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Abstract: Chronic diabetes mellitus (DM) leads to diabetic nephropathy (DN) that contributes to the 

Global Burden of Disease. Sprague Dawley male rats (3 months old, 200 grams) were divided into four 

groups: control (n=6) and DM groups that received an intraperitoneal injection of Streptozotocin (60 

mg/kg BW) for 1 month (DM1, n=6), 2 months (DM2, n=6), and 4 months (DM4, n=6). The rats were 

sacrificed, and retro-orbital blood was withdrawn to assess creatinine serum levels. The kidneys were 

harvested to assess tubular injury by Periodic-Acid Schiff (PAS), kidney fibrosis by Sirius Red staining, 

and mRNA expression of KIM-1, E-Cadherin, and Vimentin by reverse transcriptase PCR (RT-PCR). 

Long-term diabetes mellitus enhanced creatinine serum level (p<0.001), tubular injury (p<0.05), and 

kidney fibrosis (p<0.001) in the DM2 and DM4 groups compared to the control group. mRNA 

expression of E-Cadherin significantly decreased in the DM4 group (p<0.05) while mRNA expression 

increased both in vimentin DM4 group (p<0.001) and KIM-1 DM4 group (p<0.05) compared to the 

control group. The inflammatory mediators consisting of NFκB, MCP1, and CD68 significantly 

increased in DM4 groups compared to the control group (p<0.05). Chronic diabetes mellitus elevates 

tubular injury and fibrosis and is associated with upregulation of KIM-1 mRNA expression. 
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1. Introduction 

Diabetes mellitus with malfunction of insulin production or failure to process insulin 

effectively becomes one of the world's health problems. As many as 1.5 million people died 

because of diabetes mellitus globally in 2012, and there were 422 million adults with diabetes 

mellitus in 2014 [1]. Uncontrolled hyperglycemic conditions in DM lead to a reduction of the 

quality of life and increasing mortality due to systemic microvascular and macroscopic 

complications resulting in multiple organ failure, including kidneys, nerves, and blood vessels. 

One of the most common complications is diabetic nephropathy (DN), occurring in 30% and 
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40% of patients with type 1 and type 2 diabetes mellitus, respectively [2]. Diabetic 

nephropathy, which can be classified as Chronic Kidney Disease (CKD), ultimately contributes 

to the Global Burden of Disease, although receiving less attention [3]. 

Chronic hyperglycemia induces morphological and functional injury in the kidney, 

such as nephron damage. It is characterized by increased vessel permeability and impaired 

glomerular filtration barrier [4,5], thus inducing further albumin excretion in urine. Due to 

microalbuminuria, reactive oxygen species (ROS) and high protein levels in tubular ultrafiltrate 

will activate various inflammatory mediators, which may induce tubular injury of the kidney 

and eventually end-stage renal damage [6]. Nephron damage in diabetic nephropathy is 

associated with both systemic and local inflammation with the involvement of inflammatory 

cells, cytokines, and signaling pathways, for example, nuclear factor-B (NF-B), Janus N-

terminal kinase/signal transducers and activators of transcription (JAK/STAT), and 

macrophages [7]. The NF-B is a nuclear transcription factor found in all types of cells, which 

has various roles in cellular response towards stress, inflammation, free radicals, and viral and 

bacterial antigens [8]. Hyperglycemic conditions induce advanced glycation end-products 

(AGE) formation [9] and ROS overproduction through polyol flux pathways and protein 

kinase-C activation [10]. AGE and ROS initiate pro-inflammatory response and endothelial 

dysfunction through NF-B activation. During hyperglycemic conditions, NF-B increases 

significantly and causes the release of various chemokines, cytokines such as transforming 

growth factor-β (TGF-β) and vascular cell adhesion molecule-1 (VCAM-1) [11].  

NF-kB is expressed in intrinsic kidney cells, such as podocytes, mesangial, tubular, and 

endothelial cells, after exposure to inflammatory stimuli, such as tumor necrosis factor (TNF) 

and angiotensin II. In the DN, NF-B is localized in kidney tubular epithelial cells and 

correlated with proteinuria and infiltration of inflammatory cells in the interstitial [12]. NF-B 

leads to the expression of monocyte chemoattractant protein-1 (MCP-1) [13], which is 

upregulated in kidney tissue. High MCP-1 levels in urine and macrophage influx describe the 

pathogenic role of MCP-1 in glomerular damage and progression of kidney disease [14].  

