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Abstract: Pyrazolines are nitrogen-containing five-membered heterocyclic scaffolds that have attracted 

considerable interest in medicinal chemistry due to their diverse antioxidant, analgesic, anti-

inflammatory, antiviral, antimicrobial, antimalarial, anticonvulsant, antitumor, and antidiabetic 

activities. The presence of this moiety in several marketed drugs against various diseases has proved its 

significance in the pharmaceutical industry. The present review summarizes the recent progress of 

pyrazoline against cancer and inflammation. The information will benefit researchers in their study as 

it will provide new ideas for rational drug development strategies for more effective pyrazoline 

derivatives as anticancer and anti-inflammatory agents. 
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1. Introduction 

Heterocyclic compounds serve as building blocks for synthesizing important bioactive 

agents with improved efficacies over recent centuries [1]. Among them, pyrazolines are 

important in medicinal chemistry as they exhibit diverse pharmacological potential [2]. 

Pyrazoline, a reduced form of pyrazole, is a five-membered ring with two nitrogen atoms in 

the ring. It exists in three isomeric forms: 1-pyrazoline (1), 2-pyrazoline (2), and 3-pyrazoline 

(3), which differ in the position of the double bond [3](Fig1). Among the isomeric forms, 2-

pyrazoline has a special role in medicinal chemistry and drug discovery, attributed to its higher 

stability and pharmacological actions [4].  

Pyrazoline is either synthesized by cyclization of σ,β-unsaturated ketones with 

hydrazine, or phenylhydrazine in an acidic medium like glacial acetic acid using Knovenagel 

and Fischer reactions or cyclization of chalcones with hydrazine in a basic medium like 

triethylamine using a Michael reaction [5,6]. Besides, they are isosteres for imidazole, thiazole, 

and oxazole. Pyrazolines are known to display numerous bioactivities such as anti-

inflammatory, antitumor, antibacterial, antifungal, antidiabetic, antioxidant, anticonvulsant, 

antidepressant, and analgesic [7-10]. 

 
Figure 1. Five-membered nitrogen heterocycles  
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Pyrazoline pharmacophore can be found in many therapeutic drugs that treat various 

ailments (Fig.2) [11,12]. Antipyrine, aminopyrine, phenylbutazone, celecoxib, and famprazone 

are analgesics and anti-inflammatory drugs [13,14]. Crizotinib and Ibrutinib act as anticancer 

agents for tyrosine kinase receptor inhibition and target alK, MET, and ROS1 kinases [15]. 

Ramifenazone is a cyclooxygenase inhibitor [14], and Tozasertib VX-680 is an aurora kinase 

inhibitor and an effective anti-cancer drug candidate [16]. 
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Figure2. Pyrazoline-containing anticancer and anti-inflammatory drugs. 

Cancer and inflammation are linked to each other [17]. Recent studies report that 

inflammation is the precursor of tumor progression. Cancer, the leading cause of mortality 

globally, involves transforming normal cells into abnormal proliferative cells that tend to 

spread all over the body [18]. Furthermore, it is associated with drug resistance and unwanted 

adverse effects. Moreover, cancer is associated with severe infections and chronic 

inflammation. It is also evident that inflammatory cells play a critical role in developing the 

tumor microenvironment, which is necessary for the neoplastic process, fostering proliferation, 

survival, and migration. In this context, anti-inflammatory treatment has been fruitful against 

early neoplastic development and malignant advancement in cancer prevention [19].  

The current review article summarizes the anticancer and anti-inflammatory activities 

of synthesized pyrazoline derivatives for the past five years (2019-2023). The provided 

information will be beneficial for future studies and in searching for rational drug development 

strategies to synthesize more potent anti-inflammatory and anticancer pyrazoline derivatives. 

2. Anticancer Potential of Pyrazoline Derivatives  

Mansour et al., in 2020, reported pyrazoline hybrids containing thiazoline scaffolds as 

promising cytotoxic agents[20]. Amongst them, hybrid 1 bearing a halogen atom at the para 

position displayed promising cytotoxicity with IC50 6.52, 6.71, and 6.19 μM against MCF7, 

HepG2, and HCT116 cell lines (Fig. 3). 
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Figure 3. Cytotoxic agents pyrazoline derivatives.  

