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Abstract: Dinitrosyl iron complexes (nitric oxide donors) can be used in cardiology for the treatment 

of cardiovascular diseases and in oncology as an antitumor drug. Therefore, synthesizing new dinitrosyl 

iron complexes (DNICs) and studying the mechanism of their action is a relevant and important task. 

The effect of dinitrosyl iron complexes (cytoprotector and cytostatic) on the morphology and nuclear 

structure of cells was studied using confocal fluorescence microscopy. The results showed that when 

human lung fibroblasts were treated with a low concentration of DNIC#4 (cytoprotector), the cell 

morphology and nuclear structure remained virtually unchanged; the actin structure consisted of long, 

well-organized fibers and the nuclei had a rounded shape. It was found that after treating multiple 

myeloma cells with DNIC#7 (cytostatic), dramatic changes in cell morphology were observed, actin 

fibers and cytoplasmic membranes were destroyed, and the nuclei were fragmented. Thus, the results 

confirm that DNIC#4 exhibits a cytoprotective effect on cells at low concentrations, and DNIC#7 is a 

cytotoxic compound. Therefore, DNIC#4 has potential for use in cardiology, and DNIC#7 has potential 

for the treatment of human multiple myeloma. 

Keywords: dinitrosyl iron complexes; multiple myeloma; cell morphology; nuclear structure; 

fibroblasts.  
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1. Introduction 

Mortality from cardiovascular diseases (CVD) ranks first in all countries [1, 2]. 

Cardiovascular diseases account for 49% of the causes of all deaths in Europe [3]. Disability 

and mortality from cardiovascular diseases are major problems in many countries, and the costs 

of treating CVDs have increased significantly in low- and middle-income countries. [4]. 

Currently, available antihypertensive drugs are characterized by short-term effects and exhibit 

many side effects, such as hypokalemia, cardiovascular complications, and so on [5-7]. In this 

regard, searching for and synthesizing new cardiac drugs, studying their properties and 

characteristics, and their effect on the body's cells is an important task. 
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The key role of nitric oxide (NO) in regulating vascular tone and myocardial 

metabolism has been established. [8, 9]. Nitric oxide has been shown to be a signaling molecule 

that regulates many metabolic and pathological processes in the human body. [10-12]. Nitric 

oxide exhibits a protective effect against the development and progression of cardiovascular 

diseases; this molecule affects the contraction of blood vessels, relaxes smooth muscles, 

exhibits anti-coagulant properties, inhibits monocyte adhesion, low-density lipoprotein 

oxidation, and cytokine synthesis, as well as influences the immune response and 

neurotransmission [13-18]. 

NO concentration is a key factor determining its biological effects [19, 20]. It is known 

that at high concentrations (> 1 µM),  NO is cytotoxic because it forms a toxic compound called 

peroxynitrite [21]. At the same time, it has been shown that low concentrations of NO (<1 μM) 

exhibit cytoprotective properties and have a positive effect on the homeostasis of the 

cardiovascular and nervous systems[22, 23]. 

Currently, in medical practice, for the treatment of the cardiovascular system, the use 

of drugs based on nitric oxide donors is relevant [24,25]. NO donors are dinitrosyl iron 

complexes (DNICs), which are currently widely used in practice. Many of their functions have 

been discovered over the entire period of studying DNICs, ranging from vasodilator and 

hypotensive to antitumor activity [26,27]. It is known that DNICs have a positive effect on 

many processes inside the body. Namely, they relax blood vessels, lower blood pressure, and 

prevent the formation of blood clots [28-30]. The ability to neutralize secondary lipid 

peroxidation products allows them to exhibit antioxidant properties [31]. It is known that 

DNICs increase erythrocytes' elasticity, accelerate wound healing, and inhibit platelet fusion 

and apoptosis of normal body cells [32-34]. Excess NO also has biological effects, the meaning 

of which is to inactivate iron-containing enzymes and inhibit cell growth and development 

[35,36]. 