The unavailability of biomarkers for elucidating the progression of DM complications 

is the main problem of DN. Tubular injury of the kidney can change the protein expression 

level, which has a possible role as a biomarker, such as kidney injury molecule-1 (KIM-1), E-

cadherin, and vimentin. KIM-1 mRNA expression will increase in accordance with the severity 

of kidney dysfunction [15]. KIM-1 is a type-1 cell transmembrane glycoprotein comprising 6-

cysteine, similar to immunoglobulin. KIM-1 can be used as a biomarker of tubulointerstitial 

damage because it is expressed in the apical membrane of epithelial cells of kidney proximal 

tubules in response to ischemia and toxicity [16]. Only a small amount of KIM-1 will be 

expressed continuously in normal kidneys [17]. Otherwise, kidney injury can be detected by 

alternated expression of E-cadherin and vimentin. During kidney damage, the cells are 

structurally altered, which separates the apical and basolateral compartments from the 

membrane [18]. Excretion of KIM-1 will increase in urine during kidney injury, and its titer is 

associated with the severity of kidney tubular injury, interstitial fibrosis, and inflammation [15]. 

This study elucidated the association between KIM-1 expression with inflammation and kidney 

injury in the kidney of the DM model. 
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2. Materials and Methods 

2.1. Animal model of diabetes mellitus. 

A total of 24 male Sprague Dawley rats (3 months old, 200 grams) were used in this 

study. Rats were placed in cages with a light-dark cycle of 12 hours. The diabetes mellitus 

(DM) model was induced by a single intraperitoneal injection of 60 mg/kg body weight (BW) 

Streptozotocin/STZ (Nacalai, 32238-91). Blood glucose level was quantified five days after 

injection to examine the success of the model. DM was defined by a blood glucose level higher 

than 200 mg/dL. Rats were kept in a light-and-dark cycle room with free access to water and 

chow. Ethical clearance was approved by the Ethical Clearance Committee of the Faculty of 

Medicine, Public Health and Nursing, known as FERCAP, with number 

KE/FK/0140/EC/2020.  

Rats were divided into four groups based on the time of sacrifice: 1 month (DM1 group, 

n=6, 2 months (DM2 group, n=6), 4 months (DM4 group, n=6), and control group (n=6). The 

control group was given an intraperitoneal injection of NaCl 0.9%, which was then sacrificed 

after a specified time. For sacrifice, rats were deeply anesthetized using intramuscular injection 

of 100 mg/kg BW of ketamine. Then, the abdomen and thorax were opened, and the left 

ventricle was perfused with NaCl 0.9%. The right and left kidneys were harvested, the right 

kidney was kept in normal buffer formalin for paraffin making, and the left kidney was kept in 

RNA preservation solution (Favorgen, FATRR001) for RNA extraction. 

2.2. Quantification of serum creatinine level.  

Before sacrifice, blood was collected from the retro-orbital vein to quantify glucose and 

creatinine levels. Serum creatinine was measured with a kinetic test without deproteinization 

according to the Jaffe method (Creatinine FS; DiaSys®). Glucose level has been reported in our 

previous study [19].  

2.3. Histological assessments for quantification of tubular injury and fibrosis area. 

Paraffin slides were deparaffinized and then stained with Periodic acid Schiff (PAS) 

and Sirius Red to quantify tubular injury and fibrosis area, respectively. The tubular injury 

scores were determined through a semiquantitative scoring system. Ten fields were examined 

for each kidney, and the lesions were graded from 0 to 4 (0, no change; 1, changes affecting 

<25% of the section; 2, changes affecting 25-50%; 3, changes affecting 50-75%; and 4, changes 

affecting > 75%). The assessment was performed based on characteristics of tubular injury 

(tubular atrophy, tubular dilatation, loss of brush border, intraluminal casts, and interstitial 

inflammation). The score index of each rat was expressed as a mean value of all scores 

obtained. 

Sirius Red staining was carried out to observe interstitial fibrosis and quantify 

interstitial fibrosis area fraction. Area fraction was measured in ten randomly selected fields 

with 400x magnification. Image J software was used for the quantification.  