Thiazolyl pyrazoline derivatives 2 and 3, reported by Sever et al. in 2019 exhibited an 

antiproliferative effect with IC50 values of 8.95 and 10.76 μM against A549 cell line and IC50 

9.59 and 8.05 μM against MCF7 cell lines, compared to erlotinib with IC50 22.35μM (A549) 

and 8.24 (MCF7) (Fig. 4) [21].  
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Figure 4. Thiazolyl pyrazoline derivatives.  

Matiadis et al. [22] in 2020 reported curcumin-pyrazoline hybrid 4 as a potent 

antiproliferative candidate with an IC50 of 53.09 μM, compared to the standard drug 

doxorubicin (IC50 85.11 μM) towards MCF7 cell line (Fig. 5). 
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Figure 5.  curcumin-pyrazoline hybrid. 

In 2020, Shu et al. [23]. reported hybrid 5 containing indole-pyrazoline with better 

topoisomerase 1 inhibitory activity than the standard drug Camptothecin dosed dependently 

(Fig. 6).  
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Figure 6. indole-pyrazoline inhibitory. 

Kuthyala et al. synthesized imidazopyridine-pyrazoline hybrids 6 and 7 as anticancer 

agents. Compounds 6 and 7 displayed significant cytotoxicities against lung A549 carcinoma 

with IC50 43.56 and 44.49 μM, respectively (Fig.7) [24].  
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Figure 7. Imidazopyridine-pyrazoline anticancer agents.  

Xu et al. reported pyrazoline derivatives 8 bearing a benzothiophene nucleus emerged 

as a potent cytotoxic compound with IC50 = 3.57 µM towards liver HCT-116, in comparison 

to cisplatin, which displayed IC50 = 8.45 µM. Also, it caused the induction of apoptosis by 

arresting HepG2 cells in the G2/M phase (Fig. 8) [16].  
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Figure 8. Pyrazoline-benzothiophene cytotoxic compound. 

Quinoline-pyrazoline hybrid 9, reported by Charris et al. in 2019, exhibited a promising 

selectivity index with IC50 values of 3.17 and 0.94 µM (24 h) against Jurkat E6.1 and HL60 cell 

lines, respectively (Fig.9) [25]. 
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Figure 9.  Quinoline-pyrazoline anticancer hybrid. 

Pyrazoline derivative 10-bearing thiazole and quinoline exhibited remarkable 

anticancer activity with IC50 of 0.277, 0.16, and 1.27 µM towards MCF7, HeLa, and DLD1 

carcinomas, respectively. Also, it displayed EGFR inhibition with IC50 31.80 nm, compared to 

control gefitinib (IC50 29.16 nm) (Fig. 10) [26]. 
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Figure 10 Anticancer targeting pyrazoline.  

Quinolinone-pyrazoline hybrid 11 has been identified as a RAD51-BRCA2 gene 

disruptor by Bagnolini et al. in 2020 (Fig. 11) [27]. 
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Figure 11.  Quinolinone-pyrazoline molecule. 

El-Sakka et al. in 2019 reported Pyrazoline-quinazolinone derivatives 12 that caused 

cytotoxicity of HepG2 cells with IC50 of 194 µM (Fig. 12) [28]. 
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Figure 12.  Pyrazoline-quinazolinone derived anti-cancer agent. 
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Indole-pyrazoline hybrid 13 reported by Qi et al displayed selectivity against colorectal 

HCT119 and HT29 with GI50 values of 1.37 and 1.22 µM, respectively (Fig. 13) [29]. 
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Figure 13. Indole-pyrazoline hybrid.  

Kocyigit et al. reported tetrahydro-methanoisoindolodione incorporated pyrazoline 

derivative 14 as an anticancer agent with an IC50 value of 50.05 µM against C6 rat 

gliocarcinoma cells (Fig.14) [30].  
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Figure 14. Tetrahydro-methanoisoindolodione incorporated pyrazoline derivative. 