Along with regulating tumor growth by nitric oxide, DNICs also trigger the process of 

suppressing tumor growth [37,38]. This is due to the rapid destruction of DNICs in actively 

dividing cells and the release of large amounts of NO. It is known that in high concentrations, 

NO is an activator of apoptosis [39]. It is known from the literature that in human leukemia 

cells, NO triggers apoptosis through the activation of caspases [ 40,41]. 

It should be noted that cationic DNICs with sulfur-containing ligands—thiourea and its 

derivatives—were synthesized by us earlier. [42,43]. We have shown that DNICs are effective 

inhibitors of enzymes that are biomarkers of CVD: myeloperoxidase, renin, matrix 

metalloproteinase, and poly(ADP-ribose)polymerase [44-50]. Previous studies have shown 

that DNIC#4 exhibits cytoprotective properties [44-48,50], while DNIC#7 is cytostatic and 

exhibits toxicity to multiple myeloma cells [46,49]. 

 However, there is no information in the literature on the effect of these compounds on 

the morphology and nuclear structure of the cell. Therefore, this study aimed to conduct a 

comparative analysis of the effect of DNIC#4 (cytoprotector) and DNIC#7 (cytostatic) on the 

morphology and structure of the cell nucleus. 

2. Materials and Methods 

2.1. Materials. 

The growth medium DMEM (low glucose-1 g/l, L-glutamine, 25 mM HEPES, sodium 

pyruvate, Biowest, France), gentamicin (10 mg/ml, Biowest, France), HyClone Fetal Clone III 
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Serum (GE Healthcare, USA), was used in this work. The growth medium RPMI-1640, 

modified to contain 2 mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4500 mg/L 

glucose, and 1500 mg/L sodium bicarbonate, was used in this work (OOO NPP PanEco, 

Russia). FITC-phalloidin (Enzo Life Sciences, USA) and Hoechst 33258 (Sigma, Germany) 

were used to stain cells. A mounting (Fluoro Gel-11) medium was used in this work (Electron 

Microscopy Sciences, USA). Plastic dishes (25 cm culture bottles, disposable pipettes) for 

growing cell cultures were purchased from Corning-Costar (USA). 

2.2. Cell lines. 

The work used human multiple myeloma cells (MM, cell line RPMI 8226, kindly 

provided by S.S. Shushanov, N.N. Blokhin National Medical Research Center of Oncology, 

Ministry of Health of Russia, Moscow). Origin of the indicated cell line: human, bone marrow, 

myeloma. Adhesive Human lung-derived embryonic fibroblasts (line FLEH-104) were 

purchased from the Russian Collection of Vertebrate Cell Cultures (BioloT, St. Petersburg, 

Russia).  

2.3. Cultivation of a human multiple myeloma cell line. 

Culture method: cells were grown in suspension in RPMI medium with 10% fetal calf 

serum at 37°C, 5% CO2, and 95% humidity. Cells were grown to 90% density in culture flasks 

and then used for experiments. 

2.4. Cultivation of a cell line of fibroblast lung embryo cells 

Fibroblast lung embryo cells (FLEH-104) were cultured in DMEM growth medium 

supplemented with 10% (vol/vol) fetal bovine serum solution and 10 mM HEPES at pH 7.2. 

The cell culture was incubated in a humidified atmosphere (90%), 5% CO2 at 370. After 

reaching 90% cell density, the cells were treated with a solution of 0.25% trypsin-EDTA, 

centrifuged at 3000 g for 5 min, the supernatant fraction was discarded, and the cells were 

resuspended in growth medium and seeded on glass substrates in wells in a 24-well plate. 

2.5. Synthesis of the dinitrosyl iron complexes. 

To study dinitrosyl iron complexes (DNICs) on cell morphology and nucleus, we used 

mononuclear dinitrosyl iron complexes with functional sulfur-containing ligands, namely 

thiourea and its derivatives: [Fe(SC(NH2)(NHC2H5))2(NO)2]Cl[ Fe 

(SC(NH2)(NHC2H5))Cl(NO)2] (#4) and [Fe(SC(NHCH3)2)2(NO)2]BF4 (#7). The compounds 

were synthesized according to the protocol [42, 43]. The molecular structure of DNIC#4 and 

DNIC#7 was confirmed by X-ray diffraction, Mössbauer, IR, and EPR spectroscopy [51-57]. 

