogen bonds with residues Glu 3 and Thr 31, as well as three Pi-alkyl 

interactions with residues Ile 29 and Arg 56, followed by halogen bonds with residues Gly 59 and Cys 

57. Also, Cladribine formed three hydrogen bonds (Asn 62-Cys 61-Asp 63), a carbon bond with Leu 

32, and Pi-alkyl interactions with residues Ile 29, Cys 68, and Cys 60, with the active site of 4CL7. 

Altretamine established three hydrogen bonds (Cys 68-Cys 59-Cys 61) and Pi-alkyl interactions with 

Ile 46. Indeed, Allopurinol formed five hydrogen bonds (Cys 68-Cys 61-Asn 62-Aqp 63-Leu 66) and 

Pi-alkyl interactions with Phe 36. Estramustine Phosphate interacted through five hydrogen bonds (Cys 

68-Cys 61-Asn 62-Aqp 63-Lys 107) and two Pi-alkyl interactions with Phe 36 and Ile 46. Enasidenib 

formed two hydrogen bonds (Cys 61-Asn 62) and Pi-alkyl interactions with Cys 60. Capecitabine 

engaged through two hydrogen bonds (Gln 37 and Thr 31) and Pi-alkyl interactions with Val 33, as 

well as a carbon-hydrogen bond with Gly 58. Also, celecoxib formed four hydrogen bonds (Leu 66-

Lys 107-Asp 63-Asn 62) and Pi-alkyl interactions with Cys 60. Brigantib established five hydrogen 

bonds with Cys 61-Cys 68-Leu 66-Asn 62-Asp 63. Bevacizumab, used as a reference drug, engaged 

in four hydrogen bonds (Leu 32-Thr 31-Gly 59-Asp 63), Pi-alkyl interactions with Ile 29 and Cys 60, 

and carbon bonds with Leu 66, as well as halogen bond with Glu 30. 

 
Figure 1. 2D diagram of the 9 best-docked compounds and the reference drug (Bevacizumab) into the VEGF-R1 

pocket.1: Etoposide; 2: Cladribine; 3: Altretamine; 4: Allopurinol; 5: Estramustine Phosphate; 6: Enasidenib; 7: 

Capecitabine; 8: Celecoxib; 9: Brigantib; Reference Drug: Bevacizumab. The 2D diagram of all 45 studied compounds is 

provided in the supplementary material section. 

3.3. Discussions. 

Precision medicine, also known as targeted therapy, impedes the proliferation of cancer cells 

by selectively interfering with molecules and pathways vital for cancer advancement, as opposed to 

the broad impact on all rapidly dividing cells seen in traditional chemotherapy. Conventional 
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chemotherapy rests on single-target therapy, widely reported as ineffective with huge limitations [35]. 

Currently, great efforts are made to identify multi-targeting agents that are more effective in treating 

complex diseases and drug-resistant cancers [36-38]. Accordingly, with the support of AI tools [38-

39], polypharmacology has the potential to unveil new off-targets for existing drugs, providing insights 

into drug side effects and toxicities and facilitating drug repurposing by identifying new indications or 

therapeutic targets for established drugs [40]. 

In many human cancers, VEGF-R1 plays a pivotal role in tumor angiogenesis [41] and leads it 

to be a promising target for cancer control. In this field, our approach aimed to computationally 

stimulate the inhibition of the VEGF/VEGFR1 interaction by targeting VEGF at the receptor 

recognition site. Regradignly, molecular docking was used to assess the affinity of 44 FDA-approved 

anti-cancer compounds, with diverse mechanisms of action and proven efficacy against various types 

of cancer, on the VEGF-R1. Of note, Bevacizumab (Avastin®), which was previously recognized for 

its anticancer behavior and owns a good affinity for the selected target, was used as a reference drug 

[41]. Bevacizumab is a humanized monoclonal antibody approved by the FDA and capable of 

selectively binding to circulating VEG, thereby inhibiting VEGF's binding to its cell surface receptors 

[41,42]. In this field, it’s widely accepted that protein-protein interactions play a key role in various 

biological processes and thus offer numerous opportunities in medicinal chemistry. The development 

and/or identification of molecules capable of modulating a protein-protein interaction remains a 

significant scientific challenge today. Thus, inhibiting the interaction between VEGF and VEGFR 

remains a potential target, leading to a decrease in the microvascular development of tumor blood 

vessels and restricting the blood supply to the tumor tissues [42]. 

