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Abstract: Through a one-pot multi-component approach, we accomplished a nickel-promoted simple, 

new, and efficient protocol for constructing pyrano[2,3-c] pyrazoles. Various aldehydes are treated 

under optimized reaction conditions via condensation and addition reactions to provide final compounds 

5a-j in good to high yield. Mechanistic studies have been discussed in this methodology.  
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1. Introduction 

In recent decades, both industrial scientists and academic people have prepared 

heterocyclic compounds using multi-component reactions [1,2]. Generally, single organic 

compounds can be prepared through multi-component reactions where a minimum of three or 

more reacting components participate in a proper manner. These are efficient approaches to 

constructing a library of heterocyclic molecules [3-7]. In this connection, synthetic ability [8-

10] variability and convergency are most important for multi-component reactions. 

 
Figure 1. Biologically significant pyrazole scaffolds. 

In synthetic organic chemistry, pyrazole derivatives are of wide importance [11] in the 

pharmaceutical industry, and they are efficient intermediates for the preparation of various 
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biological compounds (Figure 1) [12]. Generally, pyrazole compounds bear anti-cancer [13], 

insecticidal [14], anti-inflammatory [15], anti-microbial, insecticidal, fungicidal, molluscicidal 

[16], and analgesic properties [17], and they also inhibit human Chk1 kinase [18]. 

In recent years, pyrazoles [19-22] were constructed through two components [23], three 

components [24], and four variables [25]. However, many reports have involved toxic 

catalysts. For example, hexadecyl dimethyl benzyl ammonium chloride [26], basic ionic 

liquids, and others were used in the previous literature. On the other hand, it was prepared 

under catalyst-free conditions at high temperatures [27]. In addition, the reactions took longer, 

identified various byproducts, required harsh temperatures, and yielded less of the desired 

product. Thus, to overcome the above disadvantages, a newer method is desired. Many 

researchers have focused on developing novel approaches that may replace the existing 

method. In this connection, they developed eco-friendly protocols using green solvents, ionic 

liquids, supercritical fluids [28], and furious phases [29]. In this regard, we would like to 

establish nickel catalyzed simple and general multi-component approach for the preparation of 

pyrazoles in green solvent. 

2. Material and Methods 

2.1. Material. 

All the required chemicals hydrazine hydrate, aromatic aldehydes, ethyl 3-

oxobutanoate, malononitrile, nickel iodide with K3PO4, K2CO3, NiBr, Ni2CO3, NiSO4 x 5H2O, 

Ni(OAc)2 x H2O, NiCl2 x 2H2O, triethylamine, DABCO, hexane, 1,4 dioxane, toluene, DMF, 

methanol, ethanol, ethyl acetate solvents were purchased from Merk and used without further 

purification. 

2.2. Instruments. 

NMR: BRUKER 400 MHz, Model: ASCEND 400 MHz. (Chemical shift values are 

reported as values in ppm relative to TMS ( = 0) as internal standard. Multiplications using 

the abbreviations s = singlet, d = doublet, m = multiplet), GC: Perkin Elmer Clarus 600C Mass 

Spectrometer. MS: Perkin Elmer Clarus 680C Gas Chromatograph. FT-IR: Shimadzu IR 

Affinity-1 Fourier Transform Infrared spectrophotometer, Melting points of synthesized 

compounds were determined by Melting point apparatus. 

2.3. Method. 

The title compounds (5a-j) were synthesized by using hydrazine hydrate 2 (1 mmol), 

aromatic aldehydes 3 (1 mmol), ethyl 3-oxobutanoate 1 (1 mmol), malononitrile 4 (1 mmol) 

with K3PO4 (212 mg, 1 eq), assisted with NiI catalyst at 60°C in the presence of EtOH. A 

cyclohexane ethyl acetate mixture (70:30) is used as an eluent to monitor the reaction through 

TLC. The reaction mixture was transferred into the separating funnel, and the organic layer 

was collected in the round bottom flask. This organic layer is evaporated by a rotary evaporator 

and purified by CC (column chromatography) to get a pure final product. 