It was established that when dissolved in aqueous solvents, DNIC#4 and DNIC#7 release NO 

as a result of complex dissociation [58].  

2.6. Effect of DNIC#4 on the morphology and chromatin structure of FLEH. 

Cells FLEH-104 were seeded onto glass substrates into wells in a 24-well plate and 

grown for 24 hours. The old growth medium was removed by aspiration, and a new one was 

added, adding various concentrations of DNIC#4. In particular, 100 μl of DNIC#4 [4x10-3M] 

(3 wells) was added to 900 μl of DMEM growth medium, and also to 990 μl of growth medium 
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was added to 10 μl of DNIC#4 [4x10-4M] (3 wells), only growth medium was added to control 

wells (3 wells). Then, the plate with cells was incubated at 37o in an atmosphere of 5% CO2 

and 95% humidity for 24 hours. 

2.7. Effect of DNIC#7 on the morphology and chromatin structure of multiple myeloma cells. 

MM cells were seeded in two culture flasks and grown for 8 days; fresh growth medium 

was added every 3-4 days. After 8 days, DNIC#7 (3.4 x 10-3M) was added to the experimental 

flask, and only growth medium was added to the control flask. The vials were then incubated 

at 37o in an atmosphere of 5% CO2 and 95% humidity for 24 hours. 

2.8. Fixation and staining of cells with fluorescent dyes. 

After 24-hour incubation with DNICs, cell samples (FLEH и ММ) were fixed for 10 

min at room temperature with 2.0% formaldehyde and 5% glucose in PBS, 0.1 M, pH = 7.2 

(500 μl/well). Then, the fixing solution was removed and washed 2 times with PBS buffer (500 

μl/well). After this, 500 μl of blocking solution (bovine albumin + Triton X-100 in PBS) was 

added to the wells and incubated for 30 min at 37o. The blocking solution was then removed 

with a micropipette, and the cells were washed twice with PBS. After this step, 200 μl of PBS 

and 10 μl of FITC-phalloidin solution (2 μg/ml) were added to each well and incubated for 1 

hour at room temperature. FITC-phalloidin was then removed, and the cells were again washed 

3 times with PBS (500 μl/well). After this, 1 ml of PBS and 10 µl of Hoechst 33342 solution 

(final concentration 0.2 µg/ml) were added to each well and incubated for 30 min at a 

temperature 37o in an atmosphere of 5% CO2. Then, it was washed 1 time with PBS. After 

staining, coverslips were removed from the wells, placed on filter paper, and then covered with 

mounting (Fluoro Gel-11) medium. Coverslips were placed on glass slides with the side on 

which the FLEH cells were located. Since MM cells are suspended, they were placed on glass 

slides after fixation and staining, mounting (Fluoro Gel-11) medium was added, and coverslips 

were covered on top. Then, the slides were kept for 24 hours at 40°C in the dark, then the edges 

of the coverslip were sealed with colorless varnish. Cell and nuclear morphology were analyzed 

using a laser confocal microscope, as previously described [59]. 

2.9. Analysis of cell morphology and nuclear structure using confocal microscopy. 

Microfluorescence analysis was performed on an inverted scanning confocal 

microscope LSM 510 META (Zeiss, Germany) using EC Plan-Neofluar 40x/1.30 Oil DIC M27 

and Plan-Apochromat 63x/1.4 Oil DIC M27 objectives. Fluorescence of FITC-phalloidin and 

Hoechst 33342 were detected at excitation/emission wavelengths of 488/505-530 nm and 

405/420-490 nm, respectively. The obtained images were processed using AxioVision 4.8 and 

ImageJ 1.42q software. 