2.4. RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR). 

The total RNA from the kidney was extracted using Genezol solution (GENEzol™, 

GZR100) based on the manufacturer's protocol. RNA concentrations were quantified using a 

nanodrop. The synthesis of cDNA was done using a cDNA synthesis kit (SMOBio, RP1400). 
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RT-PCR was performed for these following genes with specific primers: E-cadherin (forward: 

5-CCAGCGACTGGTTCAGATCA-3; reverse: 5-GATGAAAACGCCAACAGGGG-3), 

vimentin (forward: 5-ACCAGAGACGGACAGGTGAT-3; reverse: 5- 

CTTGCGCTCCTGAAAACTGC-3’), KIM-1 (forward: 5-

AATCCCTTGATCCATTGTTTTCTT-3; reverse: 5-GTGAGTGGACCAGGCACACA-3), 

NF-κB (forward: 5-CACTCTCTTTTTGGAGGT-3; reverse: 5’-

TGGATATAAGGCTTTACG-3’), MCP-1 (forward: 5-

GCTGTAGTATTTGTCACCAAGCTC-3; reverse: 5-ACAGAAGTGCTTGAGGTGGTT-

3’), CD68 (forward: 5-TGTGTCCTTCCCACAAGCAG-3; reverse: 5’-

AAGAGAAGCATGGCCCGAAG-3’) and a housekeeping gene, ß-actin (forward 5- 

GCAGATGTGGATCAGCAAGC-3; reverse 5-GGTGTAAAACGCAGCTCAGTAA-3). 

For RT-PCR, we used Taq Master Mix (GoTaq®Green Master Mix, Cat No. M7122). PCR 

products were analyzed on 2% agarose gel with a DNA ladder (SMOBio, DM3200). Gene 

expressions were quantified with densitometric analysis using ImageJ software, with ß-actin 

being used to normalize the expression. 

3. Results and Discussion 

3.1. DM associated with decreased renal function and increased tubular injury. 

Serum creatinine levels of DM2 and DM4 groups were significantly higher than control 

and DM1 groups.  

   

(a) (b) (c) 

 

(d) 

 

(e) 

Figure 1. Serum creatinine level, tubular injury, and fibrosis area. (A) Serum creatinine level measurement 

showed DM progression is associated with deterioration of renal function with higher serum creatinine level 

found in DM groups; (B-C) Quantification of tubular injury score and interstitial fibrosis area fraction 

showed higher score and area fraction in DM groups; (D) PAS staining showed tubular injury with 

effacement of tubular epithelial cells and loss of brush border in DM groups; (E) Sirius Red staining showed 

positive red color as a sign of collagen accumulation in interstitial areas of DM groups. *p<0.05 vs control, 

***p<0.001 vs control, #p<0.05 vs control, ###p<0.001 vs DM1 group. 
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Furthermore, the DM4 group demonstrated a higher escalation of serum creatinine 

levels compared to the DM2 group (Figure 1A). Furthermore, the deterioration of renal 

function was associated with higher tubular injury and interstitial fibrosis area fraction in 

DM2 and DM4 groups (Figure 1B and 1C). DM1 demonstrated a higher tubular injury score 

with no statistical difference in interstitial fibrosis area fraction compared to the control 

group. DM4 showed the highest tubular injury score and interstitial fibrosis area fraction 

among other groups. These results highlighted the progression of DM-induced damage to 

renal function and architecture (Figure 1D). Histological staining showed tubular injury in 

DM2 and DM4 groups, which was characterized by epithelial cell effacement with brush 

border loss (Figure 1D). Sirius red staining also revealed a positive red color, showing 

collagen accumulation in the DM2 and DM4 groups (Figure 1E). 

3.2. DM is associated with the downregulation of E-Cadherin and upregulation of vimentin 

and KIM-1 mRNA expression. 

RT-PCR analysis revealed downregulation of E-cadherin (a marker of epithelial cell 

integrity), as shown by significantly lower E-cadherin mRNA expression in the DM4 group 

compared to the control group (Figure 2B). The downregulation of E-cadherin was associated 

with the upregulation of vimentin mRNA expression in DM groups compared to control 

(Figure 2C). KIM-1 mRNA expression, as a marker of kidney injury, was also significantly 

higher in the DM4 group than in the control group (Figure 2D). There was no significant 

difference between DM1 and DM2 compared to control. Progression of DM might induce 

kidney injury, with the downregulation of epithelial cell markers and the upregulation of 

mesenchymal cell markers (Figure 2). 