Pyrazoline derivative 15 bearing indole C-glycoside reported by Kumari et al. exhibited 

promising cytotoxicity against MCF-7 (IC50 4.67 µM) and less activity against MDA-MB-231 

(IC50 35.5 µM) (Fig. 15) [31]. 
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Figure 15. Pyrazoline- indole C-glycoside derivative. 

Santosh et al. reported thiazole-bearing pyrazoline derivative 16, which exhibited 

moderate cytotoxicity towards MDA-MB-231 and colon HT-29 with IC50 values of 24.78 and 

26.64 µM, respectively (Fig. 16) [32]. 
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Figure 16. Thiazole-bearing pyrazoline derivative. 

Benzothiazole-linked pyrazoline hybrid 17 reported by Tugrak et al. displayed 

moderate cytotoxicity with IC50 values in the range 10.8-26.0 µM towards squamous 

adenocarcinomas Ca9-22, HSC-4, HSC-2 and HSC-3 (Fig. 17) [33]. 
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Figure 17. Benzothiazole-linked pyrazoline hybrid  

Pyrazoline derivative 18 bearing a pyrimidinone and anthracene moieties emerged as 

potent antiproliferative agents against hepatocellular HepG2 carcinoma with an IC50 4.22 

µg/mL, comparable to doxorubicin (IC50 5.43 µg/mL) (Fig. 18) [34]. 
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Figure 18. Pyrazoline bearing a pyrimidinone and anthracene derivative. 

Shaik et al. reported chalcone-isoxazole pyrazoline conjugate 19 as a promising 

cytotoxic molecule towards prostate DU-145 exhibiting IC50 of 2 µg/mL and non-toxic to 

normal human L02 cells (Fig. 19) [35]. 
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Figure 19. Chalcone-isoxazole pyrazoline conjugate. 

Triazole tethered naphthalimide pyrazoline derivative 20 reported by Kumar et al. 

exhibited inhibitory activity with IC50 of 62.23 µM, compared to tamoxifen (IC50 of 50 µM) 

(Fig. 20) [36]. 
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Figure 20. Triazole tethered naphthalimide pyrazoline derivative. 

Silveri et al. reported N-carbothioamide pyrazoline 21 (Fig. 21) bearing triazole 

sulphonamide moiety as cytotoxic against HeLa and MCF-7 with IC50 8.33 and 11.08 µg/mL, 

respectively [37]. 
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Figure 21. N-carbothioamide pyrazoline bearing triazole sulphonamide molecule. 

Nawaz et al. reported carboxamide-linked pyrazoline derivatives 22 and 23 with better 

cytotoxicity with IC50 10.3 and 4.6 μM, respectively, compared to doxorubicin against lung 
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A549 cancer cell line[38]. Also, these compounds inhibited the EGFR enzyme with IC50 6.5 

and 3.65 μM and induced apoptosis as indicated by DAPI, Annexin V‐FITC, and propidium 

iodide staining. Furthermore, these compounds were safe up to the dose of 500 mg/kg b.w. 

(Fig. 22). 
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Figure 22. Carboxamide-linked pyrazoline derivatives. 

Fakhry et al. reported thiazolyl-pyrazoline conjugates 24 and 25 as the potent anticancer 

agents towards MCF-7 with IC50 4.08 and 5.64 µM, respectively, compared to lapatinib (IC50 

= 5.88 µM) [39]. Both of them showed remarkable inhibition effects against EGFR (IC50 = 

0.024 and 0.005 µM) and HER2 (IC50 = 0.047 and 0.022 µM), in comparison to reference drug 

lapatinib (IC50 = 0.007 and 0.018 µM). They also showed the ability to induce apoptosis by 

cell cycle arrest in the G1 and G1/S phases, respectively. Furthermore, in silico studies showed 

their necessary binding with the important amino acids required for EGFR and HER2 inhibition 

(Fig.23)  
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Figure 23. thiazolyl-pyrazoline conjugates the potent anticancer agents. 