3. Results and Discussion 

3.1. Effect of DNIC#4 (potential cytoprotector) on the morphology of FLEH cells. 

The results of the study showed that in control samples (without the addition of 

DNIC#4), fibroblasts have normal morphology, elongated cells, and well-stained nuclei, the 

actin structure is visible, fibroblast filaments are elongated and clearly defined, the cytoplasmic 

membrane of the cells is not destroyed (Figure 1). 

https://doi.org/10.33263/BRIAC152.026
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC152.026  

 https://biointerfaceresearch.com/  5 of 15 

 

 
Figure 1. Confocal image of the cell morphology and nuclear structure of FLEH cells before treatment with 

DNIC#4: nuclei are shown in blue (Hoechst), while actin structure and filaments are shown in green (FITC), 

objective 40х. Images size – 232.5 μm х 232.5 μm. 

We found that when FLEH cells are incubated with high concentrations of DNIC#4 

[4x10-3M], changes in cell morphology are observed. In particular, most of the cells acquire a 

rounded shape instead of an elongated one, the edges of the cells become uneven, the cell nuclei 

are poorly stained, and their structure is disturbed. The cells have practically no filaments, and 

actin has a loose structure. Actin fibers look destroyed, and the cytoplasmic membrane is 

partially destroyed (Figure 2).  

 
Figure 2. Confocal image of the cell morphology and nuclear structure of FLEH cells after treatment with 

DNIC#4[4x10-3M]: nuclei are shown in blue (Hoechst), while actin structure and filaments are shown in green 

(FITC), objective 40х. Images size – 232.5 μm х 232.5 μm. 
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It is likely that the round shape of the cells is observed due to their loss of adhesiveness 

and the development of apoptosis. This indicates that at high concentrations of DNIC#4, 

significant changes in cell and nuclear morphology are observed. 

However, when cells were treated with a lower concentration of DNIC4 [4x10-4 M], it 

was found that the morphology of the cells practically did not change and was closer to normal 

control cells (without the addition of DNIC#4). Confocal images show that the shape of the 

cells is elongated, and colored nuclei are visible, but in smaller ones, there are filaments; 

however, their edges are also destructured and unclear (Figure 3).  

 
Figure 3. Cell morphology and nuclear structure of a FLEH cell after treatment with DNIC#4[4x10-3M]: nuclei 

are shown in blue (Hoechst), actin structure and filaments are shown in green (FITC), objective 40х. Images 

size – 232.5 μm х 232.5 μm. 

 
Figure 4. Cell morphology and nuclear structure of FLEH cells after treatment with DNIC#4[4x10-3M]: nuclei 

are shown in blue (Hoechst), actin structure and filaments are shown in green (FITC), objective 63х. 
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The actin structure appears more organized compared to cells treated with a high 

concentration of DNIC#4 (Figure 3). 

When analyzing the same cells under high magnification 63х, it is clear that the actin 

structure consists of long, elongated, well-organized fibers. However, the filaments at the end 

of the cell still look loose and destructured. The nuclei are well-colored and round in shape 

(Figure 4). 

3.2.Effect of DNIC#7 (potential cytostatic) on cell morphology and nuclear structure of 

multiple myeloma cells. 

MM cells (control samples) were analyzed before treatment with DNIC#7 by confocal 

microscopy. The study results showed that in control samples, MM cells have a round shape, 

actin fibers are well stained, and the nuclei are also round (Figure 5). 

 
Figure 5. Confocal image of the cell morphology and nuclear structure of MM cells before treatment with 

DNIC#7: nuclei are shown in blue (Hoechst), while actin structure and filaments are shown in green (FITC), 

objective 40х. Images size – 232.5 μm х 232.5 μm. 

However, after treating MM cells with DNIC#7 (3.4x10-3M), it was difficult to 

determine the cell morphology. The cell structure was disrupted, damage to the cytoplasmic 

membrane was observed, destruction of actin fibers was observed, and only nuclei were visible, 

which had a fragmented shape (Figure 6). 
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Figure 6. Cell morphology and nuclear structure of MM cells after treatment with DNIC#7[3.4x10-3M]: nuclei 

are shown in blue (Hoechst), actin fibers are shown in green (FITC), objective 40х. Images size – 232.5 μm х 

232.5 μm. 

It was found that after adding DNIC#7 to the MM, the appearance of apoptotic nuclei 

is observed, the structure of the nuclei is destroyed, and many nuclei become fragmented 

(Figure 7). 