3. Results and Discussion 

Initially, we started the standardization using model substrates like ethyl 3-oxobutanote 

1, benzaldehyde 3, malononitrile 4, and hydrazine hydrate 2 at 60°C using a Nickel source as 
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a catalyst with various solvent bases. No reaction proceeded without solvent (row 1 in Table 

1). Thus, the solvent effect on the response has been studied. In this connection, the reaction 

with the 1,4-dioxane solvent provided final molecule 5a in 25% yield (row 2 in table 1). 

Whereas other solvents like toluene, DMF, and THF were tested for this reaction, they have 

provided final product 5a in 20%, 40%, and 60% yields, respectively (rows 3-5 in Table 1). It 

might be the reason that the starting material in solvents is solubilized less. 

   
Table 1. Solvent standardization for the synthesis of pyrazolesa. 

S. No Solvent Time (hr) Yield (%)b 

(5a) 

1 - 8 0 

2 1,4-Dioxane 8 25 

3 toluene 8 20 

4 Dimethylformamide 6 60 

5 Tetrahydrofuran 6 40 

6 Methanol 3 72 

7 Ethanol 2 75 

8c Ethanol 18 Trace 
a Conditions: 1 (1 mmol), 2 (1 eq), 3 (1 eq), and 4 (1 eq), NiI (0.2 eq), K2CO3 (1 eq), sol (4 mL), 2-18 h; b 

Purified yield; c Room temperature. 

The reaction with MeOH provided the target compound 5a in 72% yield (row 6 in Table 

1); on the other hand, EtOH gave the final product 5a in 75%, and it took less time (row 7 in 

table 1) comparatively the reaction with MeOH. Generally, heat may be released on the 

catalytic surface in a high polar medium, which enhances the rate of intermediate production 

and, thus, increases product yield. In this regard, we have concluded that K3PO4 (row 3 in Table 

2) was a better base than other bases during base optimization. In addition, inorganic bases 

have shown promising activity compared to organic bases like Et3N, pyridine, and DABCO. 

Generally, organic bases have a lower essential nature than inorganic bases. Therefore, they 

don’t activate the catalytic surface, and thus, the rate of the reaction may be reduced. 

Furthermore, the reaction with the absence of base has not obtained any final product, which 

indicates base is a necessary component for proceeding with this method (Table 2, entry 8). 

Later, the activity of nickel sources was tested, and acceptably, Ni (I) catalysts produced the 

desired molecule 5a in 75% yield (Table 3, entries 1-3), while the activity of Ni (II) sources 

was much less towards this reaction. At the same time, a lower yield was obtained with a lower 

amount of catalyst NiI (10 mol %) (row 7 in Table 3). 

 
Table 2. Standardization of basea. 

S. No Base Time (h) 
Yield (%)b 

(5a) 

1 K2CO3 2 65 

2 Cs2CO3 2 70 
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S. No Base Time (h) 
Yield (%)b 

(5a) 

3 K3PO4 2 75 

4 Na2CO3 5 60 

5 Triethylamine 8 - 

6 Py 8 - 

7 DABCO 8 - 

8c - 12 - 
a Conditions: 1 (1 mmol), 2 (1 eq), 3 (1 eq), and 4 (1 eq), NiI (0.2 eq), base (1 eq), ethanol (4 mL), 2-12 h; b 

Purified yield; c Absence of base. 

     

Table 3. Standardization of catalysta. 

S. No Catalyst Time (h) 
Yield (%)b 

(5a) 

1 NiI 2 75 

2 NiBr 2 75 

3 NiCl 2 75 

4 NiSO4 x 5H2O 7 15 

5 Ni(OAc)2 x H2O 7 12 

6 NiCl2 x 2H2O 8 15 

7c NiI 10 35 

8 - 10 NIL 
a Conditions: 1 (1 mmol), 2 (1 eq), 3 (1 eq), and 4 (1 eq), Ni catalyst (0.2 eq), K3PO4 (1 eq), ethanol (4 mL), 2-

10 h; b Purified yield; c 10 mol % Ni sources used. 

The control experiment has confirmed that no reaction proceeded without a Ni source 

(row 8 in Table 3). From these results, we strongly believe that the catalyst role is important 

for this reaction. Ni (I) source (0.2 eq), K3PO4 (1 eq), and ethanol as solvent were the standard 

conditions for this methodology. 