By comparing the results generated by the "PyRx" software with a visual assessment of the 

"Ligand-4CL7" complex acquired via the "Biova Discovery Studio Visualizer", 4 drugs including 

Etoposide, Cladribine, Altretamine, and Allopurinol were identified as the most potent inhibitors, 

owing to their significant binding affinity ranging between -8.9 to -9.2 kcal/mol. These compounds 

exhibited interactions with various target residues, forming hydrogen, hydrophobic, and electrostatic 

bonds. Visual analysis results corroborate our theoretical calculations, affirming their capability to 

inhibit the activity of VEGF by binding to its receptor, VEGFR1 (4CL7), which can potentially disrupt 

the angiogenesis pathway.  

Our in silico results are in agreement with those previously reported. Indeed,  Magdalena 

Kluska et al. have shown that the Etoposide, a semi-synthetic derivative of podophyllotoxin isolated 

from the dried roots and rhizomes of Podophyllum emodi, is an anti-cancer agent with a wide spectrum 

and is currently used in chemotherapy of stomach cancer, ovarian cancer, acute leukemia, Hodgkin 

lymphoma, some sarcoma forms and neuroblastoma [43]. Etoposide is a specific inhibitor of 

topoisomerase II [44], inhibits mitosis and cell cycle in the S or G2 phase [45], and participates in the 

apoptosis pathway via the activation of cytochrome C/Caspase 9 [46].  

Cladribine, the 2-chloro-2'-deoxyadenosine, has been reported as a potential inhibitor of DNA 

synthesis by inhibiting adenosine deaminase [47]. This purine nucleoside analog can arrest the cell 

cycle at the G1 phase, induce the expression of p21 and p27 [47], and inactivate the factor STAT 3 [48]. 

Of particular interest, Xu et al. have shown that Cladribine can induce apoptosis by stimulating the 

endoplasmic reticulum (ER) stress signaling pathway in diffuse large B-cell lymphoma cells (DLBCL) 

[49]. 

In the current in-silico investigation,  Altretamine was also identified as an anti-VEGF-R1 

inhibitor[50]. The FDA approved this synthetic s-triazine derivative as antineoplastic, while its 

mechanism of cytotoxicity remains elusive. The N-demethylation of Altretamine might generate 

https://doi.org/10.33263/BRIAC146.149
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC146.149  

 https://biointerfaceresearch.com/  8 of 15 

 

reactive intermediates that form covalent bonds with DNA, leading to DNA damage and blocking the 

metabolic biomarkers Glutathione peroxidase 4 (GPX4) [51]. 

In a separate study, Yasuda et al. outlined the cytotoxic effects of Allopurinol on human 

hormone-refractory prostate cancer cells [52]. Additionally, their derivatives targeted various 

pathways, including cyclin kinase 1 (CK1) [53], hepatocyte growth factor receptor (c-MET) [54], 

vascular endothelial growth factor receptor 2 (VEGF-R 2) [55], Fms-like tyrosine kinase 3 (FLT3) and 

Wnt (Wingless-related integration site)/β-catenin signaling [55-56], epidermal growth factor receptor 

(EGFR) [57], MARK (mitogen-activated protein kinases) signaling [58]. 

To complete our virtual screening, we performed the structure-activity relationship (QAR) of 

the selected molecules, and the results were very informative. Indeed, the anticancer activity of 

Etoposide can be related to the presence of a phenyl ring and the presence of hydroxyl groups at ortho 

and para positions [59]. The antitumoral effect of Cladribine is attributed to its chemical structure [60], 

particularly the replacement of hydrogen with chlorine at the 2-position of the purine ring [60]. 