 
(a) 

   
(b) (c) (d) 

Figure 2. Upregulation of E-cadherin, vimentin, and KIM-1 in DM groups. (A) Representative picture of 

electrophoresis gel of E-cadherin, vimentin, and KIM-1 mRNA expression; (B) Densitometric analysis of E-

cadherin mRNA expression. DM4 group demonstrated the lowest E-cadherin mRNA expression; (C) 

Densitometric analysis of vimentin mRNA expression. DM4 group demonstrated the highest vimentin mRNA 

expression; (D) Densitometric analysis of KIM-1 mRNA expression. DM4 group demonstrated the highest 

KIM-1 mRNA expression. *p<0.05 vs control, **p<0.01 vs control. 
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3.3. DM associated with upregulation of inflammatory mediator mRNA expression. 

Next, we investigated the expression of inflammatory mediators, which showed 

increased NF-κB and MCP-1 mRNA expression in the DM4 group compared to the control 

group. Only the DM4 group had significantly higher NF-κB and MCP-1 mRNA expression 

than the control group. This result was associated with significantly higher CD68 mRNA 

expression as a marker of macrophages in the DM4 group than in the control group (Figure 3). 

 
(a) 

 

  

(b) (c) (d) 

Figure 3. Upregulation of CD68, NF-κB, and MCP-1 in DM groups. (A) Representative picture of 

electrophoresis gel of CD68, NF-κB, and MCP-1 mRNA expression; (B) Densitometric analysis of NF-κB 

mRNA expression. DM4 group demonstrated the highest NF-κB mRNA expression; (C) Densitometric 

analysis of MCP-1 mRNA expression. DM4 group demonstrated the highest MCP-1 mRNA expression; (D) 

Densitometric analysis of CD68 mRNA expression. DM4 group demonstrated the highest CD68 mRNA 

expression. *p<0.05 vs control, **p<0.01 vs control, #p<0.05 vs control, p<0.001 vs DM1 group. 

Our study revealed kidney function deterioration and tubular injury after DM associated 

with KIM-1 and inflammatory mediator upregulation. Downregulation of E-Cadherin after DM 

induction indicated a high tubular injury score in the kidney. E-cadherin expression can be used 

as an early biomarker of tubular injury. Reduction of E-cadherin expression in injury is caused 

by ischemia and, through cell apoptosis, increases activation of proteolytic enzymes in diabetic 

nephropathy [20]. Downregulation of E-Cadherin is also associated with the upregulation of 

vimentin as a mesenchymal marker [21], which might reveal an epithelial-to-mesenchymal 

transition (EMT) process. EMT is known as one of the mechanisms of kidney injury, which is 

characterized by: 1. loss of epithelial cells adhesion [22] (showed by reduction of E-cadherin 

expression); 2. actin reorganization and de novo α-SMA expression; 3. basal tubular membrane 

damage by matrix metalloproteinase (MMP); 4. increase of cell migration [23] and interstitial 

matrix invasion. In this research, we found a lower expression of E-cadherin and a higher 

expression of vimentin in our model [24,25]. Vimentin may appear due to damaged kidney 

tubules in diabetes. Chronic hypoxia, inflammation, and high glucose levels will cause tubular 

epithelial damage through EMT [26]. EMT is closely related to kidney fibrosis [27], in which 

tubular epithelial cells produce extracellular matrix (ECM), which is characteristic of 

mesenchymal phenotype [28]. 
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Detection of kidney tubular injury as a complication of DN becomes the problem in 

evaluating DN. Our results demonstrated KIM-1 mRNA upregulation in the kidney of the DN 

model, which might represent kidney tubular injury and fibrosis as characterized by DN. In 

DN, KIM-1 upregulation occurred in the chronic period, especially in the DM4 group. 