Pyrazole-linked pyrazoline hybrid 26 was reported by Rana et al. [40]. demonstrated 

remarkable anticancer potential against the cervical HeLa cancer cell line with an IC50 of 23.6 

µM and the lung A549 cancer cell line with an IC50 of 37.59 µM (Fig. 24). 
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Figure 24. Pyrazoline hybrid.  
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Novel pyrazoline-thiazolidinone derivative 27 reported by Elewa et al. [41]. emerged 

as a strong cytotoxic candidate against HCT-116 and MCF-7 cells with IC50 3.08 and 5.05µM, 

compared to reference drug doxorubicin (IC50= 8.92 and 7.27µM). Besides, it was found to be 

non-toxic with higher IC50 values against WISH cells (Fig. 25).  
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Figure 25.  Novel pyrazoline-thiazolidinone derivative. 

Antiqueira-Santos et al [42]. reported that pyrazoline fatty-chain derivatives 28 and 29 

bearing a lipophilic chain produced an excellent effect on the viability of B16F10 cells (Fig. 

26). 
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Figure 26. Pyrazoline chain bearing a lipophilic chain derivative. 

Alkamaly et al. [43]. reported pyrazoline hybrids 30 and 31 with promising anticancer 

activities (IC50 = 1.30–7.18 μM) as compared to doxorubicin (IC50 = 5.12–7.33 μM) towards 

prostate PC3, hepatocellular HepG2, and breast MDA-MB-231 carcinoma cells. Also, they 

were non-toxic against normal WI‐38 cells. Furthermore, compounds 30 and 31 have emerged 

as strong dual inhibitors against EGFR (IC50 0.21 and 0.23 μM) and VEGFR2 (0.22 and 0.21 

μM). However, they exhibited moderate inhibitory effects for HER2 and FGFR2. Interestingly, 

these two compounds promoted apoptosis by upregulating Bax, caspase‐3, and p53 and 

downregulating Bcl‐2 (Fig. 27). 
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Figure 27. pyrazoline hybrids.  
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Bakar et al. synthesized fused pyrazoline derivatives 32 (IC50 21.4 ± 1.32 μM) and 33 

(IC50 25.96 ± 5.84 μM) with selective inhibition towards MDA-MB-231 cell line, comparable 

to the reference drug, Tamoxifen (IC50 42.66 ± 2.19 μM) [44]. These compounds displayed 

low sensitivity against the noncancerous breast cell line (MCF-10A) (Fig. 28). 
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Figure 28.  Pyrazoline derivatives. 

Thiazolyl pyrazoline hybrids 34 and 35, reported by Abdelsalam et al., exhibited 

promising cytotoxicity towards A549 cells with IC50 values of 4.2 and 2.9 μM, respectively. 

These hybrids also exerted EGFR inhibition with IC50 values of 40.7 and 32.5 μM and VEGFR-

2 inhibition with IC50 values of 78.4 and 43.0 μM, respectively (Fig. 29)[45]. 

 
Figure 29.  Thiazolyl pyrazoline hybrids. 

N-phenyl pyrazoline derivative 36 reported by Mustofa et al.displayed a cytotoxic 

effect in cervical HeLa cells with IC50 of 4.7 μM via suppressing EGFR expression, tumor size, 

and cancer stem cell marker CD133 (Fig. 30) [46]. 

N N
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36  
Figure 30.  N-phenyl pyrazoline molucule. 

Halim et al. have reported 4-chlorophenoxy pyrazoline derivative 37 as a promising 

cytotoxic agent with an IC50 of 4.77 µM, compared to staurosporine against the MCF-7 cell 

line ( Fig. 31) [47].  
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Figure 31. Chlorophenoxy pyrazoline derivative.  

Mansour et al. in 2019 reported that thiazolyl-pyrazoline derivative 38 linked to 

benzo[1,3]dioxole moiety has shown a notable inhibitory effect on HCT-116 cancerous cells 

with an IC50 value of 6.19 μM (Fig. 32) [20].  
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Figure 32.  Thiazolyl-pyrazoline derivative. 

Pyrazoline derivatives of Combretastatin-A4 39, 40, and 41 reported by Shringare et 

al. exhibited excellent antiproliferative activity against MCF-7 with GI50 ranging from 0.1 to 

0.9 µM  (Fig. 33)[48, 49].  
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Figure 33.  Pyrazoline molucules. 