Moreover, the computational study reveals that Altretamine exhibits anti-VEGF activity, likely owing 

to its structural resemblance to the alkylating agent triethylenemelamine[61], known for its 

antineoplastic properties [61]. Despite the lack of precise understanding regarding how this synthetic 

s-triazine induces cytotoxicity, it's distinguished by an extended half-life, which is also attributed to its 

molecular structure [61]. 

Also, our docking screening identified Allopurinol (4-hydroxy pyrazole (3,4-d)pyrimidine) as 

a potential VEGF-R1 inhibitor [61]. The anti-angiogenic activity of this nucleobase analog can be 

related to its complex structure, combining a pyrazole moiety with a hydroxyl-substituted pyrimidine 

ring [61]. 

The present study is very informative and highlights the potential ability of 4 small molecules, 

currently used in cancer chemotherapy, to target VERGF-R1 and, therefore, inhibit VEGF/VEGFR1 

interaction. These molecules, including Alteramine, Allopurinol, Cladribine, and Etoposide, have thus 

emerged as promising « scaffolds » for the design of novel VEGF-R1 antagonists. In this field, adding 

active substituents like methoxy [61], hydroxyl, or halogens [62] to these potentially active compounds 

will impact the stability of these analogs and may increase their binding strength with the d2 domain 

of VEGF-R1 and potentially enhance their pharmacological activities [63-66].  

The identification of new molecules targeting VEGF-R1 will enlarge the cancer therapeutic 

arsenal with new anti-angiogenic drugs and overcome the emergence of drug-resistant clones. Indeed, 

genetic mutations affecting TKRs can initiate tumorigenesis by activating the mitogenic signaling 

pathways and deregulating the apoptosis process. Accordingly, the potential of these compounds to 

block or modulate the abnormalities in these pathways is widely recognized as a promising strategy in 

drug design [67]. The main limitation of this computational study is the lack of Quantitative Structure-

Activity Relationship (QSAR) studies, allowing us to understand their potential mechanism of action 

and to provide access to other more potent molecules [68-69].  

Further dynamic stimulation (MD) studies are needed to complete this current work. MD 

simulations serve as a computational approach that utilizes Newton's laws to analyze the motions of 

water, ions, small molecules, macromolecules, and more complex systems. These simulations are 

essential for examining structural motions that depend on temperature and solute/solvent interactions, 

which are critical for studying the recognition patterns of ligand-protein or protein-protein complexes. 

MD simulations are particularly beneficial in drug design, offering insights into the structural cavities 

needed to develop new compounds with higher affinity for their targets. Moreover, MD simulations 

assist in refining the three-dimensional (3D) structures of targets, enhancing the sampling of binding 
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poses and providing more accurate affinity values by incorporating biological conditions that include 

structural motions, as opposed to traditional docking methods [70-71]. 

4. Conclusions 

Our computational investigation focused on the VEGF/VEGFR system reveals that Etoposide, 

Cladribine, Altretamine, and Allopurinol, widely used cancer chemotherapy, exhibit great inhibition 

of VEGF-R1, suggesting their potential for effectively suppressing and blocking the angiogenic 

pathway.  

These results are, therefore, very promising and offer captivating perspectives to improve 

affinity, conformational stability, and biological activities of the selected compounds. These 

observations could be further completed by experimental investigations employing human cancer cell 

lines and anticancer bioassays.  
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Figure S1. Swiss target Pi-chart compares the top 13 studied compounds against Bevacizumab. 1 Aazacitidine, 2 

Altretamine, 3 Bendamustine hydrochloride, 4 Busulfan, 5 Capecitabine, 6 Capmantinib, 7 Carmustine, 8 Carboplatin, 9 

Ceritinib, 10 Chlorambucil, 11 Clofarabine, 12 Cladribine, 13 Cyclophosphamide, and Bevacizumab used as reference 

drug. 
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