Research showed that KIM-1 only indicates damage of kidney tubules during the advanced 

stage [29] and was not correlated with urine albumin-creatinine ratio (UACR) or estimated 

glomerular filtration rate (eGFR) [30]. It seemed that chronic induction of DM with higher 

tubular injury is associated with KIM-1 expression. KIM-1 is associated with the ischemic 

process, toxic renal injury, and fibrosis [31]. In this study, we found high KIM-1 expression, 

but it was not significant to prove the role of KIM-1 as an early screening marker of progressive 

kidney injury. However, it had a beneficial effect in elucidating tubular injury and fibrosis as a 

chronic complication of DN. KIM-1 expression can possibly be used as a kidney injury marker 

because its expression increased significantly from histopathological examination as well as 

blood tests [30]. KIM-1 is in a steady state to an undetected level in normal conditions [32]. 

On the other hand, KIM-1 expression increases in the proximal tubules of the surface 

of apical cells and can be detected in urine [33]. KIM-1 may also be detected in the blood and 

associated with epithelial cell polarity loss due to injury [34]. Exploration of KIM-1 expression 

in the blood and urine may provide more information about the role of KIM-1 in tubular injury 

and fibrosis in DN [35,36]. It may be performed in the next research. KIM-1 upregulation 

occurs and closely correlates with renal dysfunction severity and inflammation [15]. 

Our study also revealed inflammation with inflammatory mediators upregulation in the 

kidney after DN. Inflammation contributes to the occurrence of DM complications, such as 

diabetic nephropathy [37,38]. Hyperglycemia causes activation of NF-B release of 

inflammatory cytokines by kidney tissue [39], such as IL-1, IL-6, TNF-α, and MCP-1, then 

inducing macrophage infiltration [40]. NF-B might also be expressed by mesangial cells after 

high glucose treatment, which induces reduction of glucagon-like peptide-1 receptor (GLP-

1R), which easily activates NF-B and MCP-1 [41]. During hyperglycemia conditions, 

pyruvate kinase M2 (PKM2) phosphorylation can activate the NF-B signaling pathway, 

which induces upregulation of intercellular adhesion molecule-1 (ICAM-1) and infiltration of 

inflammatory cells [42]. 

This study also demonstrated a reduction of E-Cadherin, which represented epithelial 

cell injury associated with upregulation of inflammatory signaling, especially NF-KB and 

MCP-1. DN in the Psammomys obesus, as an ideal animal model to study diabetes mellitus 

temporal evolution, demonstrated activation of NF-B and downregulation of E-Cadherin after 

high-calorie diet treatment [43]. DM model with STZ injection is also consistent with our 

result, which showed significant NF-B upregulation compared to a control group without STZ 

injection [44]. NF-B induces inflammation signaling, leading to macrophage infiltration, 

especially through MCP-1 [40]. Furthermore, MCP-1 is expressed by mesangial cells due to 

many stimulations, such as inflammatory cytokine, tumor necrosis factor-alpha (TNFα) [45], 

immune complex, metabolite (glucose, glycation end products) [46] and danger-associated 

molecular patterns (DAMPs). Other cells also are known to express MCP-1, such as podocytes, 

endothelial cells, and kidney tubular epithelial cells. Kidney biopsy from DN patients showed 

upregulation of MCP-1 expression and macrophage infiltration in the glomerulus and 

tubulointerstitial areas [47]. Moreover, MCP-1 upregulation is associated with proteinuria, 

glomerular damage, and kidney disease progression in human [14, 48].  
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MCP-1 is considered a cytokine for initiating kidney inflammation and fibrosis [49], 

which finally leads to diabetic nephropathy due to its effect on monocyte recruitment into 

kidney tissue [44]. DM increased the expression of CD68 [50] and MCP-1 [45] in the kidney 

tubules and interstitial space, which was attenuated with Vitamin D treatment [51]. CD68 

expression demonstrated macrophage infiltration. Our study revealed the upregulation of both 

MCP-1 and CD68 as macrophage markers in the DM model, which may be associated with 

renal function deterioration and KIM-1 expression. Furthermore, macrophage infiltration in the 

interstitial areas correlates with not only the glomerular filtration rate (GFR) stage and 

albuminuria [52] but also proteinuria and serum creatinine levels [53]. Systemic inhibition of 

MCP-1 can modify the characteristics and differentiation of the macrophages, reduce 

albuminuria, and restore glomerular endothelial glycocalyx [54]. 

4. Conclusions 

This study highlighted that KIM-1 upregulation in the kidney may be associated with 

tubular injury and inflammation in the chronic diabetes condition. These findings may provide 

information to DN as a complication of diabetes.  
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