 

Figure 7. Confocal image of the nuclear structure of MM cells after treatment with DNIC#7[3.4x10-3M]: nuclei 

are shown in blue (Hoechst), objective 40х. 

After treating cells with DNIC#7, they found that the cell morphology changed, and the 

actin structure was disrupted (Figure 8).  
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Figure 8. Cell morphology and nuclear structure of MM cells after treatment with DNIC#7[3.4x10-3M]: nuclei 

are shown in blue (Hoechst), actin fibers are shown in green (FITC), objective 63х. 

Confocal images show that as a result of exposure to DNIC#7, no staining of actin 

fibers is observed, the integrity of the cytoplasmic membrane is disrupted, mainly only nuclei 

are visible, and some of them are apoptotic and fragmented. 

4. Conclusions 

It is known that cell morphology is determined by a dynamic tissue matrix, which 

includes the extracellular matrix, cell cytoskeleton (actin fibers), nuclear matrix, and chromatin 

[60-64]. Mechanical and chemical signals are transmitted to the nucleus, leading to changes in 

the three-dimensional organization of chromatin [65-67]. Chromatin, once thought to serve 

only as a means to package DNA, is now recognized as a major regulator of gene activity [68, 

69]. Genomic DNA in eukaryotic cells is tightly compacted with histone proteins into 

nucleosomes, which are further packaged into the higher-order chromatin structure. The 

physical structuring of chromatin is highly dynamic and regulated by a large number of 

epigenetic modifications in response to various environmental exposures, both in normal 

development and pathological processes such as aging and cancer [70, 71]. Chromatin is highly 

structured, and changes in its organization are essential in many cellular processes, including 

cell division [72, 73]. Recently, advances in machine learning have enabled researchers to 

automatically classify chromatin morphology in fluorescence microscopy images [74-78].  

In our work, we also used the confocal fluorescence laser scanning microscopy method 

to analyze the cell's morphology and the nucleus's structure under the influence of DNICs to 

fully understand the function of DNICs in biological processes and diseases. In addition, 

visualization of biological structures helps to understand their function. The study results 

showed that when cells are treated with low concentrations of DNIC#4, slight changes in 

morphology, actin structure, nuclear shape, and filament structure are observed. It is likely that 

these changes are not dramatic for cell viability. However, when exposed to high 

concentrations of DNIC#4, significant changes occur in the morphology of the cell and its 
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shape: the cytoplasmic membrane is destroyed, the actin structure becomes diffuse, the shape 

of the nuclei changes, the cells “stagger”, which indicates a loss of their viability. 

Thus, the results of the experiments showed that DNIC#4 at low concentrations does 

not exhibit cytotoxic properties and has virtually no effect on cell morphology. Our data are 

consistent with the results of our previous studies, in which we showed that DNIC#4 exhibits 

a cytoprotective effect at low concentrations [45-49]. 

At the same time, we have shown that DNIC#7 causes changes in the morphology of 

multiple myeloma cells, causing disturbances in their cytoplasmic membrane, the structure of 

actin fibers, and the nuclear structure. When MM cells are treated, apoptotic, highly fragmented 

nuclei appear. Taken together, all these changes lead to cell death, and, probably, this is due to 

the cytostatic effect of DNIC#7. The results of this study confirm our previous data that 

DNIC#7 is a cytostatic agent and has therapeutic potential for treating human multiple 

myeloma. [46]. We plan further studies to better understand the mechanism of action of 

DNIC#7 as a potential antitumor drug for treating malignant diseases. 

With recent advances in confocal laser scanning microscopy, cell morphology, actin-

microtubules, and nuclear structure can now be imaged with unprecedented resolution. In this 

work, we also used fluorescence laser scanning confocal microscopy to examine cсell 

morphology and nuclear structure changes under different conditions. Due to the advent of 

high-resolution confocal laser scanning microscopy methods, we have the opportunity to study 

the effect of various chemical compounds on the cytoskeleton and structure of the cell nucleus, 

and these methods can significantly expand our knowledge of the mechanism of action of 

cytoprotective or cytotoxic compounds.  
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