We have started the exploration substrate scope with established standardization 

conditions (Scheme 1). Library of aldehydes participated to provide corresponding desired 

molecules 5a-j in good to high yield. Benzaldehyde-bearing substituents like 4-OCH3, 4-Cl, 4-

NO2, and 4-N(CH3)2 carried out the reaction to get final molecules 5b-e in 75-90% yields. On 

the other hand, benzaldehyde bearing EWG like 2-NO2 and 3-NO2 gave expected products 5f-

g in 72-75% yields. Other aldehydes like naphthaldehyde, 3-methyl naphthaldehyde, and 2-

chloroquinolinaldehyde readily undergo reaction to get pyrazole molecules 5h-j in good yields. 

As per experimental conditions, we have provided a mechanistic pathway for the 

synthesis of desired products (Figure 2). Here, initially, Ni initially coordinates with the keto 

group of ethylaceto acetate to get complex A by reacting with hydrazine. Later, complex A 

may produce B via intra-molecular. Nucleophilic addition using base [30]. The intermediate B 

undergoes dissociation to produce ethanol by product, and the in situ generated product 

coordinates with Ni to provide the complex C. That reacts with 2-benzylidene malononitrile D 

to give complex E via consecutive condensation (Knoevenagel) and addition (Michael). 

Finally, the complex E follows tautomerization to produce the expected molecule. 

H3C O CH3

O O
+ NH2NH2.H2O +

CHO

+
CN

CN

Ni Catalyst (20 mol %)

EtOH, K3PO4 (1 eq), 
     60 C, 3 h

O

N
N
H

CN

NH2

H3C

1 2 3 4

5a

https://doi.org/10.33263/BRIAC152.027
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC152.027  

 https://biointerfaceresearch.com/ 5 of 9 

 

 
Scheme 1. Substrate scope for the synthesis of pyrazoles. 

 
Figure 2. Plausible mechanism for the construction of pyrazoles. 
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5j and 5b. However, aryl without substitution exhibited moderate activity. Very unfortunately, 

the activity completely falls down in the case of nitro substrate molecules (5d, 5f, and 5g). 

From the above results, we would like to conclude that the desired molecule with EDG 

enhances the activity [31] while resulting compounds with EWG showed lower activity. 

Table 4. Conduction of cytotoxicity of resulted molecules (5a-j). 

Molecule 
IC50 

PC-3 SKOV3 

5a 35.5 ± 0.24 11.5 ± 0.16 

5b 8.3 ± 0.13 10.9 ± 0.21 

5c 12.8 ± 0.11 15.6 ± 0.29 

5d >100 >100 

5e 9.8 ± 0.22 12.4 ± 0.17 

5f >100 >100 

5g >100 >100 

5h 34.5 ± 0.36 52.9 ± 0.41 

5i 24.6 ± 0.15 >100 

5j 7.5 ± 0.11 6.9 ± 0.14 

Doxorubicin 

(Standard) 
1.1 0.8 

3.1. Chemical characterization of compounds. 

6-NH2-5-CN-3-Me-4-Ph-dihydropyranopyrazole (5a): white solid; Yield (85%); 

Melting Point: 239-241°C; IR (KBr, υmax, cm-1): 3372- 3169 (N-H ), 2192 (C≡N), 1160 (C-O-

C). Proton NMR (400 Megahertz): δH 1.78 (3Hydrogen, singlet), 4.59 (1Hydrogen, singlet), 

6.87 (2Hydrogen, br, singlet), 7.16-7.33 (5Hydrogen, multiflet), 12.10 (1Hydrogen, singlet). 

Carbon NMR (100 Megahertz): δC 9.7, 36.2, 57.2, 97.6, 120.7, 126.7, 127.4, 128.4, 135.5, 

144.4, 154.7, 160.8; [M+1] = 253. 