Pyrazoline-bearing piperazine conjugate 42 remarkably increases growth inhibition 

against many cancer cell lines by NCI. It was also found to be a potent VEGFR-2 inhibitor 

with IC50 0.57 µM, comparable to Sorafenib (IC50=0.51 µM) (Fig.34) [49].  
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Figure 34.  Pyrazoline-bearing piperazine. 
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Pyrazoline analog of curcumin 43 reported by Chaudhary exhibited strong cytotoxicity 

against HeLa cells with an IC50 of 8.7 µg/mL and triggered apoptosis via cleavage caspase-3 

enzyme (Fig. 35) [50]. 

 

Figure 35.  Pyrazoline analog of curcumin. 

3. Anti-inflammatory Potential of Pyrazoline Derivatives  

Shringare et al. reported pyrazoline derivatives of Combretastatin-A4 44 and 45 as good 

anti-inflammatory agents (Fig. 36) [49]. 
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Figure 36. Pyrazoline derivatives of Combretastatin-A4 anti-inflammatory agents. 

1-Thiazolyl-2-Pyrazolines 46 reported by Raut et al. exhibited excellent anti-

inflammatory activity with 91.74% protein denaturation inhibition, compared to the standard 

drug, diclofenac sodium (90.21%) (Fig. 37) [51]. 
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Figure 37. Thiazolyl-2-Pyrazolines. 

Taher et al. reported pyrazole and pyrazoline derivative 47 as COX-2 inhibitors (Fig. 

38) [53].  
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Figure 38.  Pyrazole and pyrazoline derivative. 

Pyrazoline-bearing benzenesulfonamide 48, reported by Rauf et al., exhibited good 

anti-inflammatory activity using the egg-white paw edema method[53]. Compound 48 caused 

29.78% inhibition at 300 min, compared to the standard drug celecoxib (22.67% inhibition) 

(Fig. 39).  
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Figure 39.  Pyrazoline-bearing benzenesulfonamide molcule 

Pyrazolyl pyrazolines (49) and (50), as reported by Ragab et al., displayed remarkable 

anti-inflammatory action gastroprotection without any ulcerogenicity[54]. Also, these 

compounds inhibited prostaglandin (PGE2) synthesis with 44.23% and 51.4%, besides TNF-α 

inhibition with 33.48% and 41.41%, respectively (Fig. 40). 

N N

N
N

SO2NH2

C6H5

O

OCH 3

OCH 3

OH

OH

N N

N
N

SO2NH2

C6H5

OH

OH

49 50  

Figure 40.  Pyrazolyl pyrazolines. 

2-pyrazoline derivatives having resorcinol/guaiacol moiety 51 and 52 demonstrated 

superior anti-inflammatory efficacy compared to the standard drug, indomethacin (Fig. 41) [55, 

56]. 

https://doi.org/10.33263/BRIAC152.016
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC152.016  

https://biointerfaceresearch.com/ 15 of 19 

 

N N

Cl

OO OH

N N

Br

OO OH

51 52  

Figure 41. 2-pyrazoline derivatives having resorcinol/guaiacol moiety. 

N-substituted pyrazoline derivatives 53 bearing furan moiety, reported by Kanaan et 

al., displayed anti-inflammatory activity by producing a considerable decrease in paw edema 

compared to diclofenac sodium (Fig. 42) [57]. 
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Figure 42. N-substituted pyrazoline derivatives. 

Bhadoriya et al. reported N-substituted diaryl-pyrazoline 54 as a potent anti-

inflammatory agent with 69.88 percent inhibition of denaturation of protein Fig. 43) [58]. 

N N

O
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54  

Figure 43. N-substituted diaryl-pyrazoline anti-inflammatory agent. 

4. Conclusions 

In conclusion, the review highlights the synthesis of pyrazolines with their potency as 

anticancer and anti-inflammatory agents. It will benefit the researchers by developing novel 

molecules with more potency, better selectivity, and minimum side effects. Thus, this article is 

a useful supplement and will contribute to the further development and synthesis of medicinally 

important pyrazoline derivatives.  
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