6-NH2-5-CN-3-Me-4-OMePh-dihydropyranopyrazole (5b): yellow solid; Yield (90%); 

Melting Point: 209-211°C; IR (KBr, υmax, cm-1): 3482-3225 (N-H ), 2191 (C≡N), 1052 (C-O-

C). Proton NMR (400 Megahertz): δH 1.78 (3Hydrogen, singlet), 3.73 (3Hydrogen, singlet), 

4.54 (1Hydrogen, singlet), 6.83 (2Hydrogen, br, singlet), 6.86-7.09 (4Hydrogen, multiflet), 

12.08 (1Hydrogen, singlet). Carbon NMR (100 Megahertz): δC 9.7, 35.4, 55.0, 57.6, 97.9, 

113.7, 120.8, 128.5, 135.5, 136.5, 154.7, 158.0, 160.7. [M+1] = 283. 

6-NH2-5-CN-3-Me-4-ClPh-dihydropyranopyrazole (5c): yellow solid; Yield (82%); 

Melting Point: 226-228°C; IR (KBr, υmax,cm-1): 3479-3235 (N-H ), 2193 (C≡N), 1071 (C-O-

C). Proton NMR (400 Megahertz): δH 1.79 (3Hydrogen, singlet), 4.64 (1Hydrogen, singlet), 

6.94 (2Hydrogen, br, singlet), 7.19-7.40 (4Hydrogen, doublet), 12.14 (1H, singlet). Carbon 

NMR (100 Megahertz): δC 9.7, 35.6, 56.8, 97.2, 120.6, 128.4, 129.4, 131.2, 135.7, 143.5, 154.7, 

160.9. [M+1] =287. 

6-NH2-5-CN-3-Me-4-NO2Ph-dihydropyranopyrazole (5d): yellow solid; Yield (75%); 

Melting Point: 247-248°C; IR (KBr, υmax,cm-1): 3477-3228 (N-H), 2196 (C≡N), 1048 (C-O-

C). Proton NMR (400 Megahertz): δH 1.80 (3 Hydrogen, s), 4.83 (1 Hydrogen, singlet), 7.06 

(2 Hydrogen, br, singlet), 7.47 (2 Hydrogen, doublet, J = 8.8 Hz), 8.21 (2 Hydrogen, doublet, 

J = 8.4 Hz), 12.21 (1 Hydrogen, singlet). Carbon NMR (100 Megahertz): δC 9.7, 35.9, 56.0, 

96.6, 120.5, 123.9, 128.8, 135.9, 146.4, 152.1, 154.7, 161.2. [M+1] = 298. 

6-NH2-5-CN-3-Me-4-(N, N- diMePh)-dihydropyranopyrazole (5e): yellow solid; Yield 

(78%); Melting Point: 203-205°C; IR (KBr, υmax, cm-1): 3384- 3304 (N-H ), 2189 (C≡N), 1139 
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(C-O-C). Proton NMR (400 Megahertz): δH 1.79 (3 Hydrogen, singlet), 2.86 (6 Hydrogen, 

singlet), 4.45 (1 Hydrogen, singlet), 6.65 (2 Hydrogen, d, J = 8.4 Hz), 6.76 (2 Hydrogen, br, 

singlet), 6.96 (2 Hydrogen, doublet, J = 8.8 Hz), 12.04 (1 Hydrogen, singlet). Carbon NMR 

(100 Megahertz): δC 9.8, 35.4, 58.0, 98.2, 112.3, 120.9, 128.0, 132.0, 135.5, 149.2, 154.8, 

160.5. [M+1] = 296. 

6-NH2-5-CN-3-Me-2-NO2Ph-dihydropyranopyrazole (5f): white solid; Yield (72%); 

Melting Point: 191-193°C; IR (KBr, υmax,cm-1): 3414-3314 (N-H ), 2186 (C≡N), 1048 (C-O-

C). Proton nmr (400 Megahertz): δH 1.77 (3 Hydrogen, singlet), 5.07 (1Hydrogen, singlet), 

7.04 (2 Hydrogen, br, singlet), 7.31-7.87 (4 Hydrogen, doubledoublet), 12.22 (1 Hydrogen, 

singlet). Carbon NMR (100 Megahertz): δC 9.5, 31.4, 56.1, 96.4, 120.3, 123.6, 128.3, 131.3, 

133.4, 135.8, 137.6, 149.2, 155.0, 161.2. [M+1] = 298. 

6-NH2-5-CN-3-Me-3-NO2Ph-dihydropyranopyrazole (5g): white solid; Yield (75%); 

Melting Point: 225-238°C; IR (KBr, υmax, cm-1): 3473-3224 (N-H), 2194 (C≡N), 1043 (C-O-

C). Proton NMR (400 Megahertz): δH 1.81 (3 Hydrogen, singlet), 4.88 (1 Hydrogen, singlet), 

7.06 (2 Hydrogen, br, singlet), 7.63-8.14 (4 Hydrogen, multiflet), 12.2 (1 Hydrogen, singlet). 

Carbon NMR (100 Megahertz): δC 9.8, 35.6, 56.2, 96.7, 120.5, 121.8, 122.0, 130.2, 134.4, 

135.9, 146.8, 147.9, 154.7, 161.1. [M+1] = 298. 

6-NH2-5-CN-3-Me-napthyl-dihydropyranopyrazole (5h): white solid; Yield (80%); 

Melting Point: 219-220°C; IR (KBr, υmax,cm-1): 3402-3313 (N-H), 2192 (C≡N), 1050 (C-O-

C). Proton NMR (400 Megahertz): δH 1.54 (3 Hydrogen, singlet), 5.42 (1 Hydrogen, singlet), 

6.91 (2 Hydrogen, br, singlet), 7.37-8.20 (7 Hydrogen, multiflet), 12.07 (1 Hydrogen, singlet). 

Carbon NMR (100 Megahertz): δC 9.7, 57.5, 98.1, 120.6, 123.2, 125.5, 125.8, 126.9, 127.5, 

128.8, 130.7, 133.7, 135.5, 154.8, 160.8. [M+1] = 303. 

6-NH2-5-CN-3-Me-2-Clnapthyl-dihydropyranopyrazole (5i): white solid; Yield (83%); 

Melting Point: 199-201°C; IR (KBr, υmax, cm-1): 3448-3254 (N-H), 2183 (C≡N), 1044 (C-O-

C). Proton NMR (400 Megahertz): δH 1.78 (3 Hydrogen, singlet), 5.20 (1 Hydrogen, singlet), 

7.54 (2 Hydrogen, br, singlet), 7.56-8.63 (5 Hydrogen, multiflet), 12.0 (1 Hydrogen, singlet). 

Carbon NMR (100 Megahertz): δC 9.6, 48.7, 93.8, 116.7, 120.4, 125.5, 125.9, 127.7, 127.9, 

130.6, 130.8, 135.5, 136.7, 137.1, 139.5, 140.2, 156.7, 161.5. [M+1] = 337. 

6-NH2-5-CN-3-Me-7-Menapthyl-dihydropyranopyrazole (5j): white solid; Yield 

(82%); Melting Point: 241-243°C; IR (KBr, υmax, cm-1): 3482-3256 (N-H), 2190 (C≡N), 1056 

(C-O-C). Proton NMR (400 Megahertz): δH 1.75 (3 Hydrogen, singlet), 3.86 (3 Hydrogen, 

singlet), 4.72 (1 Hydrogen, singlet), 6.91 (2 Hydrogen, br, singlet), 7.14-7.82 (6 Hydrogen, 

multiflet), 12.11 (1 Hydrogen, singlet). Carbon NMR (100 Megahertz): δC 9.7, 36.3, 55.2, 57.3, 

97.6, 105.9, 118.6, 120.8, 125.5, 126.3, 127.3, 128.2, 129.1, 133.3, 135.8, 139.3, 154.8, 157.2, 

160.8. [M+1] =333.0 

4. Conclusion 

We have accomplished a Ni-promoted one-pot reaction for constructing pyrazoles 

under moderate conditions in the presence of ethanol. Various aldehydes readily undergo the 

reaction to get the corresponding final product 5a-j in good to high yield. The following 

compounds, 5c, 5b, 5e, 5j, are showing good inhibiting action against the SK-OV-3 and PC-3 
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cancer cell lines, and this is mainly due to the electron-donating nature of the substituents (-

CH3, -OCH3) in the above molecule as per SAR studies. 
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